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Abstract

The essential objective of this paper is to introduce new notions of fibrewise topological spaces
on D that are named to be upper perfect topological spaces, lower perfect topological spaces,
multi-perfect topological spaces, fibrewise upper perfect topological spaces, and fibrewise lower
perfect topological spaces. fibrewise multi-perfect topological spaces, filter base, contact point,
rigid, multi-rigid, multi-rigid, fibrewise upper weakly closed, fibrewise lower weakly closed,
fibrewise multi-weakly closed, set, almost upper perfect, almost lower perfect, almost multi-
perfect, fibrewise almost upper perfect, fibrewise almost lower perfect, fibrewise almost multi-
perfect, upper” continuous fibrewise upper* topological spaces respectively, lower™ continuous
fibrewise lower* topological spaces respectively, multi*-continuous fibrewise multi*-topological
spaces respectively multi-Te, locally In addition, we find and prove several propositions linked
to these notions.

Keywords: Fibrewise topological spaces, filter base, fibrewise upper perfect topological spaces,
fibrewise lower perfect topological spaces, and fibrewise multi-perfect topological spaces.

1. Introduction

We begin our work with the concept of category of Fibrewise (briefly, F.W.) set on a known set,
named the base set. If the base set is stated with D, then a F.W. set on D applied to a set E with a
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function X is X: E — D, named the projection (briefly, project). For every point d of D, the fiber
ond is the subset E; = X~1(d) of E; fibers will be empty, so we do not require X to be a surjection.
Also, for every subset D* of D, we regard Ep- = X~1(D*) asa F.W. set on D* with the project
determined by X. A multi-function [2] Q of a set E into F is a correspondence such that Q (e) is
a nonempty subset of F for every e € E. We will denote such a multi- function by Q: E — F . For
a multi- function Q, the upper and lower inverse set of a set K of F, will be denoted by Q*(K)
and Q™ (K), respectively, that is Q*(K) ={e € E: Q(e) € K}and Q" (K) ={e € E: Q(e) N K #
o}

Definition 1.1. [7] Suppose that E and F are F.W. sets on D, with project. Xz: E — D and

Xp: F — D, respectively, a function Q: £ — F is named to be F.W. if X;0Q = Xg, thatis to

say if Q(Xq) < Fq for every point d of D.

For other concepts or information that are undefined here, we follow nearly [3] and[4]

Recall that [7] Let D be a topological space, the F.W. Topology space (briefly, F.W.T.S.) on a

IF.W. set E on D, which means any topology on E for that the project X is continuous.

Remark 1.1. [7]

i.  The smaller topology is the topology trace with X, where in the open sets of E are the pre
image of the open sets of D, this is named the IF.W. indiscrete topology.

ii. The F.W.T.S. on D is stated to be a IF.W. set on D with a F.W.T.S.

We regard the topology product D x T, for any topological space T, as a F.W.T.S. on D using
the category of the first projection. The equivalences in the category of F.W.T.S. are named
F.W.T. equivalences. If E is F.W.T. equivalent to D x T, for some topological space T, we say
that E is trivial, as a F.W.T.S. on D. In F.W.T. the form neighbourhood (briefly, nIPd) is used in
the same sense as it is in normally topology, but the forms F.W. basic may need some illustration,
so let E be F.W.T.S. on D, if e is a point of Eq where in d €D, appear a family N(e) of nPdl of e
in E as F.W. basic if as every nlPd H of e we have Ew N K c H, for some element K of N(e) and
nPd W of d in D. As example, in the case of the topological product D x T, where in T is a
topological spaces, the family of Cartesian products D x N(t), where in N(t) runs through the
nPds of t, is F.W. basic for (d, t).

Definition 1.2. [7] The F.W. functions Q: E— F, E and F are F.W. spaces on D is named:
(a) Continuous (briefly, cont.) if every e €Eq; d €D, the inverse image of every open set of Q(e)

IS an open set of e.

(b) Open if for every e€E_d, d €D, the direct image of every open set of e is an open set of Q(e).
Definition 1.3. [7] The F.W.T.S. E on D is named F.W. closed (resp., open) if the project. X is
closed (resp., open) functions.

Definition 1.4. [1] Let Q: E — F be a multi-function. Then Q is upper cont. (briefly, U. cont.) if
Q" (K) open in E for all K open in F. That is, Q" (K) ={x € E: Q(x) €K}. K cF.

Definition 1.5. [1] Ler Q: E — F be a multi-function. Then Q is lower cont. (briefly, L. cont.) if
Q (K) open in E for all Kopen in F. That is, Q(K) ={e €E: Q) N K#2}. K CF

Let Q: E — F be a multi-function. Ther Q is multi cont. (briefly, M. cont.) if it is U. cont. and L.
cont.

Definition 1.6.[5] Let D be topological space, the F.W. upper topology space (briefly,
F.W.U.T.S.) on a F.W. set E on D mean any topology on E for which the project. X is U. cont.
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Definition 1.7.[5] Let D be topological space the F.W. lower topology space (briefly,
F.W.L.T.S.) on a F.W. set E on D mean any topology on E for which the project. X is L. cont.
Let D be topological space the F.W. multi-topology space (briefly, FW.M.T.S.) if it is
F.W.U.T.S. and FW.L.T.S.

Definition 1.8. [3] A filter 3 on topological space (E,t) a non-empty collection of non-empty
subsets of E such that

i VF,F,e3 F1NF2€eJ

ii. IfIF1<F,CEandF.€3JthenF€ 3.
Definition 1.9. [3] If 3,Q filter bases on (E,t), we namely Q is finer than I (written as J < Q)
if forall F € 3, there is G € F meetsQ if FNG # @ forevery F € Jand G € Q.
Definition 1.10. [10] If E is topological space and e € E a nlPd of e is a set U which contain an
open set V containing e. If A is open set and contains e we namely A is open a nPd for a point
e.
Definition 1.11. [9] A point e in (E,7) is named to be a contact point of a subset A C Effv U
open nlPd of e, cl (U) N A # @. So, set of all contact points of A is named to be the closure of
A and is symbolized by cl (A).
Definition 1.12. [10] A subset A in topological spacee (E,t). So, A is named to be E.set in E
(briefly, E -set) if VT an open cover of A there is a finite sub collection H of §; A cu{cl(H) :
He€é§ }. If A =E; then, E is named to be a OHC space.
Definition 1.13. [2] Lete a pointina F.W.T.S. (E,7) on (D,p) is named to be adherent point of
a F*.B*. 3. on E (briefly, ad(e)) iff all number of J is contract a point. A set of all adherent point
of I is named to be the adherence of 3 and is symbolizes by ad(3J).
Definition 1.14.[11] The filter base J (briefly F*.B*. 3) on topological space (E,t) is named to
be convergent (briefly, conv.) (Written, I —°"— e iff every t.open. nlPd U of e, contains
some elements of J.
Definition 1.15.[11] The F+.B*. 3 on topological space (E,z) is named directed toward a set A
c E,(briefly, § — %' A) iff all F*.B*.Q. larger than S has an adherent point in A, i.e. ad(Q)
NA # @, and in another writing § —%9— e to imply that § —%'— {e}, in which e €E.
Currently, we review a characterization of a point e of a F*.B*. J.

2. Fibrewise Multi-Perfect Topological Spaces

In this segment we establish F.W. multi-perfect topological spaces (briefly, FW.M.P.T.S.),
and confirmation of few of its basic characteristics.
Definition 2.1. Let Q : (E,t) — (F,o) be a function where E and F are F.W.T.S. on D is named
to be upper perfect (briefly, U.P.) if for every F+.B*. J on Q(E), such that J .d.t., some subset A
of Q(E), the Fx.B+ Q*(J)is d.t. O 1(A) InE.
Definition 2.2. Let Q : (E,t) — (F,o) be a function where E and F are F.W.T.S. on D is named
to be lower perfect (briefly, L.P.) if for every F+.B*. 3 on Q(E), such that J .d.t., some subset A
of Q(E), the Fx.B*x Q7 (J)is .d.t. Q" 1(A) InE.

Let Q : (E,r) — (F,o0) be a function where E and F are F. W.T.S. on D is named to be multi-
perfect (briefly, M.P.) if itis U.P. and L.P.
Lemma 2.1. A function Q : (E,7) — (F,0) is closed if cl(Q(A)) < Q(cl(A)) for every A c E.
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Proof. (=) Let Q be closed and A < H. Since Q is closed then Q (cl(cA)) is closed set in F,
because cl(cA) is closed set in E. so, cl(Q(A)) c Q (cl(A)).

(=) Let A be closed set in E, so A = cl(cA), however cl(Q (A)) € Q (cl(A)), so cl(Q (A)) € Q
(A). Then, Q (A) is closed in F. Therefore Q is closed.

Lemma 2.2. The point ¢ in topological space (E,t) is an ad point of a Fx.Bx. 3 on E if 3 a
F*.B*. 3. larger than 3 such that § * —conv.— e.

Proof. (=)Assume that e is an ad point of a F+.B*. J. on E, then it is an C. point of every number
of 3. This returns, for each t-open nPd U of h, we have cl(U)N F +# @ for every number F in .
Consequently, cl(X) contains a some member of any F+.B*. 3  larger than J such that J =
———Cconv.— €.

(<) Assume that e is not an ad point of a Fx.Bx. 3. on E, then 3 [F € I such that e is not an contact
of F. So, 3 7— open- nPd U of e such that cl(&) N F = @. Denote by J * the family of sets [F x =
F N cl(N) for F € 3, so the sets in which F * = @. Additionally, isa F=.13". and really is F * from
3. Thisis, givenF] = F; N (E \ clU)) and F; =F, n(E \ cl(U)), 3 F; = F; N FF,, and this
gives F; =TF;n(E\cd@))c F,nF,n(E\cd@)=F,nE\dQ)NF,n(E\
cl()). Since Fx is not conv. to e. So, lead to a C!!!, and h is an ad point of a F*.B*. 3. on E.
Lemma 2.3. Assume that 3 is a F*.Bx*. 3 on a topological space (E,t). Suppose thate € E, s0 3
——conv.— ¢ if § — d.t—e.

Proof . (&) If 3 does not conv. to e, then, 37-open nPd U of e such that cl(U)) ¢ F = @ for every
FeJ. Then, Q={cl)NF:FeJ}isaJ beaF+Bx J.onE larger than 3, and e ¢ ad of Q.
Thus,  cannot be d.t. e, so lead to a then C!!l,. Then, J is conv. to e. (=). Itis clear

Definition 2.3. The F.W.T.S. (E,7) on a topological space (D,p) is named to be F.W. upper
perfect (briefly, F. W.U.P.) if the projection X is U.P.

Definition 2.4. The F.W.T.S. (E,t) on topological space (D,p) is named to be [F. W. lower perfect
(briefly, F.W..L.P.) if the projection X is L.P.

The F.W.T.S. (E, 1) on topological space (D,p) is named to be F.W. multi-perfect (briefly,
F.W.M.P)ifitis F.W.U.P. and F. W.L.P.

In the next theory we prove that just points of D can be enough for the subset A in Definition
(1.15), and so direction. Since converge can be replaced in view of Lemma (2.2.)

Theorem 2.1. Assume that (E,7) is a F.W.T.S. on a topological space (D,p). So, the next are
equivalent:

i. (E,r)isF.W.U.P.T.S. (resp., F.W.L.P.T.S.).

ii. Fx.Bx. 3 on X(E), where conv. to a point d in D,E5 —d.t— Eq(resp., E5 —d.t— Ea).
iii. V F+.B*. 3 onE, ad X(J) c X(ad J)
Proof . (i) =(ii) By Lemma 2.2.
(it) =(iii) Assume that d € ad X(3J). Thereafter, by Lemma (2.2.), 3 F+.B*. Q on X(E) larger
from X(3).s.t Q —conv.— d. Let U={Eqg NI : G € Qand F € 3 } Thereafter, U is a F*.Bx. on
E larger from Eg. Since Q —d.t.— d, by Lemma (2.3.) and X is P., E{—d.t.— Ed(resp.,
Egq—d.t.— Ed). U being larger than Eg , we have Ed N Q*(ad U) # @(resp., Ed N Q™ (ad W) #
@.). Hence it is obvious that E4¢Q(J ) # 0. So, d € X(ad 3J).
(ii1)=(i) Let I be a Fx.B+. on X(E) such that it is d.t. some subset A of X(E). Assume that Q is
a F+.Bx*. on E larger than Ey. Thereafter, X(Q) is a F+.Bx. on X(E) larger than J and so A N (ad
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X(Q)) # @. Then, by (c), A N X(ad (Q)) # @ such that Ef;, N (ad (Q)) # @(resp., E; N (ad (Q))
# ). Then, Ex isd.t. E4. So, X is U.P.(resp., L.P.).

Corollary 2.1. Assume that (E,7) is a F.W.T.S. on a topological space (D,p). So, the next are
equivalent:
i. (E1) isF.W.M.P.T.S..

ii.  Fx.Bx. 3 on X(E), where conv. to apointd in D,E§ —d.t— Ed(resp., E5 —d.t— Ea).

iii.  VF*xBx* JonE,adX(3J) c X(ad J)
Theorem 2.2. If the F.W.T.S. (E,7) on (D,p) is U.P.(resp., L.P.), then it is closed.
Proof. Suppose that E is a F. W.U.P.T.S. (resp., F. W.L.P.T.S.) on D, then the projection XE: E
— Dis U.P. (resp., L.P.) to show that it is closed, by Theorem (4.1.16.) (a) = (c) for any F*.Bx. J
on E ad X(3J) c X(ad (D)), by Lemma (4.1.11.), Q is closed if cl(Q(A)) < (cl(A)) for every A
cE, so X is closed in which 3 ={ A }.
Corollary 2.2. If the F.W.T.S. (E,r) on (D,p) is M.P., then it is closed.

3. Fibrewise Multi-Perfect and multi-Rigidity Topological Spaces.
In this segment, we present the idea of multi-perfect topological, upper rigidity spaces lower
rigidity spaces, multi-rigidity spaces and make sure of some of its base characteristics.

Definition 3.1. A subset A of a topological space (E,t) is named to be upper rigid in E (briefly,
U.R.) if for every F«.Bx. SonE ad X*(I)NA = @,3U € tandF € JsuchthatcA < U or
equivalently, if for every Fx.B*. 3 on E, whenever A N (ad J) = @, thereafter for some F € J,
A N (€l(I)) = 0.

Definition 4.2. A subset A of topological space (E,t) is named to be lower rigid in E (briefly,
L.R.) if forevery FxB+. SonEad X (I)NA = 0,3U € tandF € Isuchthat A c U or
equivalently, if for every Fx.B*. 3 on E, whenever A N (ad J) = @, thereafter for some F € 3,
A N (€l(I)) = 0.

A subset A of topological space (E,t) is named to be multi-rigid in E (briefly, M.R.) if it is U.R.
and L.R.

Theorem 3.1. If (E,7) is a IF. W. closed topological space on (D,p) such that every E; (resp., E5 ).
in whichd € D is U.R.(resp., L.R.) in E, then (E,7) is a F. W.U.P. (resp., F. W.L.P.).

Proof. Suppose that E is a IF. W. closed topological space on D, thereafter X : E —D exists T.P.
itis U.P.(resp., L.P.), assume that 3 is a F+.B*. on Xgsuch that D —conv.— d in D, for some d in
D. If Q is a F+.Bx on E larger than the Fx.B*.Ey, then X(Q) is a Fx.B*. on D, larger than J.
Because 3 —d.t.— d by Lemma (2.3.), d € adX(Q), i.e, d € N{ad X(G;G € Q)}, and hence, d €
N{X(ad G;G € Q)} by Lemma 1.1.). By X is closed, so EJ N ad (G) # @(resp., E; N ad (G)
+ @), for every G € Q. So, for every U € = with EJ (resp., E;)c U, cl(X) NG # @ for every G
€ Q. Since, EJ (resp., E7) is U.R.(resp., L.R.), it then follows that EJ N ad (Q) # @(resp., E; N
ad (Q) # 0) . Thus, Ex —d.t.—Ed. So by Theorem [(2.1.), (b) =(a)], X is U.P.(resp., L.R.)
Corollary 3.1. If (E,7) is a F. W. closed topological space on (D,p) such that every Ed in which
d e D is M.R.InE, then (E,7) isa F. W.M.P.

Theorem 3.2. If the F.W.T.S. (E,7) on (D,p) is U.P. (resp., L.P.), then, it is closed and for every
d € B, E} (resp., EJ). is U.R.(resp., L.R.) in E.
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Proof. Let E be a F.W.T.S. on D, so the projection Xz : E— D exists and it is U. cont.(resp., L.
cont.). Xg is an U.P.(resp., L.P.) so it is closed. T.P. is closed and for every d € D,
E}(resp.,E7) is U.R.(L.R) in E. Let d € D and suppose J is a I =.B*. on E such that
(ad )N ES=@(resp., (ad I) N E; = ). Therefore, d € X (ad I) By Xg is U.P. (resp., L.P.),
by Theorem [(2.1.) (a) = ¢)], d & adXy (). Thus, 3 an Fe J such that d ¢ adX} (IF).3an p—open
a nPd V of d such that cl(V)N Xy (F) = @. Since Xy is cont., for every e €EJ (resp., E7). We
shall get a 7-open a nPd Ue of e such that X (cl(Ue)) c cl(V) € D — Xg (F). So X (cl(Ue)) N
Xg (F) = @, sothat cl(Ue)) N F = @. Then h & cI(F), for every e € E (resp., E;), so E (resp., EJ)
N cl(F) = @, So EJ (resp., E7) is U.R.(resp., L.R.) in E.

Corollary 3.2. If the F.W.T.S. (E,7) on (D,p) is M.P. then it is closed and for every d € B, Ed
iSM.R.inE.

Definition 3.3. The function Q : (E,7) — (F,o) is named to be weakly upper closed (briefly, W.U.
closed) if vf € Q*(E) and V U € 7 containing n—1(f) in E,3 a p —open a nPd V of d such that
Q-1(V) c cl(u).

Definition 3.4. The function Q : (E,t) — (F,0) is named to be weakly lower closed (briefly, W.L.
closed) if vf € Q7 (E) and V U € 7 containing Q—1(f) in E,3 a p —open a nPd V of d such that
Q-1(V) c cl).

The function Q : (E,7r) — (F,o) is named to be weakly multi-closed (briefly, W.M. closed) if it
is W.U. closed and W.L. closed.

Definition 3.5. The F. W.T.S. (E,7) on (D,p) is named to be IF. W. upper weakly closed (briefly,
F. W.U.W. closed) if the projection X is W.U. closed.

Definition 3.6. The F.W.T.S. (E,7) on (D,p) is named to be IF. W. lower weakly closed (briefly,
F. W.L.W. closed) if the projection X is W.L. closed.

The F.W.T.S. (E,7) on (D,p) is named to be F. W. multi-weakly closed (briefly, F.W.M.W.
closed) if it is IF. W.U.W. closed and F. W.U.W. closed.

Theorem 3.3. The IF. W. closed topological space (E,z) on (D,p) is W.U. closed (resp., W.L.
closed).

Proof. Assume that E is a IF. W. closed topological space on D, then the projection XE: E— D
exists, and to prove its W.U. closed (resp., W.L. closed). Let d € Xz and let U € T containing
E} (resp.,E7) in E. Currently, by Theorem (4.1.18.) cl(E—cl(l)) = cl(E—cl()), and, hence by
Lemma, (4.1.11.) and since Xy is closed, we have cl(X; (E—cl(¥))) c X [cl(E—cl(W))]..
Currently, since d & X [cl(E—cl(U))], d & cl(Xg (E—cl(U))), and thus, 3an p—open a nPd V of d
€ D such that cl(V)N Xz (E—l(X)) = @ which means that E:l(v)ﬂ(E—cl(u)) = @(resp.,
EgioryN(E—cl(U)) = @), and so Xy is W.U. closed (resp., W.L. closed).

Corollary 3.3. The F. W. closed topological space (E,t) on (D,p) is W.M. closed.

Theorem 3.4. Let (E,7) be F. W.T.S. on (D,p). Then (E,r) is F. W.U.P.(resp., F. W.L.P.), if:

i. (E,7)is F.W.U.W. closed (resp., F. W.L.W. closed) topological space.

ii. EJ(resp.,E;)is U.R.(resp., L.R.), for every d € D.

Proof. Assume that E is a F.W. space on D satisfying the conditions (i) and (ii), then the
projection Xe: E— D exists. To prove that Xg is U.R.(resp., L.R.), we have to show in view of
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Theorem (3.1.) that Xe is closed. Let d € Xg(A), for some not empty subset A of E, but d ¢
Xe(cl(A)). Then, E = { A } is a Fx.Bx on E and (ad(E))N E (resp., E;) = @. By U.R.(resp.,
L.R.) of E} (resp., E;), a3 U € 7 containing E (resp., E;) such that clQ)N A = @. By W.U.
closed (resp., W.L. closed) of Xe 3 an p—open anPd D of d such that, Ejl(v) NA =
@(resp., Eqyry N A = 0), ie., cl(V) N XE (A) = @, which is impossible since d € Xg(A). So Q
is closed.
Corollary 3.4. Let (E,7) be F.W.T.S. on (D,p). Then, (E,7) is F. W.M.P, if

I. (E)is F.W.M.W. closed topological space.

ii. E;is M.R, for every d € D.

Lemma 3.1. [11]A subset A of a topological space (E,7) is E. set if for every F.Bx on J on A;
(@d(3)) N A + 0.
Theorem 3.5. If (E,7) is F.W.U.P.T.S.(resp., F.W.L.P.T.S.) on (D, p) and D+ c D is an E set in
D, so Ep-(resp.,Ep-) isan EsetinE.
Proof. Suppose that E is a F. W.U.P.T.S. (resp., F. W.L.P.T.S.) on D, therefore Xe: E — D exist.
Let 3 be a Fx.B*. on D*. By D isan [E setin D, Dx N ad Xg(J) # @, by Lemma (3.1.). By
Theorem [(2.1.) (i) = (iii)], D* N Xe(ad (I) # @, so E5-N ad (I) # B(resp., Ep+N ad (I) # D).
Hence, by Lemma (3.1.), E;-(resp., Ep+) isan E setin E.
Corollary 3.5. If (E,7) is F.W.M.P.T.Son (D,p)and Dx c Disan E setin D, so [Ep- isan [ set
inE.
Definition 3.7. The function Q : (E,7) — (F,o) is named to be almost U.P. if for every E set K in
F, Q+(K)is an [E set in E.
Definition 3.8. The function Q : (E,r) — (F,o) is named to be almost L.P. if for every E set K
inF, Q-(K)isan[E setinE.

The function Q : (E,7) — (F,0) is named to be almost M.P. if almost U.P. and almost L.P.
Definition 3.9. The F.W.T.S. almost U.P. on (D,p) is named to be F.W. almost U.P. if the
projection X is almost perfect.

Definition 3.10. The F. W.T.S. almost L.P. on (D,p) is named to be F.W. almost L.P. if the
projection X is almost perfect.

The F. W.T.S. almost M.P. on (D,p) is named to be IF. W. almost M.P. if it is F. W. almost U.P.
and F. W. almost L.P.

Theorem 3.6. Let (E,7) be F.W.T.S. on (D,p) such that:
I For every d € D, EJ (resp., E7) is U.R.(resp., L.R.) and
ii. (E,7) be F. W.U.W. closed (resp., F. W.L.W. closed) topological space. Then, (E,7) is F. W.

almost U.P.T.S.(resp., F. W. almost L.P.T.S.).
Proof. Let E be F.W.T.S. on D, so XE : E— D exist and it is U. cont. (resp., L. cont.). Assume
that D« is an [E set in D and let 3 be a F+.B*. on ED*. Currently, XE(3) is a F*.B*. on D* and so
by Lemma (4.2.15.), (ad XE(J)) N D* # @. Let d € (ad XE(JI)) N D*. Let 3 has no ad point in
Ep-(resp., Ep-), so that (ad (3))N EZ (resp., E;) = @. By EZ (resp., E;) is U.R.(resp., U.R.),3 an
FF € 3 and T—open set U containing Ej-(resp., E;+), such that F Ncl(2X) = @. Since W.U. closed
(resp., W.L. closed) of XE, 3 p— closed anPd V of d such that E (p—cl(V)) c t — cl(U) which
means that E(“;_C[(V)) NEF =0 (resp., E,—qry NF =0 )ie, p—cl(V) N X(F) =0, whichisa
contradiction. Thus, by Lemma (4.2.15.), Ej-(resp., Ep-) is an E set in E and so XE is almost
U.P. (resp., almost L.P.).
Corollary 3.6. Let (E,z) be F.W.T.S. on (D,p) such that:
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I Foreveryd € D, Ed is M.R. and
(E,7) be IF. W.M.W. closed topological space. Then, (E,7) is F. W. almost M.P.T.S.

4. Some Result on Multi Topological Spaces

We Currently give some results of F. W.U.P.T.S.(resp., F. W.L.P.T.S. and F. W.M.P.T.S.). The
following characterization theorem for an U. cont. (resp., L. cont. and M. cont.) function is
recalled to this end.

Theorem 4.1. A topological space (E,t) is F. W.U.T.S.(resp., F. W.L.T.S. ) on (D,p) if XE(cl(A))
c cl(XE(A)), foreach A C E.

Proof. (=) Assume that E is F. W.U.T.S.(resp., F. W.L.T.S. ) on D then the projection XE : E—
D exist and it is U. cont. (resp., L. cont.). Suppose that e € cl(A) and D is p—open a nlPd of Q(e).
Since XE is U. cont. (resp., L. cont.), 3 an t-open a nlPd U of e such that X(cl()) c cl(V). Since
cl() N A # 0, then cl(V) N X(A) # 0. So, XE(A) € cl(XE(A)). This shows that XE(cl(U)) c
cl(XE(V)).

(<) ltis clear.

Corollary 4.1. A topological space (E,r) is FW.M.T.S on (D,p) if XE(cl(cA)) c cl(XE(A)).
Theorem 4.2. Let (E,z) is F.W.U.P.T.S.(resp., F.W.L.P.T.S.) on (D,p). So E}(resp.,
E7) preserves U.R. (resp., L.R.).

Proof. Assume that E is a F. W.U.P.T.S.(resp., F. W.L.P.T.S.) on D, then the projection XE : E
— D exist and it is U. cont. (resp., L. cont.). Let A be an U.R. set(resp., L.R.set) in D and let 3
be a F+x.Bx. on [E such that E 4N (ad (J)) = @. By XE is U.R. (resp., L.R.). and A N XE(ad (J))
= @, by Theorem [(2.1.) (i) = (iii)] we get A N (ad (Xg(JI))) = @. Currently, a being an
U.R.(resp., L.R.) set in D, 3 an Fe J such that A N (c(XE(T ))) = @. Because XE is U.
cont.(resp., L. cont.) and by Theorem (4.1.) it follows that A N XE(cl(J)) = @. Then E5N (cI(I))
= @(resp., EzN (cI(I)) = @). Then T.P. Ef;(resp., EZ) is U.R.(resp., L.R.).

We present the following definition to study the conditions under which an F.W. almost
perfecttopological space can be an F. W.U.P.T.S.(resp., F. W.L.P.T.S.).

Corollary 4.2. Let (E,7) be F.W.M.P.T.Son (D,p). So E 4 preserves M.R.

Definition 4.1. The function Q : (E,t) — (F,0) is named to be upper* continuous (briefly, Ux.

cont.) if for any t-open a nPd V of Q*(e), 3 an t—open a nPd U of e such that Q(cl(U)) < cl(V).

Definition 4.2. The function Q : (E,r) — (F,0) is named to be lower* continuous (briefly, L*.

cont.) if for any t-open a nlPd V of Q7 (e), 3 an 7—open a nPd U of e such that Q(cl(U)) < cl(V).
The function Q : (E,t) — (F,o0) is named to be multi* -cont. (briefly, Mx. cont.) if it is Lx.

cont. and U=x. cont.

Definition 4.3. The F.W.T.S. (E,r) on (F,0) is named F.W.U*.T.S. if the projection X is

Ux.cont.

Definition 4.4. The F. W.T.S. (E,r) on (F,0) is named F. W.L*.T.S. if the projection X is Lx.cont.
The F.W.T.S. (E,7) on (F,0) is named F. W.M*.T.S. if it is F. W.L*.T.S. and [F. W.U*.T.S.

Importance of the above definition for characterization of IF. W.U.P.T.S.(resp., F. W.L.P.T.S. and

F.W.M.P.T.S.). It is quite clear from the next result.

Lemma 4.1.[27] In a Urysohn topological space E set is closed set.
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Theorem 4.3. If (E;r) is F.W.Ux.T.S.(resp., F.W.LxT.S.) on a Te (F,0), so it is
F.W.U.P.T.S.(resp., F W.L.P.T.S.) if VFx.BxonE, if X5y —conv. —»d;d € D, thenad 3 # 9.
Proof. (=) Assume that (E,1) is a F. W.U=.T.S.(resp., F.W.L+.T.S.) on a Te (D,p), then 3Ux.
cont.(resp., Lx. cont. ) projection function XE : (E,r) — (D,p) and X5 —conv.— d in which d
€ D, foraF«BxonJ onE. So Ef, — dir——E (resp., Ex, — dir——Ey). By J is larger than
EY (resp., Ex,), Eq(resp., Ez) Nad 3 # @,s0ad 3 # 9.

(&) Assume that V F . B x.J.on E, X5 — —conv.— d in which d € D, implies ad 3 # @. Let
Q be a F*.B*. on D such that Q —conv.— d, and let Q * be a F*.B* on E, such that Q = is larger
than Eq. Then Xq- is larger than Q. SO0 Xg-——conv.— d. So, ad Q * # @. Let z € D such that z
# d. So, by D is U.(resp., L.) Te, 3 p—open anPd U of d and p—open anPd V of z such that (p
—cl@)) N (p — cl(V)) = @. Since Xg —conv.— d, 3 a G € Q * such that XG < p — cl(¥).
Currently, by X is Ux. cont. (resp., L. cont.), corresponding to every e € Ez, 3 7—open anPd
W of e such that X(z — cl(V)). Thus, p — cl(W NG) = @. It follows that EJ (resp.,E;) N Q * =
@,V z € D—{d}. Consequently, E; N ad Q = # @(resp., E; Nad Q = # @), and X is U.P.(resp.,
L.P.) and so (E,7) is F. W.Ux.T.S.(resp., F. W.L%.T.S.).

Corollary 4.3. If (E,7) is F.W.MxT.Son a Te (F,0), so itis F.W.M.P.T.S if VF*.BxonE, if
X5 —conv. —d ; d € D, thenad 3 # @.

Corollary 4.4. Let (E,t) be F.W.M«.T.S on (QHC) on a Urysohn topological space (D,p), so
(E,r) is FFW.M.T.S..

Theorem 4.4. Let (E,t) be F.W.U*.T.S.(resp., F. W.L«.T.S.) on locally QHC on a Te(D,p), then
(D,p) is F.W.U=.T.S.(resp., F.W.L+.T.S.) if it is F. W. almost U.P.(resp., IF. W. almost L.P.).
Proof. (<) Let (E,7) is F. W. almost U.P.(resp., F. W. almost L.P.), so 3 almost U.P.(resp., almost
L.P.) projection function XE : E — D and let D be any F*.B*. on E and let Xy —conv.— d in
which d € D. There are an E set D+ in D and p—open anPdV of d such that, d € V € Dx. LetE
={p —cl(U)) N X N D*; F € I and U is a p—open a nlPd of d}. By Lemma (4.1.), D= is closed
and hence no member of E is void. Reality, if not, let for some p—open anPd U of d and some
FeJ, p—cl)NXgNDx=@. Then W =UNVsinced e UNV € pand p — c(W =cl(W) C
cl(Dx) = Dx, by Lemma (4.1.). Currently @ = p—cl(W)N XgNDx* = p —cl(W)N X}, which is not
possible, since Xp—conv.— d. So E is F*.B*. on D, and is obviously larger than Xx, so that E —
conv.— d. Also Q = {Ef(resp.,E;) NF : H € Eand F € J } is obviously a filter on
E}.(resp., Ep-). Because X is almost U.P.(resp., almost L.P.), E3-(resp., Ep-) is an H.set and so
ad Q N EJ. # @(resp., Q N E,. # @).Thus X is U.P.(resp., L.R.) and by Theorem (4.3.) (E,7)
be F. W.U*.T.S.(resp., F. W.L*.T.S.).

Corollary 45. Let (E,r) be F.W.M+.T.S on locally QHC on a Te(D,p), then (D,p) is

F.W.M=T.Sif it is IF. W. almost M.P..

Lemma 4.2. [10] A topological space (E,7) is T. &= {e} =cl(e) V e €E.

Theorem 4.5. If (E,7) is a F. W.U.P.(resp., F. W.U.P.) injection and surjective topological space

with E is a U. T, space(resp., L.T2 space) on (D,p), Then D is U.T2 space (resp., L.T2 space).

Proof. Let d1, d2 € D such that d1 # d2. By X is surjective, so d1, d2 € E and p is injection, then

ES, # E},(resp., Ej; +# EZ,.Since X is U.P.(resp., L.P.), so by Theorem (2.2.) it is closed. By

Lemma (4.2.) we have {Ej;} = cl{d1} (resp., {Ez;} = cl{d1)) and {E},} = cl{d2} (resp., {E;,}
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= cl{d2}) Because X is U.T2 space (resp., U.T2 space). Currently, X(cl{E};}) = cl{d1}(resp.,
X(HEZ}) = cl{d1}) and X(cl{E},}) = cl{d2}(resp., X(cl{E;,}) = cl{d2}), since X is closed.
This mean {d1} = cl{d1} and {d2} = cl{d2}. Hence D is U.T2 space(resp., U.T2 space ).

Our following theory gives a description of an important class of [F.W.U.TS.(resp.,
F.W.L.TS.) meaning the QHC spaces in terms of F. W.U.P.T.S. (resp., F. W.L.P.T.S.).

Corollary 4.6. If (E,7) is a F.W.M.P. injection and surjective topological space with E is a
M.T2 space on (D,p), Then D is M.T2. space.
Theorem 4.6. For a topological space (E,t), the next are equivalent:

i.  HisQHC.

ii. AFW.U. (E7)isP.T.(resp., F.W.L. (E,7) is P.T.) space with constant projection on

D= in which D= is a singleton with two equal topologies meaning the unique topology on
Dx.

iii. The F.W.. (BxH,Q) is U.P.T.S.(resp., L.P.T.S.) on (D,p), inwhichQ =p x 1.
Proof . (i) = (ii) Suppose that XE : E — D is a constant projection on D+ where Dx is a singleton
with two equal topologies meaning the unique topology on D=x. X is obviously closed.
Additionally, Ej-(resp.,Ep-), i.e. E is obviously U.R.(resp., L.R.) by Dx is QHC. Then by
Lemma (3.1.) X is U.P.(resp., L.R.)
(it) = (i) From Theorem (4.1.).
(i) = (iii) Let that (DXE, Q) is F. W.U.T.S.(resp., F.W.L.T.S.) on (D,p) in which Q = p x t, then
there is a projection X = m; (DXE, Q) — (D,p). We show that w is closed and Vd € D, Ef (resp.,
Ep) is U.R.(resp., L.R.) in DxE. So, the result will be based on Theorem (3.1.). Let A c DxE
and a & n(cl(A)). V e €E,(a,e) & cl(A), so that 3 a p—open a nPd G of a and a 7-open a nPd
Ee of e such that [Q — cl(Ge x Ef (resp., E;))] N A = @. Since E is QHC,{a}xE is a E.set in D
xE. So that 3 finitely many elements el1,e2,€3,....en with, {a}xEcU}_; Q — cl(Gg X EJ, (resp.,
EZ.)). Currently, a € Nnk=1Ghk = G, which is a p -open a nPd of a .t.(p —cl(G)Nn(A) = @. So
a & cln(A) and thus cln(A) < w(cl(A)). So m is closed by Lemma
(2.1.). Next, letd e D T.P. (D x E)/(resp.,(D X E)37) = n—1(d) to be U.R.(resp., L.R.) in D
XE. Let I3 be a7~ .5*. on D xE such that =—1(d) N ad I = @. Ve € E,(d,e) ¢ ad J. So, Ip—open
anPd Ue of d in D, a p -open a nPd Ve of e in E and an [F, € J such that F- cl(Ue xVe) NF,
= @. As prove above, Ifinitely many elements el,e2,e3,...,en of E such that {d}x E cUj_,; Q —
cl(Gex X V). Putting U and choosing F € 3 with, F Ng_; F ., we get d XEc U XECQ such
that Q—cl(U xE)N F = @. Thus cl(F)Nn—1(d) = @. So n—1(d) is U.R.(resp., L.R.)in D xE.
(iii)=(i) Taking D* = D, we have that X =7 : D* x D — D= is U.R.(resp., L.R.) Therefore by
(Theorem (3.5.)), D+ xE is an E.set and hence is QHC.

Corollary 4.7. For a topological space (E,7), the next are equivalent:
i. HisQHC.
.  AF.W.M. (E,1)is P.T space with constant projection on D* in which D= is a singleton
with two equal topologies meaning the unique topology on Dx.
iii.  The F.W.. (BxH,Q) is M.P.T.S. on (D,p), in which Q =p x 1.
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Conclusion

The main purpose of the present work is to providethe starting point for some application of
fibrewise multi-perfect topological spaces structures in a falter base by using multi-topological
spaces. Definitions of characterization theorems are used for multi-rigid, fibrewise multi-weakly
closed, E set, fibrewise almost multi-perfect, multi*-continuous fibrewise multi* -topological
spaces.

References

1.

o

Banzaru, T., Multi-functions and M-product spaces, Bull. Stin. Tech. Inst. Politech.
Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17, 31,1972, 17-23.

Bose, S.; Sinha, D., Almost open, almost closed, 6 continuous and almost quasi- compact
mappings in bitopological spaces, Bull. Cal.Math. Soc. 73, 1981, 345.

Bourbaki, N., General Topology, Part I, Addison Wesley, Reading, Mass, 1996.

Englking, R., Outline of general topology, Amsterdam, 1989.

Jabera, M. H.; Yousif, Y.Y., Fibrewise Multi-Topological Spaces, International Journal of
Nonlinear Analysis and Applications, Semnan University, doi:
10.22075/1INAA.2022.6109, 13, 1, 3463-3474, 2022.

Jain, R. C. ; Singal, A. R., Slightly continuous mappings, Indian Math. Soc., 64 ,1997, 195-
203.

James, I. M., fibrewise topology, Cambridge University Press, London ,1989.

James, I. M., General topology and homotopy theory, Springer-Verlag, New York, 1984.
Kariofillis, C., On pairwise almost compactness, Ann. Soc. Sci Bruxelles, 1986.

100-129 .

10. Mukherjee, M.; Nandi, J.; Sen, S., On bitopological QHC spaces, Indian Jour. Pure Appl.

Math. 27 (1996).

11. Whyburn, G. T.. Directed families of sets and closedness of function. Proc. Nat. Acad. Sci.

U.S.A,, 1965, 54, 688-692.

12. Yousif, Y.; Hussain, L., Fiberwise 1J-perfect bitopological spaces, Conf. Series: Journal of

Physics. 1003, 012063, 2018, 1-12, doi: 10, 1088/1742-6596/1003/1/012063

406



