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Abstract  

  Truncated distributions arise naturally in many practical situations. It is a conditional 

distribution that develops when the parent distribution's domain is constrained to a smaller 

area. The distribution of a right truncated is one of the types of single truncated that is 

restricted within a specific field and usually occurs when the specified period for the study 

is complete. Hence, this paper introduces the Right Truncated Inverse Generalized 

Rayleigh Distribution (RTIGRD) with two parameters. Then, provided some properties 

such as probability density function, cumulative distribution function (CDF), survival 

function, hazard function, rth moment, mean, variance, Moment Generating Function, 

Skewness, kurtosis, Median, and Mode for Right Truncated Inverse Generalized Rayleigh 

Distribution on [0, 1]. 

Keywords: Hazard Function, Inverse Generalized Rayleigh Distribution, Right Truncated, 

Survival Function.  

1. Introduction 

A Truncated Distribution is a conditional distribution on a specific range that restricts the 

full range. The purpose of truncated distributions is to get better results. When a distribution 

is truncated, the domain of the truncated random variable is restricted based on the 
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truncation points of interest, and thus the shape of the distribution changes. In addition, it 

happens when we are unable to detect or record events that take place inside or outside of 

a predetermined range or below or above a given threshold. The truncation can be from the 

left side, the right side, or both sides [1-3].  

Galton et al. introduced truncated distribution in 1898 [4] . Then, [5] provided forms for 

the probability density function, cumulative distribution function, hazard function, 

characteristic function, mean, mode, median, variance, skewness, and kurtosis of doubly 

truncated Fréchet distributions. [6] introduced [0, 1]; Truncated Fréchet Gamma and 

truncated Fréchet inverted Gamma distributions are discussed as special cases. [7] 

Proposed a new truncated Weibull-G (TW-G). [8] introduced [0, 1] Truncated Fréchet 

distributions and [0, 1] Truncated Fréchet Weibull as special cases. The cumulative 

distribution function, rth moment, mean, variance, skewness, kurtosis, mode, median, 

characteristic function, reliability function, and hazard function. [9] Introduced Truncated 

Weibull power Lomax distribution with four parameters. [10] introduced [0,1] Truncated 

Gompertz Exponential distribution and [0,1] truncated Gompertz-G family distribution and 

then discussed as cases: probability density function (PDF), Cumulative distribution 

function (CDF), Hazard rate function (HF), Survival function (SF), moments, the mean μ, 

variance σ2, Moment Generating Function (M.G.F. ), Median M, kurtosis KR, and 

Skewness SK. [11]  Introduced the Zero Truncated Discrete Transmuted Generalized 

Inverse Weibull Distribution (ZT-DTGIW). Jumana introduce [0,1] Truncated Lomax – 

Lomax ([0,1]TLD) distribution. Some properties of the ([0,1] TLLD) distribution were 

derived [12]. 

Therefore, in this study, the Right Truncated Inverse Generalized Raleigh Distribution was 

derived and some of its statistical and mathematical properties were studied on [0,1] 

(Probability density function, cumulative distribution function, Survival function, hazard 

rate function, rth moment, variance, Moment Generating Functions, kurtosis, skewness, 

median, and mode). 

2.Truncated Inverse Generalized Rayleigh Distribution 

The Rayleigh distribution derives from the Weibull distribution with two parameters and 

is a suitable model for life-testing studies [13]; 

𝑓(𝑥) =
2

𝜆
𝑥𝑒−

𝑥2

𝜆                                                                                                                   (1)                                                                                          

𝐹(𝑥) = 1 − 𝑒−
𝑥2

𝜆                                                                                                                 (2) 

Due to the practical significance of the Rayleigh distribution, numerous extended forms of 

the Rayleigh distribution have been proposed. For example, [14-23] However, the 

generalized inverted scale family distributions were introduced by [24]. These newly 

developed models were formulated by introducing a new shape parameter to the scale 

family of distributions. These models give major flexibility in modelling complex data and 

the results drawn from them seem genuine and quite sound [25-27] . Mudholkar and 

Srivastava [28] suggested a new method for generalization different distributions 
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dependent on c.d.f, which we will be used to generalize the Rayleigh distribution in this 

paper as follows:  

𝐺(𝑥) = [𝐹(𝑥)]𝜃 = [1 − 𝑒−
𝑥2

𝜆 ]𝜃                                                                                        (3) 

𝑔(𝑥) = 𝜃 [1 − 𝑒−
𝑥2

𝜆 ]
𝜃−1

2𝑥

𝜆
 𝑒−

𝑥2

𝜆                                                                                        (4) 

 The Generalized Raleigh Distribution can be shown by the transformation of a random 

variable. If the random variable 𝑇 has Generalized Raleigh Distribution, then the r. v. X =

(
1

T
) has an Inverse Generalized Raleigh Distribution (IGRD). Suppose 𝑇 is a random 

variable following Inverse Generalized Rayleigh distribution with two 

parameters θ and λ. Then p.d.f and c.d.f functions of inverse Generalized Rayleigh 

distribution are given for equations (3) and (4), respectively, by [29]; 

𝑔(𝑡) = [1 − 𝑒
−

1

𝜆𝑡2]
𝜃−1

2𝜃

𝜆𝑡3
  𝑒

−
1

𝜆𝑡2                                                                                        (5)                                         

𝐺(𝑡) = 1 − [1 − 𝑒
−

1

𝜆𝑡2]
𝜃

                                                                                                   (6)                                                      

when 0 < t < ∞  and 𝑔 (𝑡) = 0  o.w  

Hance for truncation for the Inverse Generalized Rayleigh Distribution, Right-Side 

Truncation for the Inverse Generalized Rayleigh Distribution to called Right Truncated 

Inverse Generalized Rayleigh distribution (RTIGRD) on [0, 1] by using 𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
𝑔(𝑡)

𝐺(1)
  

[30], When t=1 in equation ( 6 )  

𝐺(1) = 1 − [1 − 𝑒−
1

𝜆]
𝜃

  

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
𝑔(𝑡)

𝐺(1)
  

The p.d.f of RTIGRD is 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
[1−𝑒

−
1

𝜆𝑡2]

𝜃−1
2𝜃

𝜆𝑡3
  𝑒

−
1

𝜆𝑡2

1−[1−𝑒
−
1
𝜆]

𝜃            , 0 ≤ t ≤ 1 

The c.d.f of RTIGRD is 

𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) = ∫
[1−𝑒

−
1

𝜆𝑡2]

𝜃−1
2𝜃

𝜆𝑡3
  𝑒

−
1

𝜆𝑡2

1−[1−𝑒
−
1
𝜆]

𝜃

𝑡

0
 𝑑𝑡  
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Therefore,  

𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
1−[1−𝑒

−
1

𝜆𝑡2]

𝜃

1−[1−𝑒
−
1
𝜆]

𝜃   

The Survival Function of RTIGRD is  

𝑆𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) = 1 − 𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡)  

 

                     = 1 −
1−[1−𝑒

−
1

𝜆𝑡2]

𝜃

1−[1−𝑒
−
1
𝜆]

𝜃  = 
 1−[1−𝑒

−
1
𝜆]

𝜃

−1+[1−𝑒
−

1

𝜆𝑡2]

𝜃

1−[1−𝑒
−
1
𝜆]

𝜃   

𝑆𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
[1−𝑒

−
1

𝜆𝑡2]

𝜃

−[1−𝑒
−
1
𝜆]

𝜃

1−[1−𝑒
−
1
𝜆]

𝜃    

The Hazard Function of RTIGRD is  

 

𝐻𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡)

𝑆𝑅𝑇𝐼𝐺𝑅𝐷(𝑡)
  

𝐻𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =

[1−𝑒
−

1

𝜆𝑡2]

𝜃−1

2𝜃

𝜆𝑡3
  𝑒
−

1

𝜆𝑡2

1−[1−𝑒
−
1
𝜆]

𝜃

[1−𝑒
−

1

𝜆𝑡2]

𝜃

−[1−𝑒
−
1
𝜆]

𝜃

1−[1−𝑒
−
1
𝜆]

𝜃

  

𝐻𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
[1−𝑒

−
1

𝜆𝑡2]

𝜃−1
2𝜃

𝜆𝑡3
  𝑒
−

1

𝜆𝑡2

[1−𝑒
−

1

𝜆𝑡2]

𝜃

−[1−𝑒
−
1
𝜆]

𝜃
  

Where,  

t: is a value of random variable and 0 < 𝑡 <  1   .  

𝜃: Shape parameter and 𝜃 >  0. 

𝜆: Scale parameter and 𝜆 > 0. 

 

Figures (1),(2),(3) and (4) plot the p.d.f , c.d.f , SF and HF for the RTIGRD for some cases 

of  𝜃 and  𝜆 
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Figure 1. probability density function                      Figure 2. cumulative distribution function 

 

                     Figure 3. Survival function                                          Figure 4. Hazard function 
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3.Some properties of Right Truncated Inverse Generalized Rayleigh Distribution  

  In this section, some properties are given for RTGRD. However, some properties are 

complicated to solve. For this reason, use numerical analysis to find it. We made some 

simplifications for the p.d.f. by using the Binomial theorem and Tyler series 

(𝑎 ∓ 𝑥)𝑛 =∑ (𝑛
𝑗
) (∓𝑥)𝑗𝑎𝑛−𝑗

𝑛

𝑗=0
  

[1 − 𝑒
−

1

𝜆𝑡2]
𝜃−1

=∑ (𝜃−1
𝑗
) (−𝑒

−
1

𝜆𝑡2)𝑗
𝜃−1

𝑗=0
  

Thus,  

 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
∑ (𝜃−1𝑗 )(−1)𝑗

𝜃−1

𝑗=0
 𝑒
−

𝑗

𝜆𝑡2  
2θ

𝜆𝑡3
  𝑒

−
1

𝜆𝑡2

1−[1−𝑒
−
1
𝜆]

𝜃   

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
∑ (𝜃−1𝑗 )(−1)𝑗

𝜃−1

𝑗=0
  
2θ

𝜆𝑡3
  𝑒
−
𝑗+1

𝜆𝑡2

1−[1−𝑒
−
1
𝜆]

𝜃   

let 

𝑒
−
𝑗+1

𝜆𝑡2 =∑
(−1)𝑘

𝑘!

∞

𝑘=0
 
(𝑗+1)𝑘

(𝜆𝑡2)𝑘
   

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =

∑ (𝜃−1𝑗 )(−1)𝑗
𝜃−1

𝑗=0
  
2θ

𝜆𝑡3
  ∑

(−1)𝑘

𝑘!

∞

𝑘=0

 
(𝑗+1)𝑘

(𝜆𝑡2)𝑘

1−[1−𝑒
−
1
𝜆]

𝜃   

                 =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
(𝑗+1)𝑘

(𝜆)𝑘 𝑡2𝑘
 
2θ

𝜆𝑡3
  

1−[1−𝑒
−
1
𝜆]

𝜃   

                 =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1 𝑡2𝑘+3
   

1−[1−𝑒
−
1
𝜆]

𝜃   

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1
 𝑡−2𝑘−3   

1−[1−𝑒
−
1
𝜆]

𝜃          , 0 ≤  t ≤ 1 

 



IHJPAS. 36 (4) 2023 

420 
 

3.1 rth moment: 

The rth moment can be derived as follow: 

𝐸(𝑡𝑟) = ∫ 𝑡𝑟
1

0
 𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡)  𝑑𝑡   

         = ∫ 𝑡𝑟

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1
 𝑡−2𝑘−3   

1−[1−𝑒
−
1
𝜆]

𝜃

1

0
   𝑑𝑡  

         =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1
   

1−[1−𝑒
−
1
𝜆]

𝜃 ∫ 𝑡𝑟−2𝑘−3
1

0
𝑑𝑡  

         =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1
   

1−[1−𝑒
−
1
𝜆]

𝜃  
𝑡𝑟−2𝑘−2

𝑟−2𝑘−2
|0
1  

𝐸(𝑡𝑟) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   (𝑟−2𝑘−2)
   

1−[1−𝑒
−
1
𝜆]

𝜃    

When  r = 1, the mean of RTIGRD equal to  

𝜇 = 𝐸(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   (1−2𝑘−2)
   

1−[1−𝑒
−
1
𝜆]

𝜃   

𝜇 = 𝐸(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−2𝑘−1)
   

1−[1−𝑒
−
1
𝜆]

𝜃   

 

When r=2, we will get 𝐸(𝑡2) 

E(𝑡2) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−2𝑘)
   

1−[1−𝑒
−
1
𝜆]

𝜃   
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E(𝑡2) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−𝑘)
   

1−[1−𝑒
−
1
𝜆]

𝜃   

when r=3 

E(𝑡3) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
θ(𝑗+1)𝑘

(𝜆)𝑘+1   (1−2𝑘)
   

1−[1−𝑒
−
1
𝜆]

𝜃   

 

When r=4 

E(𝑡4) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
θ(𝑗+1)𝑘

(𝜆)𝑘+1   (2−2𝑘)
   

1−[1−𝑒
−
1
𝜆]

𝜃   

 

3.2 Variance   

  The Variance (𝑉𝑎𝑟) of RTIGRD can be found as follows: 

𝜎2 = 𝑉𝑎𝑟(𝑡) = 𝐸(𝑡2) − [𝐸(𝑡)]2  

𝑉𝑎𝑟(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−𝑘)
   

1−[1−𝑒
−
1
𝜆]

𝜃 −

[
 
 
 
 
 
∑ ∑

(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−2𝑘−1)
   

1−[1−𝑒
−
1
𝜆]

𝜃

]
 
 
 
 
 
2

   

=

[1−[1−𝑒
−
1
𝜆]

𝜃

]∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−𝑘)
  −[∑ ∑

(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−2𝑘−1)
]

2

 

[1−[1−𝑒
−
1
𝜆]

𝜃

]

2
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=

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   
  [

1

(−2𝑘)
 [1−[1−𝑒

−
1
𝜆]

𝜃

]  −∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1   (−2𝑘−1)
]  

[1−[1−𝑒
−
1
𝜆]

𝜃

]

2   

 

 

3.3 Moment Generating Function 

 

The Moment Generating Function of RTIGRD can be derived as follow: 

 

ℳ𝑡(ŧ) = 𝐸(𝑒ŧ𝑡) = ∫ 𝑒ŧ𝑡
1

0
 𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡)  𝑑𝑡   

  ℳ𝑡(ŧ) = ∫ 𝑒ŧ𝑡

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1𝑗 )

𝜃−1

𝑗=0

∞

𝑘=0

   
2θ(𝑗+1)𝑘

(𝜆)𝑘+1
 𝑡−2𝑘−3   

1−[1−𝑒
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3.4 Kurtosis  

 

          The kurtosis of RTIGRD can be found as follows: 

kurtosis of RTIGRD can be found as follows: 
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3.5 Skewness 

The Skewness of RTIGRD can be found as follows:  
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3
2
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(𝜎2)
3
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3.6 Median  

The Median of RTIGRD can be found as follows:  
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3.7 Mode 

     The Mode of RTIGRD can be found as follows: 
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, where 

𝑀𝑗 =
∑ (

𝜃−1

𝑗
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  𝜃−1
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1−[1−𝑒
−
1
𝜆]

𝜃   
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𝑑𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡)
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𝜆
− 3 𝜃−1
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2∑
𝑗+1

𝜆

𝜃−1
𝑗=0 = 3 𝑡2  

2∑
𝑗+1

3𝜆

𝜃−1
𝑗=0 = 𝑡2  

𝑡𝑀𝑜𝑑𝑒 = √2∑
𝑗+1

3𝜆
𝜃−1
𝑗=0   

4. Conclusions 

 

The Right Truncated Inverse Generalized Rayleigh Distribution was considered in this 

paper. Numerical methods were used for deriving the properties of RTIGRD as survival 

function, hazard function, rth moment, mean, variance, Moment Generating Function, 

skewness, kurtosis, median, and mode. 
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