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Abstract

This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4)
method of four orders to solve oscillatory problems, which contains an oscillatory character in the
solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK)
method is a natural two-step method requiring fewer steps. The suggested method extends the
fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This
approach is intended to integrate problems with particular initial value problems (IVVPs) using the
set functions e®* and e~“* for trigonometrically fitted. To improve the method's accuracy, the
problem primary frequency w € R is used. The novel method is more accurate than the
conventional Runge-Kutta method and IRK4. Several test problems for the system of first-order
ordinary differential equations carry out numerically to demonstrate the effectiveness of this
approach. The computational studies show that the TFIRK4 approach is more efficient than the
existing Runge-Kutta methods.

Keywords: Improved Runge-Kutta Method, Trigonometrically-Fitted, Initial Value Problem,
Oscillating Solution.

1. Introduction

This paper focuses on solving the system of the first-order ordinary differential equations (ODES)
of the form:
u'(t) = f(t,u), u(te) = uo. (1)
These issues are frequently seen in various applied sciences, including quantum mechanics,
electronics, chemical physics, and astronomy (see [1] and [2]). Traditionally, Runge-Kutta (RK)
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methods or two-step methods are used to solve equation (1) [3]. In 2013, [4] developed the
Improved Runge-Kutta technique for solving first ODEs using new terms k_; taking the values
of k;,i = 2 from earlier stages.. Another choice for coming up with approaches to solve the
oscillatory ODEs is the trigonometrically-fitted approach. These techniques are an improved
version of any earlier techniques. In 2019, [5] developed trigonometrically-fitted sixth-order two-
derivative Runge-Kutta method for solving oscillatory problems. In 2021, [6] derived the fourth
and fifth-order modified Runge-Kutta method to resolve oscillatory problems using phase-Lag
properties. Recently, [7] derived the trigonometrically-fitted third-order Improved Runge-Kutta
method for solving oscillatory problems.

This paper aims to develop the fourth-order IRK method called Trigonometrically Fitted
Improved Runge-Kutta (TFIRK4) to solve a system of first-order ODEs with oscillatory solutions.
Numerical experiments demonstrate the accuracy of the newly proposed method over other
methods. A proposed TFIRK technique derivation is presented in Section 2. A numerical test and
comparison with different approaches are discussed in Section 3 to show the efficiency of the
TFIRK4 method. Section 4 contains the discussion and conclusion of this paper.

2. The Derivation of TFIRK4 Method

The Improved Runge-Kutta (IRK) method for solving equation (1) has the following form: [4]

Whyq = Uy + h(biky — b_yk_y + Y5_, b (ki — k_;), (2)
ki = f(tn uy), 3)
k_1 = f(tn1, Un-1), 4)
ki = f(ty + cthou, + K 22T ag5k)), (5)
koi = f(tn-1 + choup_q + R Y agk_)). (6)

Where c¢;, b;, b_y, and a;; are real numbers and i,j = 1,2,...,s. IRK method (2)-(6) can be
expressed using the following Butcher Tableau (see Table 1):

Table 1. s — Stages IRK method

0
C2 az1
C3 asq as;
Cs asq aso Ass—1
b—l bl bz bs—l bs
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Following are the four stages of the IRK4 method in its general form:

Upy1 = Up + h(biky —b_1k_1 + by(ky —k_3) + b3(ks —k_3) + by(ky — k_y), (7)

ki = f(tn, un), 8

koy = f(tn-1,Un-1), ©)

k, = f(t, + coh,uy, + hazky), (10)
k_p =f(th1+chuyp_1 +hazk_q), (12)
ks = f(ty, + c3h,u, + h (az1ky + azzk,)), (12)
k_3 = f(tyn_1+ czhup_q + h(az1k_1 + azk_)), (13)
ky = f(tn + cahyun + h (ag1ky + agoky + agszks)), (14)
k_y=f(t, +cohup_1 +h(agk_q + agk_5 + aszk_3)). (15)

The coefficients of the IRK4 method in [4] are offered in Table 2:

Table 2. IRK4 method

0

1 1

5 5

3 0 3

5 5

4 2 4 38

5 15 25 75

19 307 25 25 125
288 288 144 144 288

Applying the exponential function into the IRK4 method (7)-(15), the trigonometrically fitting
approach is implemented by allow:

Uy = u(ty) = ', (16)
Unyr = U(tpy1) = eiw(tn+h)’ (17)
Up-1 = U(th-1) = el@(n=h), (18)

Using Euler formula ™ = cos(v) + isin(v), and substituting the equations (16)-(18) into
equation IRK4 method (7)-(15), we get:

e’ = cos(v) + isin(v) = 1 — vb_, sin(v) — v?b, a,; — vb, sin(v) — v?b; as,
+v2 bya,, cos (V) — v2bs az, — vhs sin(v) + v? byas, cos (V) — v2by ayy
+v2 bzyas, cos(v) + v3 byas,ay, sin(v) — v2 byas, — v? byaus — vbhy, sin(v)

+v* byy303,05; + V2 byay, cos(v) + v2 byay, cos(v) + v3 byas,ay, sin(v)
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+v2 byays cos(v) + v3 byaysasq sin(v) + v3 byayzas, sin(v)

—v3 bya,3as3, ayq cos(v) + ivb; — ivbh_4 cos(v) + ivb, — ivh, cos(v)

+ivb; — iv?bya,q sin(v) — iv3 bzas,a,; — ivhs cos(v) — iv?bsas, sin(v)
+ivb, + iv3bzas,a,, cos(v) — iv3b,a,,a,, — iV3bya43a5, — (V3byaysas,
—ivb, cos(v) — iv2b,as, sin(v) — iv2b,a,, sin(v) — ivib,a,; sin(v)
+iv3bya,,a,,c0s (V) + iv3biaszas,cos (V) + iv3bhiaszas,cos (v)

+ivtbya,3a3,0,, sin(v) — iv2bsas, sin(v). (19)

Where v = wh. We obtain the trigonometrically fitting order conditions by equating the real and
imaginary parts:

cos(v) = 1 —vb_; sin(v) — v2b, ay; — vb, sin(v) — v?b3 az;+v? bya,; cos (V)
—v2b; az, — vhs sin(v) + v? byas, cos (V) — v2b, auq + v? byasz, cos(v)
+v3 b3az,a,, sin(v) — v2 byas, — v? byays — vhy sin(v) + v* byaszas,ay,
+v2 byay, cos(v) + v2 byayy cos(V) + v3 byayya,, Sin(v) + v2 byays cos(v)
+v3 byayzaz; sin(v) + v3 byayzas, sin(v) — v3 byaszas, ag cos(v), (20)
sin(v) = vb; — vb_; cos(v) + vb, — vb, cos(v) — vb; cos(v) — v2bsas, sin(v)
+vb; — v2byay; sin(v) — v3 byaz,ay; — v3byagsaz; — v3byausas;
+vb, + v3b3a3,a5, cOS(V) — V3baayr051 — V2baas, SiN(V) — 2byays sin(v)
—vb, cos(v) — v2b,a,, sin(v) + v3byas3a;3,c0s (V) + v3byayzaz,cos (V)
+v3b,a,,a5,c0s (V) + v*bya,3a5,a51 Sin(v) — v2bsas, sin(v). (21)

Solving equations (20) and (21) using the coefficients of the IRK4 method in Table2 for unknowns
parameters a;; and a,; we obtain the following solution:

B -72
%31 = 95 13 (sin2(v) + cos?(v) — 2 cos(v) + 1)

(=12 cos(v) sin(v) + 12 sin (v)

—3 vsin?(v) + v3sin?(v) + 12 v cos(v) — 3 v cos?(v) — 2 v3 cos(v)

—9v + v3 cos?(v) + v3), (22)

2
"~ 35625 v3(sin2(v)+cos2(v)—2 cos(v)+1)

(—=7560 v — 9325 v3

251
—17280v cos(v) + 24840 v cos?(v) + 18650 v3 cos(v)
+1083 v° cos?(v) + 64800 sin(v) — 57240 v sin?(v) + 1083 v°
—64800 cos(v) sin(v) — 9325 v3sin?(v) — 2166 v° cos(v)

—9325 v® cos?(v) + 41040v2 sin(v) + 1083 v° sin?(v)). (23)
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It can be noticed that for v — 0 using Maple package, the series expansions are given in following
form:

18 3 1 1 1
a3, = —— v +— v* — v° v8 — v10
475 3325 79800 8778000 1369368000
1 1
S S N Y LIRS ¢ Y\
28756728000 78218300160000
2 276 5 689 4 77 6 1069 8
Ay = — — —— vt — v
15 11875 249375 1425000 1975050000
61849 1 77963
__ 6189 a0 __ 1 12 P14 (25)
10783773000000 172540368000 87995587680000000

which lead to the new TFIRK4 method. As v — 0, the newly obtained parameters a3, and
a4, turn into the parameters of the original method.

3. Numerical Results

To evaluate the efficacy of the TFIRK4 method proposed, we apply them to oscillatory test
problems and their numerical results are compared with the existing effective methods. The
following numerical methods are applied in the comparison:

= Step size.
=  TFIRKA4: the Trigonometrically Fitted four-stage fourth-order IRK method presented here.
= |RKA4: fourth-order IRK method derive in [4].
» TFRKA4: Trigonometrically-Fitted RK method developed in [8].
= RKA4Z: fifth-order RK method given in [1].
* MRK4: modified RK method of order four proposed in [9].
= Max Error: max (|u(x,) —u,|) This is the maximum between absolute errors of the
exact solutions and the computed solutions.
Problem 1: [10] Inhomogeneous problem:
ur(®) = u (1), w1 (0) =1,
u,(t) = —100 uy (t) + 99sin(t), u,(0) = 11.
Exact solution is:
u, (t) = cos(10t) + sin(10t) + sin(t),
u,(t) = —10sin(10t) + 10 cos(10t) + cos(t).

Problem 2: [7] Inhomogeneous problem:
ur(®) = u (1), w1 (0) =1,
uy(t) = —uq  (t) +t, u,(0) = —2.
Exact solution is:
uy(t) = sin(t) + cos(t) + t,
u,(t) = cos(t) —sin(t) + 1

Problem 3: [11] Duffing problem:
uy(t) = uy(t), vy (0) = 0.200426728067,

uy(t) = —uy (8) — (u(8))” + 0.002 cos(1.01 1), u,(0) = 0,
Exact solution is:
u,(£) = 0.200179477536 cos(1.01t) + 2.46946143 x 10™* cos(3.03 t)
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+3.04014 x 1077 cos(5.05t) + 3.74 10710 cos(7.07 t),
u,(£) = —0.2021812723 sin(1.01 ¢) — 7.482468133 x 10™* sin(3.03 t)
—1.53527070 x 10~°sin(5.05t) — 2.64418 x 1077sin(7.07 t).

Problem 4: [8]
uy (8) = uz(t), us(0) =1,

uh(t) = ——22 - 43(0) = 0,
(Va () 7+ (£)2)

Uz (1) = us(t), uz(0) =0,

() =——=28 4, (0) = 1.
(V)2 + 2 (0)?)

Exact solution is:
u, (t) = cos(t),
uy (t) = sin(t),
uz(t) = —sin(t),
u, (t) = cos(t),

Problem 5: [11]
w (0 =uz(t), wy(0) =1,

us(t) = —uy(t) + 0.001 cos(t), uz(0) =0,

Uy (1) = uy(t), ux(0) =0,

uy(t) = —u,(t) + 0.001 sin(t), u,(0) = 0.9995.
Exact solution is:

u,(t) = cos(t) + 0.0005 ¢t sin(t),

u,(t) = —0.9995 sin(t) + 0.0005 t cos(t),

u;(t) = sin(t) — 0.0005 t cos(t),

u,(t) = 0.9995 cos(t) + 0.0005 t sin(t).
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Figure 1. The curves comparisons for Problem 1 with Step size h = 7= 0,1,2,4.
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Figure 2. The curves comparisons for Problem 2 with Step size h = 7= 0,1,2,4.
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Figure 3. The curves comparisons for Problem 3 with Step size h = 7= 0,1,2,4.
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Figure 4. The curves comparisons for Problem 4 with Step size h = 7= 0,1,2,4.
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Figure 5. The curves comparisons for Problem 5 with Step size h = 7= 0,1,2,4.

To assess the method's accuracy, we utilize the absolute error criterion. The step size is h =
%,r = 0,1,2,4. and integration interval is [0, 1000] for all problems. The accuracy of the new

TFIRK4 approach is depicted in Figures 1-5 in terms of the greatest global absolute error versus
the step sizes required by each method. Compared to other RK methods of the same order, the
TFIRK4 approaches, as shown in Figures 1-5, have the smallest maximum global error per step.
The TFIRK4 produces results that are more accurate than those of other research in the literature,
as seen in Figures 1-5.

4. Conclusions

We derived the conditions of the Trigonometrically-Fitted IRK approach to solving oscillatory
problems in this paper. As a result, we developed the TFIRK4 method, a four-stage, fourth-order
IRK method that is trigonometrically fitted. The Figures show how the step size was used to
calculate the common logarithm of the most significant global error during integration and
computing cost. The numerical results made it clear that the TFIRK4 approach using a
trigonometrically fitted strategy, had less global error than the existing methods used to solve
oscillatory problems.
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