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Abstract

This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem
(QNLHBVP) studding constraints quaternary optimal classical continuous control vector
(CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control
constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is
stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate
hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations
(QAEsS) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) .
The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and
sufficient conditions for optimality (NCSO) theorems for the proposed problem are stated and
proved.

Keywords: Necessary and Sufficient Conditions fro optimality, Nonlinear Hyperbolic System,
Quaternary Optimal Classical Continuous Control vector.

1. Introduction

Optimal control problems (OCPs) are important in a wide range of practical applications,
including robotics robotics[1], economics[2], weather conditions[3], community health[4], and a
variety of other scientific fields. Nonlinear ODEs [5]or nonlinear PDEs (NLPDESs) [6] usually
dominate OCPs. This significance pushed many researchers to be concerned about OCPs in
general and optimal classical continuous control problems (OCCCPs) in particular. During the last
decade much emphasis has been place on studying the OCPs for system dominating by nonlinear
PDEs (NLPDEs) of the three types in general; hyperbolic, elliptic and parabolic [7-9]. Later the
study of this subject, in particular for hyperbolic type of PDEs was generalized to deal with
CCOCPs dominated by coupled NLPDEs of it [10], and then to CCOCPs dominating by triple
NLPDEs of it [11]. the problem in each type of these OCCCPs was typically comprised of an
initial and boundary value problem, the CF and the constraints on the state and the control vectors
(CSCV). The study of each one of these problems had been included of; the existence theorem of
constraints OCCC vector satisfying the SCCV had been stated and demonstrated under appropriate
HYPs, the mathematical formulation for the QAEs related to the given QSEs had been obtained,
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and the DD for the Ham had been derived. The theorems of necessity and sufficient conditions for
optimality had been stated and demonstrated.

All of these concerns motivated us to consider extending the study of the CCOCP
dominating by triple NLPDEs of hyperbolic type to a CCOCP dominating by QNLHBVP. As a
result of this expansion, there was a need to generalize the mathematical model and then to
generalize all the proofs related to this generalization, and accordingly. The authors created new
Theorems, Lemma and then proved them in this paper. The existence theorem (ETH) of a
CQOCCCV dominating by the QNLHBVPs with EIQSCCV was stated and demonstrated in this
work using the ACTH under appropriate HYPs. Moreover mathematical formulation of the QAES
related to QSEs was discovered as was the WF of the QAEs. The derivative of DD was obtained.
Lastly, both the theorems for the NCSO of the proposed problems were stated and demonstrated.

2. Problem Description:

Let I =[0,T], T < o0, Q c R?, be an open bounded regular region with boundary I' = 9, Q =
QxI,Z=TxI.The CQOCCCYV including of the QSEs are given by the following QNLHBVP:

YViee —Ay1 +y1 — Y2ty + v = filx, t,y1,49), InQ, 1)
Vorr =AY, + Y1+ Y2 —¥3 —ya = (6, 8,2, u2), I Q, 2
Vaee —Dys —y1 + Y2 +y3 +ya = f3(x,t,y3,u3),InQ, 3)
Yart —DYVa—y1+ Y2 — Vst ya = fa(x,t,¥4,u),In Q, 4)
with the following boundary conditions (BCs) and the initial conditions (ICs)

y;(x,t) =0,0onZ, fori=1,2,3,4. (5)
y1(x,0) = y2(x),and y;.(x,0) = y}(x), in Q fori = 1,2,3,4. (6)

where y = (v1,¥2, V3, Vs) € HY(Q) = (H'(Q))*is the quaternary solution vectors (QSVs),
corresponding to the quaternary classical continuous control vector (QCCCV) u =
(uy, Uy, Uz, uy) € L2(Q) = (L2(Q)* and (fL, fo, f3, f2) € L%(Q) is a vector of a given function on
OXRXU)DX(OQ@XRXU,))X(QXRXxU3) X (QXxXRxU,),withU; c R,Vi=1,2,34.
The QSCCs aredi € W, W c L%(Q) where W = {w € U c R%,a.e in Q}, with is a convex
(CO).

The CF is given and The EINEQSCC on the QSCCs are resp.

4

GO(ﬁ) = iglg Yoi (X, ¢, yi,ui)dth ) (7)
4

Gl(ﬁ) = i§1£ LT (X, t, yi'ui)dxdt = O! (8)
4

G,() = i§1£ g2i (6, t,y;,u)dxdt <0, ©))

The set of admissible quaternary control (AQC) is:
W,={@eW]|G®@) =0,G6,(@) < 0}.
The CQOCCCV is to find 7 € Wy, s.t. Go(h) = min Gy (W) .
WEW 4

LetV = {B = (vy, V5, V3, 1) € HY(Q),v; = v, = v3 = v, = 00n 3Q},V = HA(Q) = (HL(Q))*

L L2(LV) = (L>(I,V))* and V = H}(Q), the inner product (IP) and the norm(Nr) in L?(Q) are
4

denoted by (7,%) and Il ¥ ll,2qy= Z Il vy 172 TeSP., the Nrin LZ(LV) by Il ¥ 2y =

4
Z v I72¢yy - and L2(1, V") is the dual of LZ(I, V).
i= ’

The WF of ((1)-(6)) with y € H3(Q) is given (a.e. on | and Vv;, y;(0,t) € V,Vi = 1,2,3,4) by :

1eev1) + (Vy, Vo) + (v, v1) — 72, v1) + (3, v1) + s v1) = (f1,v0), (10)
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(1 v1) = 1(0),v1), and (yiy, v1) = (¥1:(0), v1), (11)
(V2ee, V2) + (By2, Vv3) + (Y1, v2) + V2, v2) — V3, V2) — (Ve V2) = (f2, 12), (12)
(¥3,12) = (72(0), 1), and (v, v2) = (¥2¢(0),v3) , (13)
V36, v3) + (Vy3, Vv3) — (71, v3) + V2, v3) + (¥3,v3) + (Vs v3) = (f5,v3), (14)
(¥3,v3) = (¥3(0),v3), and (y3, v3) = (¥3:(0), v3), (15)
Vate: Va) + (Vya, Vou) — (Y, Va) + (Y2, Va) — V3, Va) + (Va, Va) = (fa, Va), (16)
(V8 va) = (¥2(0),v4), and (Vir, v4) = (V¢ (0),v4), (17)

Assums (A): Suppose that f; is of Carathéodory type (CaraT) on Q X (R X U;) satisfies
(w.r.t. y;&u; ) the following
Ifi (et yi u)l < Fi(x, O+ w;| + B;lyi|, where y;, u; € R, B; > 0 and F; € L*(Q).
(i) f; is satisfied Lipschitz condition (LPC) w.r.t. y;, i.e.
IfiCx, &y uw) — fiCo t, v udl < Lilyi — il vy Vo wi € R, Ly > 0, for (x,t) € Q.
Proposition 2.1[12]: Let D < R? be measurable, f: D x R®™ — R™ is of CaraT satisfies:
If (v, )l < ¢w) +n(@)lx]|%
where x € LP(D X R"),{ € L}(D xR),n € Lp%a(D X R), a € [0,00).
Then the functional (funl) F(x) = fD f (v, x(v))dv is continuous (cont.).

Theorem2.1 (ETH of a Unique QSVs)[13]: If Assums (A) hold, then for each given 1 € L?(Q),
the WF (10- 17) has a unique QSVs y = (1,2, ¥3,¥a) € LI, V) With § = (Y1, Y2e, Y3, Yar) €
L2(Q), Yer = V1ee Yaee Yaee Yaer) € L2 V).

Assums (B): Consider g;; (for i =1,2,3,4 &1 =0,1,2) is of the CaraT on Q x (R x U;) and
satisfies:| g, (x, t, y;, u)| < G (x,t) + Cii(y;)? + Cp;(u;)?, where G;; € L*(Q), y; € R &u; € U;.
Lemma 2.1: With Assums (B), the funl @i - G,(%), vl = 0,1,2 is cont. on L%(Q).

Proof: The proof is obtained from the Assums (B) and Proposition 1.

Lemma 2.2[12]: Let g: Q X R = R is of CaraT on @ X (R X R) and satisfies

lg (x,t,y,u)| < G(x,t) + cy? + ¢u?, where G(x,t) €LY (Qu€EU,c;c=0,UcR, is
compact(COM). Then gg (x,y,u)dx is cont. on L(Q) W.r.t. y.

Theorem 2.2 (LP Cont. Theorem)[13]: In addition to Assums (A), if y and y + &y are the QSVs
corresponding to the bounded QCCCVs 4 and 4 + &1 resp. in L2(Q), then for § € R*

Il 5y, oo 1 12¢0))< 6 |l Su i 2(gy I 8Ye 2= 6l U Il 2 gyandll 8Ye l2gy< & Il 84 Il 2(g)-
Assums (C): Assume that for each (I = 0,1,2 & = 1,2,3,4), the functions f;, fiy,. , fiu, » Guiy;» G,
are of CaraT on Q X (R x U"), where (U’ is an open set containing U), s.t.(for(x, t) € Q) :
|fiyi(x: ty,u)| < L, |fiyi(x» ty,u)| <L, |giyi(x' tyou)| < Gus(x,t) + Gus(x, ©) 1 v,
|Gi, (6t v, u) | < Gris(x,8) + Gy (x, ) | yil,whereyy, u; € R, Gyis, Gyie € L*(Q),Gyis, Grig = 0.

Main Results

3.Existence of the CQOCCCV

Theorem 3.1: In addition to Assums ((A) & (B)), if the set U is CO and com., WA # ¢, the function
fi (Vi = 1,2,3,4) has the form: f;(x, t,y;,u;) = fiy(x, t,y;) + fio (x, u;,

with |fi1 (e 6, y)I < 006 t) + ¢ 1y LIfia (e O] < Ky i € LP(Q), ¢ = 0.
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gai IS independent of u;, go; and g,;are CO w.r.t. u; for fixed (x,t,y;),V i = 1,2,3,4. Then there
is a CQOCCCV.
Proof: From the Assumon U c R, W is weakly compact (WCOM), since W, # ¢, then there is
a minimum sequence(Seq.) {ux} = {(U1k, Uzk, Usk, Usk )]} € WA, Vk s.t.
,fi’?o(;o(ﬁk) = _inf Go(%).

UKEW 4
Since &, € W,, Vk and W is WCOM, there exists a subsequence of {1, } say again {zi;} s.t. . i, —

—

i weakly (WK) in L2(Q) and || uy ;2(q)< d,Vk. From Theorem 1, corresponding to the Seq.
QCV {i,} the WF of the QSEs has “a unique” solution {y, = ﬁuk} and Il Yi g2y Il Yie 12 (g
are bounded, then by Alaoglu’s theorem (ATH), there exists a Subsequence of {y, } and {y;.}, say
again {y,.} and (¥}, s.t. ¥, = ¥ WK in L2(L, V), ¥, = ¥ WK in (L2(Q))*. Now for each k.
and by applying the ACTH[14] , there is a Subsequence of{y, } say a gain {y, } s.t. y,, — ¥ strongly
(ST) in L%(Q).

Now, for each k, substituting the QSVs y, in the WF ((10), (12), (14), (16)), multiplying both
sides (MBSs) of each one by ¢;(t), Vi = 1,2,3,4 (with ¢; € C?[0,T], s.t. ¢;(T) = ¢;(T) =
0,¢;(0) # 0, ¢;(0) # 0), rewriting the 1% terms in the LHS of each one, then integrating both

sides (IBS) on [0, T, and then integrating by parts (IBPs) for the 1% terms, yield to
T

T
fo % Y1kt V1) P dt + fo [(Vy1r, V1) + V1 1) — W2k V1) + V360 V1) + YVag, V1) 191 dt

:fo (fi1(x, &, y1x), v B, (D) dt + fo (f12(x, Duqk, v1) P4 (Ddt (18)
T

T
fo % (Vake V2)Podt + fo [(Vyar, VV3) + D1k v2) + V2ko V2) — Y3k, V2) — Vg, V2) o dt

= fo (f21(x, &, Y2r), v2) P, (D)dE + fo (f22 (%, Dugk, v2) P, ()dt, (19)
T T
fo % V3K, V3)P3dt + fo (VY3 Vv3) = Y1k V3) + B2ks V3) + Y3k, V3) + (Vaks v3)13dt

zof (f31(x, £, y31), v3) P53 (D)dt + fo (f32(x, Duzk, v3)P3(t)dt, (20)
T T
fo % (Vak) Va) Padt + fo [(VYai VV4) = V1ko Va) + 2k Va) — Vai Va) + Vak, Va) ] Padt

:Of (fa1 (%, £, Yar), va) Pa () dt + fo (faz (x, ) Ugr, v4) Pa(t)dt, (21)

At this point, the same steps which were utilized in the proof of Theorem 2.1, can be utilized here
to passage the limit in the WF of ((18) — (21)), to acquire

16 v1) + (Vy, Vo) + (v1,v1) — V2, v1) + (Y3, v1) + (V4 v1)

= (fi1(x, t,y1) + fi2(x, )uy, v1), Vv, €V ae.onl, (22)

V26, V2) + (By2, Vv3) + (Y1, v2) + (V2 v2) — (3, V2) — (Vay V2)

= (f510x, t,y2) + fo2(x, )uy,v,), Vv, EVae.onl, (23)
30 v3) + (Vys3, Vus) — (y1,v3) + (72, v3) + (¥3,V3) + (Y4, V3)

= (f31(x, t,y3) + f32(x,)us,v3),Vvs €V ae.onl, (24)
Vaer Va) + (Vya, Vvg) — (v, 04) + (Y2, Va) — (V3,Va) + (Va, V4)

= (fa1(x, t,y4) + faz (x, Uy, vy), Vv, €V ae. onl, (25)

Same manner also can be utilized to that the ICs are held. Thus y is QSVs
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From the other side, since

G,(W) = iglg g1i (x, t, yu)dxdt, with gq; (Vi = 1,2,3,4) is cont. w.r.t. y;, then by Lemma 2.1,
ggli (x,t, yi)dxdt is cont. w.r.t. y; but ¥, —» ¥ ST in L?(Q) , therefore

fQ g1i(x, t,yi) dxdt - fQ g1i (x, t,y)dxdt. Thus G, (1) = IgirzloGl(ﬁk) =0.

As well, since for [ = 0,2 &i = 1,2,3,4, g;;(x,t,y;,u;) is cont. w.r.t. (y;, u;) and U; is COM with
u; € U; a.e. in Q, then using Lemma 2.2 to get

.2 gli(xr ¢, yikiuik) dxdt — _2 gui (x' ¢, yiluik)dxdt ) (26)

But g;; (x, t, y;,u;) is CO and cont. w.r.t. u; , then
[ gu (x, t,y;, u;)dxdt is weakly lowe semi cont. (WLSC) w.r.t. u;, V1 = 0,2 & = 1,2,3,4, i.e.
Q

fQ gu (x, ¢, yi, up)dxdt < Igﬂgloinffq [gu (ot yi win) — Gu (6, 6, Yir, Uir ) Jdxdt
+I£imi"ff 9u (x, ¢, yig, ugg )dxdt < léiminff 9ui (%, t, Vi, U )dxd
—00 0 —00 0

4 4
= L f i (x, &, y;, w)dxdt < X f 9ui (6, t, Vg, ug)dxdt.

Thus Gl(u) < Iélm inf G (), then G,(w) <0, since Uy, € WA,Vk and

u EWA

Go(W) < llm inf Go(iy) = llmGo(uk) = inf Go(u) = Gy(U) = mm Go(u) then 4 is a

CUEW 4 UREW 4

QOCCCV.

Theorem 3.2: Neglecting the index [ from G; and g;;. The QAEs 7= (Z1,Z,,Z5,Z,4) of the QSEs
in ((1)-(6)) can be formulated as

Zige —DZy + Z1 + 2, — Z3 — Zy = Z1f15, (X, 6, Y1, U1) + g1y, (X, 8, ¥1,U), IN Q, (27)
Zy=0onZX Z,(x,T)= Z;(x,T)=00nQ, (28)

Zoww —DZy —Z1 + Zy + 23+ Z4 = 252y, (%, 6, Y2, U) + Gay, (X, 1, Y2,U2),INQ (29)
Zz =0onX y Zz(x,T) = ZZt(X,T) =0on Q, (30)
Zygy —DZ3+ 7y — Z, + Z3 — Zy = Z3f3,(x, £, y3,u3) + g3y, (X, 1, ¥3,u3) , INQ, (31)
Zz=00nZX Z3(x,T) = Z3;(x,T)=00nQ, (32)
Zypt —DZy+ 72y —Zy + 723+ Zy = Zyfay, (X, 6, Vs, Us) + Gay, (X, 8, Ya,us) , iNQ, (33)
Z4_ == 0 on Z, Z4_(x, T) == Z4t(x, T) == 0 on Q, (34)

. 4
And the Ham is defined as: H(x,t,9,4,Z2) = ¥ (Zif;(x, t, v, w) + g:(x £y, w))
i=1

4
Where G (1) = '21f gi (x,t,y;,u;)dxdt.
=lg
Then the DD of G is
DG(d,u—1) = li f Hy(x,t,5,1,Z) (i — d)dxdt .
E—

Proof: The WF of the QAEs Vv, €V and i=1,234is
(Z1tev1) + (VZ1, V1) + (Z1,v1) + (Z2,v1) — (Z3,v1) — (Z4, V1)

G+esu)-G(l) _
€

= (Z1f1y,, V1) + (G1y,, V1) , Vv EV ae.onl, (35)
(Z1(T),v1) = (Z1,(T),v,) = 0, (36)
(Zatt,v2) + (VZ3,Vvp) — (Z1,v;) + (Z3,v2) + (Z3,v3) + (Zy, v2)

= (Z32f2y,)V2) + (92y,,V2) , Vv, EV ae.on , (37)
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(Z5(T),v;) = (Z3(T),v;) = 0, (38)
(Zzee ,v3) + (VZ3,Vv3) + (Z1,v3) — (Z3,v3) + (Z3,v3) — (Z4,V3)

= (Z3f3y,,V3) + (g3y,,V3) , VU3 EV ae.onl, (39)
(Z3(T) ,v3) = (Z3:(T),v3) =0, (40)
(Zate »va) + (VZy ,V0u) + (Z1,v4) — (Z3,vs) + (Z3,V4) + (Z4,V4)

= (Z4fay, Va) + (Gay,, Va) , YV, EV ae.oNn, (41)
(Z4(x, T) ) U4) = (Z4-t(T) ) U4) = 0! (42)

The WF ((35-(42)) has a unique solution 7= (Z,Z5,75,7Z4) € (L*(Q))* (this it can proved so as
the proof of existence a unique QSVs for the WF ((11)-(15)).

Now, replacing v; = &y, in (35), (37), (39) and (41), for i = 1,2,3,4 resp.

T T

fo (0y16: Z1¢e)dt + fo [(VZ1,V6Y1e) + (Z1,61¢) + (Z2,0Y1¢) — (Z3,6Y1¢) — (Z4, 6y1,)]dt
T
= fo (Z1f1y, 6Y1¢) + (915, 6Y16)dL, (43)

T

| (8Yaer Zor)dt + [ [(VZ3,V8y2e) — (Z1,6Y2e) + (Z2, 6y2e) + (Z3,8y3:) + (Z4, 6y2e)]dt
0

~

o

T

= fo (Z2f2y,,6Y2¢) + (92y,,6Y2¢)dt, (44)

T T

fo (8y3¢) Z3¢)dt + fo [((VZ3,V8y3¢) + (Z1,0Y3:) — (Z2,0Y3¢) + (Z3,8Y3¢) — (Z4, 6y3.)]dt
T

= fo (Z3f3y5,0Y3¢) + (g3y,, 0Y3e)dt, (45)

T
(0Yaer Zyge)dt + f [(VZ4,V8Y4e) + (Z1,6Y4e) — (Z2,0Y4e) + (Z3,6Y4e) + (Za, 8yse)]dt
0

o™~

T

J;) (Z4ﬁly4r6y4e) + (g4y4f6y4s)dt1 (46)
Now, take i, 7 € L2(Q),set 6u = &L — U, U, = 4 + edu € L2(Q) for & > 0, then by Theorem 1,
y = ¥u & Y. = yy, are their corresponding QSVs. Setting 5Y. = (8Y16) 826 8Y3e) 0Vae) = Ve —
¥y, substituting v; = Z; for i = 1,2,3,4 in ((10)- (17)), IBSs on [0, T], then integrating by parts
twice (IBPs2) the 1% in the LHS of each obtained equation, finding the FrD of f; (Vi = 1,2,3,4) in

the RHS of each one equation (which is exists from the Assums C), then from the result of Theorem
2.2 and the Minkowiski inequality (MIN), once get

T T
S Oy1eZyg)dt + [ [(V6y16,VZ1) + (816, Z1) + (6Y2e, Z1) + (8Y3:,Z1) + (8Yae, Z1)]dt
0 0

T
= fo (f1y153’1s + f1u1€5u1,21)dt + 011(€) , (47)

T T

| (6Y2e, Zyp)dt + fo [((V6Y26,VZ3) + (0Y16, Z2) + (6Y2e, Z2) + (6Y36:Z2) + (0Yae, Z5)]dt

o

T
= fo (f2y25YZs + f2u255u2:Zz)dt + 01,(¢), (48)
T T
J (636, Zaer)dt + [ [(V8Y3e, VZ3) + (6Y1e,Z3) — (8Y26,Z3) + (636, Z3) + (8Vae, Z3)]dt
0 0

T
= fo (f3y3 8y3e + f3u3£5u3,Z3)dt + 043(e), (49)

T
(6Vaer Zage)dt + [ [(V6Y4e,VZ4) — (6Y16,Z4) — (6Y2e, Z4) + (8Y3e, Zy) + (8Yae, Z4)]dt
0
336
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T
= fo (f4y45)’42 + f4u4£6u4,Z4)dt + 014(¢), (50)

where 04;(¢) =Il 8y; 15+ € Il u; 15— 0,as¢ > 0, Vi =1,2,34.

Subtracting ((47) — (50)) from ((43)- (46)) resp., collecting the obtain equations, to acquire
T

ef Z (fuu,Ous, Z;)dt + 04() = € [ Z (9iy, 6y )dt ,Vi=1234, (51)
0 i=1

0 i=1

Where 0, (¢) = Z 0,;(e) > 0ase— 0.
i=1

From the other side, by employing the Assums (C), the definition of the FrD the result of Theorem
2.2, and using the MIN, one has

4-

G(U,) - G@) = (glyl 8Yie + G, €6u;)dxdt + 0,(e), (52)

l—1
Where 0,(¢) =l| 6y8 ”LZ(Q)+ el Su ”LZ(Q)_’ Oase—>0,Vi=1,23,4.
Now, by using (51) in (52) to obtain

G(i,) —G@) = ef Z (Zifi; + 9in,)Suwidxdt + 03(¢)

21
Where 05(¢) = 01((()9) + 0,(¢).

Lastly, dividing both sides by ¢, then taking the limit € — 0, yields to

DG4, —1%) = [ Hy(x,t,54,7Z)(d — )dxdt .

4. The NCSO andQSCSO

4.1Theorem:

(a) with Assums (A), (B) &( C), if W is CO., the i € W, is CQOCCCYV, then there exist 1; € R,

2
[=0,12withA, =>0,4, >0,Y |4; |I=1,s.t. the following Kuhn-Tucher Lagrange (KTL)
=0

conditions are held:

2
Y L DG(du—1u)=0vueEW, (53)
=0
A2G, (W) =0, (54)
(b) Inequality (53) is equivalent to:
Hy(x,t, 3,1, 2)i(t) = min Hg(x, t,7,%, Z2)U(t) , a.e.on Q, (55)

ueu

. 4
Where Hﬁ(x, t,y,u, Z) = _21 (Zl-fiul.(x, t,yuup) + i, (X, t, yi,ui)).
=

Proof: From Lemma 2.1, the funl. G,(i) (for l = 0,1,2) is cont. w.r.t. & — i and linear in & — 1,
the DG, (1) is M-differential for any M, then applying the KTL theorem[15], there exist A; €

2
R,1=0,1,2with 25,1, =0 , Y |4, I=1s.t ((563)-(54)) are satisfied, then by utilizing
=0
Theorem 3.2, (53) becomes
fQ (Zsfruy Zafouy Zafoug Zafuu,)- (2 — 8)dxdt = 0,V € W, (56)
2 2
where g; =) Aigpand Z; = )Y, A4 Zy, (Vi=1,2,3,4).
=0 =0

(b) Let {u,} be dense Seq (DSeq) in w, u is Lebesgue measure (LM) on Q and let S c Q be a
measurable set (MS) s.t.
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Ft) = ﬁ_,f(x, t),.lf (x,t) € S.

u(x, t),if (x,t) &S
Which makes (56), gives
fs (Zlf1u1 + J1up Zofou, * G2uy Z3f3us t 93w Zafau, T+ g4u4)- (ﬁk - ﬁ)dth =0,
or
(Z1f1u1 + glul'ZZquz + 92u2»Z3f3u3 + g3u3rZ4ﬁLu4 + g4u4)- (ﬁk - fZ) = 0,a.e.0nQ,
i.e. this inequality holds on Q\Q, with u(Q,) = 0,Vk, where u isa LM, i.e. it is satisfies on
Q\Uy Qp, With (U, Qi) = 0, but {Ti,} is a DSeq in W, then there is % € W , sit.

(Z1f1u1 + glul'ZZquz + 92u2»Z3f3u3 + g3u3rZ4ﬁLu4 + g4u4)- (ﬁ - ﬂ) = 0,a.e.on Q;Vﬁ eEW.
i.e. (53) gives (56). The converse is clear.

4.2Theorem: (The SCSO)

In addition to the assums (A), (B) &( C). Suppose W is CO., fi, g; are affine w.r.t. (y;, u;) for
each (x,t), goi,» g2; are CO. w.r.t. (y;,u;), V(x,t),i = 1,2,3,4. Then the NCSO of Theorem 4.1,
with 1, > 0 are also sufficient.

— 2
Proof: Assume u € Wy, is satisfied the KTL condition ((53)- (54)). Let G(¥) = Y. 14,G;(1),
=0
then using Theorem 3.2, to get
2 4
DG('l_i,l_L — 'l_i) = lz:OAlI lelifliui + gliui&tidxdt > O,
= Q i=

Since

il typw) = fin(x, Oy + fio ( Dw + fis(x, £).

Let & are given QCVs, then & ¥ are their corresponding QSVs. Substituting the pair (i, ¥)in
((1)-(6)) and MBS by « € [0,1] once, and then substituting the pair (i, y) in ((1)-(6)) and MBS
by (1 — a) once again, finally collecting each pair from the corresponding equations together
one gets

(ays + (1 — )y ) — Alay; + (1 — a)yy) + (ay, + (1 —)yy) — (ay, + (1 — a)y2)

+(ays + (1 —a)ys3) + (ay, + (1 —a)yy)

= fui(x,)(ay; + A1 — a)yy) + fi2(x, ) (au; + (1 — a)iy) + fi3(x, 1), (57)
ay;(x,t) + (1 — a)y1(x,0) =0, (58)
ay;(x,0) + (1 — @)y (x,0) = y? (x), ay;(x, 0) + (1 — a)y1¢(x,0) = y{ (x), (59)

(ay; + (1 —a)¥2)ee — Alay, + (1 — @)y,) + (ay, + (1 — a)y,) + (ay, + (1 — a)y,)
—(ay; + (1 —a)y3) — (ays + (1 — a)ya)

= fo1(x, ) (ay, + (1 — a)y,) + foo (x, ) (au, + (1 — a)uy) + fo3(x, 1), (60)
ay,(x,t) + (1 — a)y,(x,0) =0, (61)
ay,(x,0) + (1 — @)y, (x,0) = y7 (%), ¥2¢(x,0) + (1 — @)y, (x, 0) = y;(x) , (62)

(ays + (1 — a)¥3)ee — Alay; + (1 — @)y3) — (ay, + (1 — a)yy) + (ay, + (1 — a)y,)
+(ay; + (1 —a)y3) + (ay, + (1 — a)y,)

= f31(x, ) (ays; + (1 — a)y3) + fz2(x, ) (auz + (1 — a)u3) + f33(x, 1), (63)
ays(x,t) + (1 — a)ys;(x,0) =0, (64)
a)’s’(x: 0) + (1 - a))_/3(xi 0) = yg(x)v ay3t(x' 0) + (1 - a)}_]3t(x' 0) = Y%(x), (65)

(ays + (1 = )Ya)ee — Alays + (1 — a)ys) — (ay; + (1 — a)yy) + (ay, + (1 — a)y,)
—(ay; + (1 —a)y3) + (ay, + (1 — a)ys)
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= far(x, ) (ays + (1 — @)ys) + faz (x, 0) (quy + (1 — a)ity) + faz(x, t), (66)
ays(x,t) + (1 — a)y,(x,0) = 0, (67)
ay,(x,0) + (1 — @)y4(x, 0) = y7(x), @yse (%, 0) + (1 — @)¥ar(x,0) = y4 (%), (68)

Equalities ((57)- (68)), show that if the QCV is &( with (Z = aii + (1 — a)@)) has corresponding
QSVs ¥ with (7; = yiz, = Vitau+(- @yi)-

This means the operator i — y; is CO-linear (COL) w.r.t. (i,y) in Q. Now, since

g1i(x, t, v, w;) is affine w.r.t. (y;, u;), in Q, then G, () is COL w.r.t. (&,y), also, since go; &gz
are COw.r.t.(y;, u;) , in Q, Vi = 1,2,3,4, then the funl. G, (i), G,(1) are CO. w.r.t. (y,u) in Q
(from the assum. on the funl g;; (V1 = 0,1,2, &i = 1,2,3,4) and from the sum of two integral of
CO function is also CO), i.e. G(u) is COw.r.t. (y¥,u%) , in Q in the CO set W, and has a cont. DD
satisfies

DG(ﬁ,ﬁ — 1) = 0, which means G (&) has a minimum at @, i.e.

G@ <GR)VTEW,ie.

XoGo(@) + A1 Gy (@) + 2,6, (@) < AGo(T) + 1,61 (T) + 1,6,(7), vi € W

Let T € W,, A, > 0 and from (54), the above inequality becomes

AoGo(@) < A9Go(T), VT € W, or Gy (i) < Go(T), VI € W, thus 1 iaa CQOCCCV.

5.Conclusions and Discussions:

In this work, the CQOCCCVP dominating by a QNLHBVP is studied. The existence of a
CQOCCCV dominating by a QNLHBVP with EINQSCC is stated and demonstrated under
appropriate HYP with using the ACTH. Moreover mathematical formulation of the QAEs related
to QSEs is found so as its WF. The derivation of the DD for the Ham is attained. Lastly, both the
NCSO and the SCSO “theorems” optimality of the proposed problem are stated and demonstrated.

The study of the proposed problem is considered very interesting in the field of applied
mathematics since the proposed model represents a generalization for a wave equation; from a
side, and from the other, these results are very important because they give the green light about
the ability for solving such problems numerically.
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