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Abstract 

The substrate's nature plays an important role in the characteristics of semiconductor films because 

of the thermal and lattice mismatching between the film and the substrate. In this study, tin sulfide 

(SnS) nanostructured thin films were grown on different substrates (polyester, glass, and silicon) 

using a simple and low-cost chemical bath deposition technique. The structural, morphological, 

and optical properties of the grown thin films were investigated using X-ray diffraction (XRD), 

field emission scanning electron microscopy (FESEM), and ultraviolet-visible-near infrared (UV-

Vis-NIR) spectroscopy. The XRD and FESEM results of the prepared films revealed that each 

film is polycrystalline and exhibits both orthorhombic and cubic structure types. In addition, the 

deposited films on polyester and glass showed good absorption in the UV-Vis-NIR range. 

 Keywords: Tin sulfide; Chemical bath deposition; Polyester; glass, nanostructure. 

1. Introduction 

Recently, significant attempts have been made to synthesize and characterize nanostructured 

semiconductor materials owing to their unique properties, as well as their performance in a variety 

of applications, notably sensing, i.e., their ability to sense gas and light [1]. Researchers are 

increasingly interested in IV-VI semiconductors such as SnS, GeSe, and PbS because of their 

numerous applications, such as photovoltaic devices and near-infrared detectors [2]. Among these 

semiconductors, SnS has advantages, including abundance, low toxicity, and a high absorption 

coefficient (104 cm-1) [3–5]. SnS nanostructure films can be deposited through different 

techniques, such as electrodeposition [6], spray pyrolysis [7], radio frequency sputtering [8], 
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thermal evaporation [9], and chemical bath deposition (CBD)[10-14]. The CBD technique is 

simple, low-cost, and uses low-temperature deposition (<100 oC) compared to other techniques. 

Additionally, it can be used for continuous deposition. Moreover, the substrate's nature plays a 

crucial role in the characteristics of SnS film because of the thermal and lattice mismatching 

between the film and the substrate. Therefore, in this work, the nanostructured SnS films were 

deposited using the CBD method on different substrates (polyester, glass, and silicon). 

 

2. Experimental part 

     The CBD technique was used to synthesize SnS films on different substrates (glass, polyester, 

and Si). The procedure consists of 1.12 g dihydrate tin chloride, 3.234 g complex agent tri-sodium 

citrate, and 0.56 g thiocetamide. All chemical materials were dissolved in 50 ml of deionized water. 

Aqueous ammonia was added drop by drop, and the pH of the solution was adjusted to 6.5. The 

mixture was stirred well using a magnetic stirrer at room temperature. Substrates were ultrasonic 

cleaned in acetone, methanol, and deionized water, respectively, for 30–40 minutes before film 

deposition. Then, the substrates were immersed in the mixture. The deposition was carried out at 

80 oC for 4 h. The substrates were removed from the beaker, washed with deionized water, and 

dried naturally. The structural, morphological, and optical properties of the grown thin films were 

examined using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), 

and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. 

3.  Results and discussion 

3.1 Structural properties 

Figure 1 shows the X-ray diffraction patterns of grown SnS films on polyester, glass, and silicon 

substrates. These patterns showed two peaks in the area around 2θ = 31.9 and 39.7, which can be 

indexed to the orthohombic structure of SnS (ICDD Card: 39-0354) [4, 5, 15]. Moreover, the XRD 

patterns of the deposited films on the glass and silicon substrates exhibit additional peaks around 

2θ = 26.85 and 31.1, which can be indexed to the cubic structure of SnS [15,16 ]. In addition, the 

peaks of polyester, and silicon substrates were observed. The high, intense, and wide peak of the 

polyester substrate at 2θ = 26.3˚ may be responsible for the absence of peaks of the cubic structure 

in the pattern of the deposited film on polyester. 

 

Figure 1. XRD patterns of grown SnS films on various substrates, polyester, (b) Si, (c) glass 

The average crystalline size (D) was calculated from the XRD pattern using Scherrer’s formula, 

which is expressed as follows [5, 17, 18]: 
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𝐷 =
0.9𝜆

𝛽𝐶𝑂𝑆𝜃
                        (1) 

where 𝜆 is the x-ray wavelength, 𝛽 is the full width at half maximum of the XRD peak, and 𝜃 is 

the Bragg angle. The D values for (111) orientation were found to be 223 A°, 172 A°, and 295 A° 

for deposited films on glass, Si, and polyester, respectively. The strain (𝜖) values of the grown 

films were calculated using the following equation [19]:  

𝜖 =
𝛽

4𝑡𝑎𝑛𝜃
                          (2) 

The 𝜖 values for (111) orientation are 5.64x10-3, 7.34 x10-3, and 4.24 x10-3 for grown films on 

glass, Si, and polyester, respectively. Comparative analysis of the XRD findings for the films is 

shown in Table 1. 

Table 1: XRD findings of deposited SnS films on different substrates. 

substrate (h k l) D (Ǻ) 3-ε x 10 

Polyester (111) 295 4.24 

Glass (111) 223 5.64 

Silicon (111) 172 7.34 

 

3.2 Surface Morphology 

Figure 2 shows FESEM images of deposited films on various substrates. It is obvious that the 

grown films on polyester and glass substrates comprise many flower-like nanostructures 

agglomerating for SnS orthorhombic structure, as well as beneath a layer of spherical grains for 

cubic SnS [16, 20,21]. While the grown film on the glass substrate comprised distributed and 

uniformly many flower-like nanostructures for orthorhombic structure SnS, as well as a beneath 

layer of spherical grains for cubic SnS, The presence of two morphologies that relate to 

orthorhombic and cubic structures agrees with the XRD analysis of Figure 1. 

 

Figure 2. FESEM images of prepared films on different substrates, (a) polyester (b) glass (c) silicon 

orthorhombic 

cubic 
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 3.3 Optical properties  

The absorbance spectra of deposited films on polyester and glass substrates in the range of (350 

-1100 nm) are shown in Figure (3). According to the spectra, the absorption in the visible and 

near-infrared wavelengths is generally good. Additionally, the deposited film on glass has a larger 

absorbance value than the film on polyester in the range of (550 -1100 nm). While the spectra 

behave differently in the range of (350 - 550 nm), the film deposited on polyester has a higher 

absorbance value than the film deposited on glass.  

 

Figure 3. The absorbance spectra of deposited films on polyester and glass substrates. 

The nature of the energy gap optical transmission can be determined using the relation [5, 22]: 

 αhʋ = A(hʋ − 𝐸𝑔)n                                      (3) 

where A is constant, h is Planck constant, ʋ denots frequency, 𝐸𝑔 is the energy gap, and 

α is absorption coefficient. Figure (4) illustrates plotting (αhυ)2 versus (hυ) curves for films 

deposited on two different substrates  . The equation (3) is matched with n = 1/2, which indicates 

permissible transitions. The 𝐸𝑔 value can be determined by extrapolating the straight line of (αhʋ)2 

versus the hʋ curve to intercept the horizontal hʋ axis. From Figure (4), the  𝐸𝑔 values were found 

to be 1.38 and 1.02 eV for grown films on polyester and glass substrates, respectively. 

 

Figure 4. Energy gap of grown films on (a) polyester (b) glass 
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4. Conclusion 

In this work, the nanostructure of tin sulfide (SnS) thin films was successfully grown by simple 

and low-cost chemical bath deposition on different polyester, glass, and silicon substrates. The 

obtained results showed that the substrate nature had significant effects on the structural, 

morphological, and optical properties of the deposited films. 
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