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Abstract

This paper aims to study the quaternary classical continuous optimal control problem
consisting of the quaternary nonlinear parabolic boundary value problem, the cost function,
and the equality and inequality constraints on the state and the control. Under appropriate
hypotheses, it is demonstrated that the quaternary classical continuous optimal control ruling
by the quaternary nonlinear parabolic boundary value problem has a quaternary classical
continuous optimal control vector that satisfies the equality constraint and inequality state and
control constraint. Moreover, mathematical formulation of the quaternary adjoint equations
related to the quaternary state equations is discovered, and then the weak form of the quaternary
adjoint equations is obtained. Lastly, both the necessary conditions for optimality and
sufficient conditions for optimality of the proposed problem are stated and proved. The
derivation for the Fréchet derivative of the Hamiltonian is attained.

Keywords: Quaternary Classical Optimal Control, Quaternary Nonlinear Parabolic Boundary
Value Problems, Necessary and Sufficient for Optimality Theorems.

1. Introduction

It is a well-known fact that optimal control problems (OCPs) are widely used in a variety
of scientific fields, including biology [1], economics [2], robotics [3], Aircraft [4], and many
others. OCPs are typically ruled by nonlinear ODEs (NLODEs) [5] or nonlinear PDEs
(NLPDEs) [6]. During the last decade, great attention has been made to studying OCPs for
system ruling by NLPDEs of elliptic, hyperbolic, and parabolic types [7-9]. Later, the study of
this subject is expanded to include classical continuous optimal control problem (CCOCP) for
systems ruling by couple NLPDEs and then recently by triple NLPDEs for the above three
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indicated types of NLPDESs [10 - 15]. As a result, these concerns made us study the quaternary
classical continuous optimal control problem (QCCOCP) ruling by quaternary nonlinear
parabolic boundary value problems (QNLPBVPs) with equality constraint (EQC) and
inequality constraint (INEQC).

This paper is concerned with studying the QCCOCP ruling by a QNLPBVP; it begins
with stating and demonstrating the existence theorem of a quaternary classical continuous
optimal control vector (QCCOCYV) ruling by the QNLPBVP with EQC and INEQC under
suitable hypotheses. In addition, the mathematical formulation of the quaternary adjoint
equations (QAES) related to the quaternary state equations (QSES) is discovered so as the weak
form (WF). Moreover, the Fréchet derivative (FrD) of the Hamiltonian is attained. Lastly, both
the necessary conditions for optimality (NCsTh) and sufficient conditions (SCsTh)) for
optimality are stated and demonstrated.

Description of the problem

Let &  R? be an open and bounded region with boundary ' = 09, x = (x;,%,), Q =
IxQ I1=[0T], T=0Q, T=TxL
The QCCOC consists of the continuous quaternary state vector solution (CQSVS), which is
expressed by the following QNLPBVP:

Yie—Ay1+y1 =yt ys+ya = filx, t,y,w),  InQ 1)
Voar =Dy, +y1+ Y. —y3—Va = L6 y5,uz),  InQ (2)
Vae —Ays —y1+ Y. +y3+ya = f3(x,t,y3,u3),  inQ 3)
Var —Dya— Y1+ Y2 — Vs +ya = fa(x,t,ypus), InQ 4)
With the following boundary conditions (BCs) and initial conditions (ICs):

y;(x,t) =0, Vi=1,2,3/4. onX (5)
yi(x,0) =y?(x), Vi=1.234. on Q (6)

Where 5 = (y1,¥2, Y3, ¥a) = (716, 8, 72 (%, £), y3 (x, £), y4 (x, £)) € (H2@Q)" is the

quaternary state vector solution (QSVS), © = (uy, uy, Uz, uy) =

(uy (x, 1), ug (x, 1), uz (x, £), uy (x, t) ) € (L2 (Q))4 is the QCCCV and (fy, fo, fa, 1) =

(G ), F,(x 6, f5(6, £, fi(x, 0) € (12(Q))” is given, for all x = (x,x,) € Q.

The set of admissible control (SAC) is:

W,=1{we (LZ(Q))4|W €U cR*aeinQ,6,(W) =0,6,(#) <0}

The CF is:

Go(d) = fQ Jo1(x, t,y1, ug)dxdt + fQ 9o2(x,t, ¥y, uz)dxdt + fQ 9oz (x, t,y3, uz)dxdt +
fQ 9oa(x, t, ¥4, us)dxdt, (7.a)

The constraints on the state and the control (CSSC) are:

G, (W) = fQ 911(x, &, y1, Uy )dxdt + fQ 912(x, t, 5, up)dxdt + fQ 913(x, t, y3,u3)dxdt +

fQ g14(xr t, 3’4; u4)dxdt = 01 (7b)
G,(W) = fQ g21(x, t, y1, uy )dxdt + fQ G22(x,t, Y2, upy)dxdt + fQ 923(x,t, y3,u3)dxdt +
fQ g24(xr t, Y4: u4)dxdt S 01 (7C)

Where (y1,¥2, V3, Va) = Va1 Yuzr Yus» Yua) 1S the QSVS of ((1) — (6)) corresponding to the
QCCCV (ull Uy, U3, u4)'
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Let V=V, XV, X V3 XV, = (7—[01((2))4and U = (v, vy, V3, 1) = (v1(x),

v, (x), v3(x), v4(x)).

V= {17: U E (7—[‘01(9))4,with v, =V, =v3 =1, =0o0n an}.

The WF of the QSVEs:

The wf of ((1) — (6)) with y € (}[(}(Q))4 is given by

(Y16, v1) + (Vy, Vo) + (v, v1) — (72, v1) + (5, v10) + s, v1) = (L, we), v1), - (8.9)

(1, v1) = (1(0), vy), (8.b)
(V20 v2) + (Vy2, Vo) + (71, v2) + V2, v2) — (3, 02) — Ve v2) = (2(V2,u2),v2),  (9.9)
(v3,12) = (72(0),v,), (9.b)
(V36 v3) + (Vy3, Vus) — (1, v3) + (V2,v3) + (3, v3) + (Vs v3) = (f3(¥3,u3),v3), (10.9)
(v3,v3) = (¥3(0),v3), (10.b)
(Varr Va) + (Vya, Vi) — (Y1, v4) + (V2,04) — V3, 4) + (U4, va) = (u(Va ), v4),  (11.9)
2, va) = (14(0), 1), (11.b)

The following hypotheses are important to study the QCCOC.

Hypotheses (A): Assume Vi = 1, 2, 3, 4 that:

(i) f;is Carathéodory type (Cara. T.) on Q@ x (R)*, and satisfies the following conditions
wrt y; &u;, i.e.:

|f,-(x, t, Vi u,)l < ni(x, t) + Cilyil + éiluil , Where (x, t) € Q, Ci, éi > 0 and n; €
L*(Q,R).

(i) f; satisfies Lipschitz condition (LC) w.r.t. y;, i.e.:

IfiCe t, v w) — fi(x 6,y u)| < Lily; — yil. Where (x,t) € Q , y;, ¥, u; € Rand L; > 0.
Theorem (2.1) [13]: (EUTh for the wf of the QSVES)

With hypotheses (A), for each given QCCCV 4 € (L? (Q))4, the wf ((8) — (11)) has a unique
QSVs 7 € (12(1,v))", with 3, € (12(1,v™))".

Hypotheses (B):

Suppose that for each [ = 0,1,2 and i = 1,2,3,4, that g;; is of Cara. T. on Q x (R)* and
satisfies the following conditions w.r.t. y; and u;:

|90 (et yi, u) | < (e, t) + € ()% + iz (w)? . Where y;, u; € R with n; € L'(Q).
Lemma (2.1):

With hypotheses (B), for each [ = 0,1,2, the functional % — G;(&) is cont. on (L?(Q))* .
Proof: The requirement result is gotten (VI = 0,1,2) directly from hypotheses (B) and Lemma
1.12in [16].

Theorem (2.2) [16]: Consider the set WA # @, foreach i = 1,2, 3,4, the functions f; has the
form f;(x, t, v, up) = fu (0, 6, y0) + fiz (x, )y

With |fi; (x,t,y)1 < n;(x,t) + ¢l y;| where n; € L*(Q) and |fi (x, t)| < k;,

If Vi =1,2,3,4, go; is convex (CO) w.r.t. u; for fixed (x, t, y;). Then there isa QCCOCV.
Hypotheses (C):

Assume that, for [ = 0,2 and i = 1,2,3,4 g;,, and g;,,, are of Cara. T. on X (R)*,

|gliyi(x: t,yiu)| < M (0 + e |yl + 6 gl

and | gy, (6 6y u)| < My, O 8) + ey |yl + 6 lugl.
Where(x, t) € Q, ¥, u; € R,y ,my,, € L*(Q).
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Theorem (2.3) [16]: In addition to hypotheses (A), if 7 and y + 8y are the QSVS
corresponding to the QCCCV %, @ + u € (L2(Q))*, resp., then

||6y||L°°(['L2(_Q) =M ”5u”L2(Q)’ ||6y||LZ(Q) =M ”6u”L2(Q) ! ||6y”L2(1‘V) =M ”6u”L2(Q)'
Theorem (2.4) (The Kuhn-Tucker-Lagrange conditions (KTL)) [10]:

Let U be a nonempty CO subset of a vector space X, K be a nonempty CO positive cone in a
normed space Z, and W = {u € U|G,(u) = 0,G,(u) € —K}.

The functional Gy: U » R,G,: U - R™ ,G,: U —» Z are (m + 1) — locally continuous at u €
U, and have (m + 1) — derivatives at u where m # 0. And ifm =0 , we assume that
DG;(u),l =0,1,2, are K -linear at the point u. If G,(u) has a minimum atu in W, then it
satisfies the following KUTULA conditions, Yw € W

There exists 1, € R,1; € R™, A, € Z*, with 15 > 0,1, > 0,¥2 |4, =1 st

AoDGo(u,w —u) + ATDG,(u,w — u) + (A, DG, (u,w —u)) = 0, (1,,G,(u)) = 0.

Main Results

3. Existence of the QCCOCYV and the FrD:

This section deals with the existence theorem of the QCCOCV, the discovery of the
mathematical formulation for the QAEs and their WF is obtained, and the derivation of the
FrD is derived under some appropriate hypotheses.

Theorem (3.1): Consider the set WA #+ @, the functions f;, Vi = 1,2, 3,4, has the form

fi(xr t, Vis ui) = fil(x' ¢, yl) + fiZ (X, t)ui

With |fi; (x,t,y)1 < ni(x,t) + ¢l yil and |fiz(x, )] < k;, where n; € L?(Q).

Ifvi = 1,2,3,4, gq; isindependent of u;, go; and g,; are convex w.r.t. u; for fixed (x, t, y;).
Then there isa QCCOCV.

Proof: From the hypotheses on W; and g4; (Vi = 1,2, 3,4), with using lemma (2.1) and the.
2.2, one can get that there is a QCCOCYV with the EQC and INEQC.

Theorem (3.2):

We drop the index [ in g; and G; . In addition to hypotheses (A), (B), and (C), the following
adjoint (z, ,z,,25,24) = (zu1 s Zuy s Zug ,zu4) equations corresponding to the state

U1,Y2,Y3,Y8) = (Vuy » Yy » Yus » Yu,) €QUatIONS ((1) — (6)) are expressed by:
—Zye —Dzy + 2y + 2 — 23 — 24 = 71fy, (X, 6, Y1, ) + gy, (X, 8,1, Uq)

(12)
—Zye — Dz + 2, — 21 + 23 + 24 = Z1fy, (X, 6, Y1, u1) + gy, (8, Y1, Uy) (13)
—Z3¢ —Dz3 + 23 + 21 — 2, — 7, = Z1fy, (X, 6, Y1, u1) + gy, (6, 8, Y1, Uy) (14)
—Zy —DZy + 74+ 71 — 7y + 73 = Zlfy1 (x,t,y1,u1) + 9y, (x,t,y1,u1) (15)
z;(x,t) =0, Vi=1234, onx , (16)
z(T) =0, Vi=1234, onT | (17)

Also, the Hamiltonian is defined: H(x, t,y;, z;, u;) = Y=y zif; (6, t, v, u) + g:(x, 6, yi, wy),

ZlfU1 + gul\ 6u1

3 — z +
Then the FrD of G is given by G (%) - du = fQ sz:uz + zuz ' gzz dx.
3 Us Us 3
Zyfu, + gu4/ Ouy
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Proof:
Firstly, let % be a QCCCV, and y be its QSVS, and let G (@) = Y}, fQ g:(x, t, y;, u;)dxdt,

From the hypotheses on g; (I = 1,2,3,4), the FrD definition, the result of The. 2.3, and then
using the Minkowski’s inequality (MKIN), one can get that:

G(d + 51,7) -6 = fQ(gylchl + gu, 6uy) dxdt + fQ(gy26y2 + gu,0uy) dxdt +
fQ(gy36y3 + gu,Ous) dxdt + fQ(gy46y4 + gu,0u,) dxdt +

eo(8u) |81 || 2., (18)
Where 86(51,7) = ez(ﬁ) + eg(a) + 84(512) + 85(52) — 0 as ||£ ||L2(Q) — 0.
On the other hand, the wf of the QAEs for v; € V, Vi = 1,2,3,4 is given by:
—(214,v1) + (Vz1, V1) + (24, v1) + (22, v1) — (23,v1) — (24, v1) = (Z1f1y1'171) +
(913, v1), (19)
—(Z26,V2) + (V25, V) + (25, v2) — (21, v2) + (23, 12) + (24, V2) = (ZZnyzrvz) +
(92y,v2), (20)
—(23¢,v3) + (V2z3,Vv3) + (23,v3) + (21, v3) — (22, v3) — (24, V3) = (Z3f3y3'773) +
(93y,v3), (21)
(240, Va) + (V24, V0,) + (24, Va) + (21, V4) — (22, V) + (23,V3) = (Zafay,, Va) +
(Gay,va) (22)

The existence of a unique solution of ((19) — (22)) can be proved by the same manner which
is used in the proof of the unique of the QSVS.

Now, substituting v; = 8y;, Vi = 1,2,3,4 in ((19) — (22)) resp., then taking the integrating
both sides (IBS) from 0 to T, lastly, applying integration by part (IBP) for the 1% terms of each
resulting equation, to get that:

f0T<53’1’Z1 )dt + fOT[(VZLVSJﬁ )+ (21,61 ) + (22,6y1) — (23,6y1) — (24, 6y, )] dt =

[ [(21fiy 691) + (g1y,, 531)]dt, (23)
(82 22) dt + [ [(V25,V8Y5) + (22, 8Y2) — (21, 8,) + (23,8Y,) + (24, 8y,)dt =
fOT[(szZyz' 8y2) + (92y, 8¥2)]dt, (24)
f0T<53’3»Z3) dt + fOT[(VZ3;V5)’3) + (23, 6y3) + (21, 8y3) — (22, 6y3) — (24, 8y5)]dt =
fOT[(Z3f3y3’ 8y3) + (9sy, 6y3)]dt, (25)
[, (8Yszay dt + [ [(V2y, V8ys) + (24, 8Ya) + (21,674) — (25,8Y4) + (23, 8y,)]dt =
foT[(Z4f4y4' Y4) + (9ay, 8ya)]dt, (26)

Also, substituting v; = z;, Vi = 1,2,3,4 in ((8.a) — (11.a)) resp., then IBS w.r.t. t from 0 to T,
to obtain:

T T
Jo (6y10,21) dt + [ [(V8y1,Vzy) + (Y1, 21) — (8Y2,21) + (8Y3,21) + (6ys 1) dt =

fOT(f1(3’1 +8y1,uy + 6uy), z,)dt — fOT(f1(J’1,u1),Z1)dt' (27)
[ (8Y2022) dt + [ [(V8y5,V2,) + (8y1,2) + (8Y2,2) — (8Y3,25) — (8Y4, 25)] dt =
[ (2 + 82,1, + 6uy),2)dt — [ (fo(v2,u5), 22)dlt, (28)

139



IHIPAS. 35(3)2022

fOT<53’3t: zz)dt + fOT[(V53’3:V23) — (8y1,23) + (8Y2,23) + (8Y3,23) + (6y4, 23)] dt =

fOT(fs(Y3 +6y3,uz + 6uz), z3)dt — fOT(f3 (v, u3), z3)dt, (29)
f0T<5)’4t; z4) dt + fOT[(V53’4» Vzy) — (6y1,24) + (62, 24) — (6Y3,24) + (8Y4,24)] dt =
fOT(ﬁ(y4 + 6ya, Uy + 6uy), z4)dt — fOT(f4(Y4: Uy), z4)dt, (30)

Using the hypotheses on f; (for each i = 1,23,4) , the FrD of it exists, then from the result of
The. 2.3, and the MKIN, the followings are yielded:

f0T<53’1t; zy)dt + fOT[(VSYLVZﬂ + (6y1,21) — (8y2,21) + (6Y3,21) + (6y4,21)] dt =
T — —_—
fo (fiy, 091 + fiu,6uy, z1)dt + 812(6u)||5u||L2(Q),

(31)
[3(8Y20,25) dt + [ [(V6y2,92;) + (8y1,25) + (8Y2,22) — (6Y3,2) — (Sya, 2p)] dt =
Jy (f23,82 + fouy8tt2, 22)dt + 25 (G0 |6 2 (32)
[ (8Yse,23) dt + [ [(V8ys,Vz3) — (8y1,23) + (8Y2,23) + (8Y3,23) + (8ya, 25)] dt =
Jy Fs9,85 + fiuy Oz, 25)dt + £50(G)|8u 2, (33)
f0T<53’4t:Z4) dt + fOT[(V5)’4: Vzy) — (6y1,24) + (62, 24) — (8Y3,24) + (8Y4, 24)] dt =
Jy fay8Ya + fon, Stta, 2)dt + 45 (0|8 2 (34)

By subtracting ((31) — (34)) from ((23) — (26)) resp., and adding the attained equations, one
obtains:

Jo [ (Fray 8us, 20) + (Fou, 82, 22) + (fouy Ott3, 75) + (faue, O1tas 24) 1t + &5 (50) [ 8] 1 ) =
fOT[ (9190 691) + (92y,,6Y2) + (935, 6Y3) + (gay,, 6y4)1dt, (39)

Where 85(@)) = 812(5) + 622(5) + 532(5) + 842(5) — 0, as ||£ ||L2(Q) — 0,

Now, by substituting (35) in (18), one gets:

G(d+ou)—G@) = Sl (z1f1uy + 91u,)8u1 + (22fou, + G2u,)Us + (23f5u, +
I3u;)0us + (Zafau, + Gau, ) SUs]dxdt + 87(5)”5 ”LZ(Q) 36)

Where 87(51)) = 85(@)) +£6(0u) — 0, 8 ”E ”LZ(Q) —0,

Using the FrD definition of G, one gets:

Gt +8u) — 6@ = (C @), 5u) + &, (50| | 1, (37)

From (36) and (37), one can get:
Z1 fiu, + 91y Suq

Zafou, + G2u, | Suy
Z3f3u, + G3u, Sus
Z4ﬁlu4 + g4u4/ Oy
4. The NCsTh and The SCsTh for Optimality:

This section deals with the state and demonstration of the NCsTh, so as the SCsTh,
under some additional hypotheses.

(C@),6u) = I, dx .
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Theorem (4.1): NCsTh for Optimality:

(@) In addition to hypotheses (A), (B) and (C), if u € WA is QCCOCV, then there is
'multiplier”A; € R,l = 0,1,2, with 1, > 0, 1, = 0, ¥2_,|4,| = 1, s.t. the following Lagrange
-Kuhn-Tucker conditions (LKT) conditions are held:

J, Ha(x,t,5,2,0) - Sudxdt 2 0,vw € W, du=w -1 (38.0)
Where g; = Y% ,A,9; ,Vi = 1,2,3,4 in the definition of H, and also 1,G, (i) = 0, (38.b)
(b) (Minimum principle in weak form) If W is of the form

W= {W € (L%(0, R))4|W(x, t) € Ua.e.on Q} with U c R2.

Then, (37.a) is equivalent to the minimum principle in point-wise form (MPPWF)

=

Hy(x,t,¥,Z,u)u(t) = min Hy(x, t,y,Z, %)W ae.on Q (39)
weUu
Proof: (a) The functional G, (%) is p —locall cont. at each i € W, vl =0,1,2and for every p
(by hypotheses (A) , (B) and (C) and Lemma 2.1), and G, () is p —differentiable at each u €
W, Vp (by hypotheses (A) , (B) and (C) and The. 3.2) and since W c (LZ(Q))4 , L2(Q) is
open, then DG,(u,w — i) = G,(W)(W —1u),1 = 0,1,2,
And since 7 € W, is QCCOCV, by The. 2.4, thereis 4, € R,l = 0,1,2 , with 1, = 0, 1, >
0, Y% ,l4,] = 1s.t. (38a&b) are held.
Again by The. 3.2, setting Su = w — % and substituting the FrD of G, I = 0,1,2 in (38.a), one
has:
Yiet fQ[(AOZOi + 121 + 2220 fru; + (Aogomi + MG1iy; + /1292iui)]5uidxdt = 0,
= Y1 fQ[(Zifiui + Giu,)] Sudxdt > 0,
Where gi = 212=0 Al g1i.2Z; = 2l2=0 /1[ Zii Vi =1,2,3,4.
Z1 fiu, + 1, Su,

[ Zafou, + Gou, | Suy
Q| z3f3u, + G3u, Suz

Z4f4u4 + g4u4/ Ou,

- dxdt 2 0, or f, Hy(x, t,5,7,W) - Sudxdt > 0.

(if) To prove that (38.a) is equivalent to (39):

Let W = {W € (L12(Q, R))*|W(x,t) € Ua.e.in Q} with U < R?, let {w, } dense in a set W
, i is “Lebesgue measure” on Q and let S ¢ Q be a measurable set s.t.:

_, we(x,t) , if(x,t) €S

Wi t) = {a(ljcf 0 ) , if((x, t)) ¢s

Therefore (38.a) becomes:

fs Hy(x, t,y,Z,u) (W, —ud) =0 ,VS.

Using the 3.2, to obtain: Hy(x,t,y,Z,u)(w, —u) =0 ,a.e.inQ,

Hz(x,t,y,Z,0)(W, —u) =0 ,inP =N, P, ,where P, = Q — Q, withu(Qy) =0, Vk,
since P is independent of k , hence u(Q — P) = u(Uy Qi) = 0, from the density of

{W,} in Wy ,onehas Hy(x,t, 7,2 0)(W —1) =0 ,ae.inQ.

= Hy(x,t,y,Z,1)u = min Hy(x, t,y,Z, )W , VW € W, ae.in Q.

Conversely, if e

Hyz(x,t,y,Z,1)u = min Hz(x, t,y,Z,u)w ,a.e.onQ

—

weu
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= Hyz(x,t,7,Z0)(W —1) =0 ,Viw € W, ae.onQ
> [,Ha(x,t.3,7, W)du dxdt >0, Yw € W.
Theorem (4.2) :( SCsTh for Optimality)
In addition to hypotheses (A), (B) and (C), suppose that W= Wﬁ isCO, f; , Vi =1,2,3,4and
g1 are affinew.r.t. (y;,u;) in Q, and g,; and g,; are COw.r.t. (y;,u;) in Q Vi = 1,2,3,4. Then
the NCs in The. 4.1 with 4, > 0 are also sufficient.
Proof: From The. 4.1, DG,(i,w — 1) = G,(@)(W —u) ,1=0,1,2,
Assume that i satisfies (38) and % € W, , i.e.:
fQ Hz(x,t, 7,2 W)dudxdt > 0, vw € W. And 1,G, (%) = 0. Let (&) = ¥, 1,G,(@) , then
GG - Su = XLy MGy D) - Su

= fQ Yi1(2oifiu; + Goi,) Su; dxdt + 24 fQ Y (zaifiu; + G100,) Sy dxdt +

Az fQ Z?=1(Zzifiui + gziui) Su; dxdt,

= fQ Hy(x, t,9, 2, %)8u dxdt > 0,
Now, to demonstrate 1 +— yy; is convex — linear (COL), since Vi = 1,2,3,4, f; is affine
from the HYPOTHESES on f;, Vi = 1,2,3,4: f;(x,t,v;, u;) = fir (x, )y; + fio (x, Ou; +
fis(x,t), Vi=12734.
Let o = (uy, Uy, Us, Uy) & U = (s, Uy, U3, i) be two given QCCCVs and from The. 2.1, ¥ =
(yulryuzryu3ryu4) =0uY2Y3Ys) & )2’ = (3_’171:)7&2,37&3,37@) = (J1, Y2, V3, Ya)are their
corresponding QSVS, precisely from (1),
Yie —Ay1 +y1 =y v ¥3 +ya = fra(x, ODy1 + fio(x, Dug + f13(x, 0),
y1(x,0) = y{)(x),
Vie = Ay1 + 1 = Yo + V3 + Ya = f1a(x, Y1 + f12(x, DUy + f13(x, 0),
y1(x,0) = y? (x),
By MBS the 15¢ above equation and its IC by a € [0,1] , and the 2™¢ equation and its IC by
(1 — @), and adding the attained equations and their attained ICs , one gets that:
(ay1 + (1 =)y, )¢ — Aay; + (1 —a)y,) + (ay, + (1 — @)yy) — (ay; + (1 — @)y,) +
(ays + (1 — a)y3) + (ays + (1 — a)ys) = fr1(x, O)(ay:s + (1 — a)y1) + fr2(x, t) (auy +
(1 - o)) + f13(x, t) (40.9)
ay;(x,0) + (1 — )y, (x,0) = y? (x) (40.b)
By the same way, one obtains that:
(ay, + (1 —a)y, )¢ — Alay, + (1 — @)y,) + (ay, + (1 —a)y,) + (ay, + (1 —a)y,) —
(ay; + (1 — @)y3) — (ays + (1 — @)¥a) = fo1(x, D) (ay, + (1 — @)y,) + foo(x, ) (au, +
(1 —a)i,) + fo3(x, 1) (41.9)
ay,(x,0) + (1 — a)y,(x,0) = y3 (x) (41.b)
(ays + (1 —a)y3 )¢ —Alays; + (1 — a)y3) + (ays + (1 —a)y3) — (ay; + (1 —a)y,) +
(ay; + (1 = a)y,) + (ays + (1 — @)ys) = f31(x, D) (ays + (1 — @)y3) + fa2(x, ) (aus +
(1 —a)is) + f33(x, 1) (42.9)
ays;(x,0) + (1 — a)y3(x,0) = y3 (x) (42.b)
(ays+ (1 —a)ys )¢ — Alay, + (1 — a)yy) + (ay, + (1 — a)yy) — (ay; + (1 — a)yy) +
(ay; + (1 — @)y,) — (ays + (1 — @)¥3) = far (x, ) (ays + (1 — @)yy) + faz (x, O) (auy +
(1 - a)uy) + faz(x, ) (43.9)
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ay,(x,0) + (1 — @)y, (x, 0) =y (x) (43.b)
From equations ((40) — (43)), the QCCCV @ = (iiy, @l,, i3, Tiy) , With & = aii + (1 — @)% has
the corresponding QSVS, 5 = (51, 72, V5. 72) . ¥ = ay + (1 — @)y , i.e.:
Jie = AP + 51 — Fo + V3 + Fu = fra(x, OF1 + f12(x, Ty + fr13(x, 0),
§1(x,0) = y? (%),
Vor =AY, + o + 51 — J3 — Va = f21(x, )T, + for (x, )T + fo3(x, 1),
F2(x,0) = y3 (x),
V3e =AYz + 3 = F1 + Jo + Ja = f31(x, T3 + fao(x, )5 + fa3(x, ),
F3(x,0) = y3(x),
Var = AV + J4 — V1 + o — ¥3 = far (6, T4 + far (x, )Ty + fas(x, 1),
Ja(x,0) = yg (%),
Therefore 1 — yy is COLw.r.t. (y,1) in Q.
From hypotheses on g,; in Q foreach i = 1,2,3,4: g;;(x,t,y;,u;) = hy; (x, ) y; +
hyi (x, t)u; + hs;(x,t).
Now, to show g,; is COL w.r.t. (y;,u;) , in Q, since
Gl(ﬁ +(1- Ol)l:i) = Z?:l[fQ gli(x' ) Yi(aui+(1-a)m) AU + (1- a)ﬁi) dxdt]
=Y fQ[ hii (6, ©)Yiau+1-aympldxdt + fQ[ hyi(x, ) (au; + (1 — )u;) +
hsi(x, t)]dxdt },
Since U +— yy is COL. Then G, (1) is COL w.r.t. (y,u4) ,in Q,i.e..
GE+A-a)u) =3 { fQ[ hyi(x, £)(ay; + (1 — a)y)]dxdt + fQ[hZi(x' t)(au; +
(1 — )u;) + ha;(x, t)]dxdt },
=aYi, fQ[hu(x' £)yi + hai(x, )u; + hgi(x, t)]dxdt +
1-a)Xi, fQ[hu'(x, £)yi + hai(x, )U; + hg(x, t)]dxdt,
= aG, (@) + (1 — 0)G,(%),

Since gy; &g,; are COw.rt.(y;,u;),inQ, Vi =1,2,3,4, then

* fQ Joi dxdt and Z;‘zlfQ goi dxdt are CO w.rt. (y;u;), in Q,Vi = 1,2,3,4, and then
Go(d) and G, (w) are CO w.r.t. (y,u), in Q, i.e. G(&) is COw.r.t. (y,u) , in Q . On the other
hand, since W = Wﬁ is CO , and the FrD of G, (%), (I = 0,1,2) exists for each % € W and its
cont. (By The. 3.2 and hypotheses (A),(B) and (C)), then G (1) is CO w.r.t. (y, %), in the CO
set W and it has a cont. FrD, and satisfies G'(Ti)gi > 0, which means G (1) has a minimum at
U,ie:G@) <GW) ,YweW,
= AGo (@) + 1161 () + 2,6, () < AgGo(W) + A,G1 (W) + 2,G,(W)

(44)
Let w € W,, with 1, > 0, then from (38) and (44) gives:
LoGo(@) < AoGo(W), VW € W = Go(1) < Go(W), Viw € W, since (1, > 0).
= Thenu is QCCOC.
Quaternary classical continuous optimal control consists of a quaternary nonlinear

parabolic boundary value problem with a cost function and the constraints on state and control
(equality constraint and inequality constraint). Under appropriate hypotheses, the quaternary

classical continuous optimal control ruling by the quaternary nonlinear parabolic boundary
value problem is demonstrated as a quaternary classical continuous optimal control vector that
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satisfies the equality constraint and inequality constraint. Moreover, mathematical formulation
of the quaternary adjoint equations related to the quaternary state equations is discovered so as
their weak form. The derivation for the Fréchet derivative of the Hamiltonian is attained.
Lastly, both the necessary conditions for optimality and sufficient conditions for optimality of
the proposed problem are stated and proved.

5. Conclusion
This work studies the quaternary classical continuous optimal control ruling by a

quaternary nonlinear parabolic boundary value problem. The existence of a quaternary
classical continuous optimal control vector ruling by the considered the quaternary nonlinear
parabolic boundary value problem satisfies the equality constraint, and inequality constraint is
proved under appropriate hypotheses. Moreover, mathematical formulation of the quaternary
adjoint equations related to the quaternary state equations has been discovered. The derivation
of the Fréchet derivative is attained. Lastly, the necessary (conditions) theorem for optimality
and the sufficient (conditions) for optimality of the proposed problem are stated and
demonstrated.
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