P-small Compressible Modules and P-small Retractable Modules

Mohammed Baqer Hashim Al Hakeem* and Nuhad S. Al-Mothafar
Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq.

*Corresponding Author: mbhmsc2015110@gmail.com

Abstract
Let R be a commutative ring with 1 and M be left unitary R-module. In this papers we introduced and studied concept P-small compressible module (An R-module M is said to be P-small compressible if M can be embedded in every of it is nonzero P-small submodule of M. Equivalently, M is P-small compressible if there exists a monomorphism $f: M \rightarrow N \neq 0 \neq N \triangleleft P M$, R - module M is said to be P-small retractable if $\text{Hom}(M, K) \neq 0$, for every nonzero P-small submodule K of M. Equivalently, M is P-small retractable if there exists a homomorphism $f: M \rightarrow N$ whenever $0 \neq N \triangleleft P M$ as a generalization of compressible module and retractable module respectively and give some of their advantages characterizations and examples.

Keywords: Compressible module, Retractable module, Small submodule, P-small submodule, P-small Compressible module, P-small Retractable module. Hollow module, PS-Hollow module.

1. Introduction
Let R be a commutative ring with 1 and M be left unitary R-module. Authors introduced and studied concept small submodules. A proper submodule N of an R-module M is termed a small submodule $(N \triangleleft M)$, if $N + L \neq M$ for every submodule L of $M[1]$. A proper submodule N of M is said to be prime if whenever $r \in R, m \in M$ such that $r \cdot m \in N$ implies either $m \in N$ or $m \in [N : M] : [N : M] = \{r \in R : rM \subseteq N\}[2]$. In [3] Iman M.A.Hadi and Tammader A.Ibrahem introduced and studied the concept of P-small submodules, where a submodule N of an R-module M is called a P-small submodule $N \triangleleft P M$ if $N + P \neq M$ for any prime submodule P of M. An R - module M is called compressible if M can be embedded in every non-zero submodule. An R - module M is said to be P-small compressible if M can be embedded in every of it is nonzero P-small submodule of M. Equivalently, M is P-small compressible if there exists a monomorphism $f: M \rightarrow N$ whenever $0 \neq N \triangleleft P M$.

This work is licensed under a Creative Commons Attribution 4.0 International License
In this paper we introduce and study the concept of P-small compressible as a generalization of compressible module, and we give some properties, characterization and examples. In addition, we see that under condition, P-small compressible, small compressible and compressible are equivalent. Some of their advantages characterizations and examples are given. We also study the relation between P-small compressible module, P-small retractable module and some of classes of modules.

2. Preliminaries

Definition (2.1): Let M be an R -module and $N \leq M$:

1. N is called small submodule of M , $(N \ll M)$ if $N + K = M$ implies $K = M$, for any submodule K of $M[1]$.
2. An R -module M is called hollow if every proper submodule is small in $M[4]$.
3. A proper submodule N of M is called prime if whenever $r \in R$, $m \in M$ implies either $m \in N$ or $r \in [N: M] : [N: M] = \{r \in R : rM \subseteq N\}$ [2].
4. A proper submodule N is called P-small submodule of M , $(N \ll_p M)$ if $N + P \neq M$, for any prime submodule P of M, [3].
5. An R -module M is called PS-hollow if every proper submodule in M is P-small[3].
6. An R -module M is said to be small compressible if M can be embedded in every nonzero small submodule of M. Equivalently, M is small compressible if there exists a monomorphism $f: M \rightarrow N$ whenever $0 \neq N \ll M [5]$.
7. An R -module M is called quasi-Dedekind module if for all $f \in \text{End}_R(M)$, $f \neq 0$ implies $\text{Ker} f = 0$, [7].
8. An R -module M is called small quasi-Dedekind module if for all $f \in \text{End}_R(M)$, $f \neq 0$ implies $\text{Ker} f \ll M$, [7].

Remark (2.2): [3](1) Z_6 is P-small submodule of Z_6 as Z - module.

(2) Z_2 and (3) are not P-small submodule of Z_6.

(3) If M is semi-simple module, then (0) is the only P-small submodule.

Remark (2.3): Each small submodule is P-small. But the converse is not true in general for example(2) is P-small submodule of Z_6 as Z - module but not small.

Lemma (2.4):

1. Let N be a proper submodule of M. If $W \subset N \ll_p M$, then $W \ll_p M$. In particular if W is a direct summand of N and $N \ll_p M$, then $W \ll_p M$.
2. Let N_1 and N_2 be proper submodules of M. If $N_1 + N_2 \ll_p M$, then $N_1 \ll_p M, N_2 \ll_p M$, the converse is not true.
3. Let $A \subset B \subset N \subset M$. If $B \ll_p N$, then $A \ll_p M$.
4. Let M, M' be R -modules and $\psi: M \rightarrow M'$ be an R - homomorphism. If $A \ll_p M$, then $\psi(A) \ll_p M'$.

3. P-small Compressible Module

In this section, we introduce the concept of P-small compressible module as a generalization of compressible module, give some of basic properties, examples and characterizations of this concept.
Definition (3.1): An R–module M is said to be P-small compressible if M can be embedded in every of it is nonzero P-small submodule of M. Equivalently, M is P-small compressible if there exists a monomorphism $f: M \to N$ whenever $0 \neq N \ll_{\rho} M$.

Remarks and examples (3.2):
1. It’s obvious that every compressible module is P-small compressible module, but the converse is not true. For example Z_{6} as Z-module is P-small compressible since (0) is the only P-small submodule, but not compressible.
2. Z as Z–module is P-small compressible module, because it’s compressible module.
3. Z_{ρ} as Z–module is P-small compressible module; P is a prime number.
4. Every simple R–module is P-small compressible module but not conversely, because Z as Z–module is a P-small compressible module but not simple.
5. Z_{4} as Z–module is not P-small compressible. (Because Z_{4} can’t be embedded in (2) and $(2) \ll_{\rho} Z_{4}$).
6. A homomorphic image of a P-small compressible module need not be P-small compressible in general for example Z as Z–module is a P-small compressible module and $\frac{Z}{2Z} \simeq Z_{4}$ is not P-small compressible module view remark (5).

Proposition (3.3): A P-small submodule of P-small compressible module is also P-small compressible module.

Proof: Let $0 \neq K \ll_{\rho} M$ and M be P-small compressible module and let $0 \neq L \leq K \ll_{\rho} M$, then $L \ll_{\rho} M$ [3]. Since M is P-small compressible, so \exists a monomorphism $f: M \to L$ and $i: K \to M$ is the inclusion homomorphism, then $f \circ i: K \to L$ is a monomorphism. Therefore K is a P-small compressible module.

Proposition (3.5): If an R–module M has no prime submodule such that \exists a monomorphism $f: M \to N$, $\forall N \subseteq M$, then M is P-small compressible.

Proof: Suppose M has no prime submodule and let $N \subseteq M$, then $N \ll_{\rho} M$ [3] and by assumption M is P-small compressible.

Proposition (3.6): Let M_{1} and M_{2} be isomorphic R–modules. Then M_{1} is P-small compressible if and only if M_{2} is P-small compressible.

Proof: Let $0 \neq N \ll_{\rho} M_{1}$ and suppose that M_{2} is P-small compressible. Let $\phi: M_{1} \to M_{2}$ be an isomorphism, then by [3] $0 \neq \phi(N) \ll_{\nu} M_{2}$. Put $K = \phi(N) \ll_{\nu} M_{2}$, so $\alpha: M_{2} \to K$ is a monomorphism (by assumption), let $g = \phi^{-1} \mid_{K}$, then $g: K \to M_{1}$ is a monomorphism. $g(K) = \phi^{-1}(\phi(N)) = N$. Hence, we have a composition $\psi = g \circ \alpha \circ \phi$, hence $\psi: M_{1} \to N$ is a monomorphism. Therefore M_{1} is P-small compressible module.

Remark (3.7): The direct sum of P-small compressible module need not be P-small compressible.

Consider the following example let $Z_{4} \cong Z_{2} \oplus Z_{2}$ as Z-module. Z_{2} is P-small compressible module, but Z_{4} is not P-small compressible module see remarks and examples (2.3) point (5).

Proposition (3.8): Let $M = M_{1} \oplus M_{2}$ be an R–module such that $\text{ann}_{R} M_{1} \cap \text{ann}_{R} M_{2} = R$.

If M_{1} and M_{2} are P-small compressible modules, then M is P-small compressible.

Proof: Let $0 \neq N = K_{1} \oplus K_{2} \ll_{\rho} M$. Then by theorem (1.12) [3] $0 \neq K_{1} \ll_{\rho} M_{1} \leq M$ and $0 \neq K_{2} \ll_{\rho} M_{2} \leq M$. But M_{1} and M_{2} P-small compressible modules, so \exists monomorphisms $f: M_{1} \to K_{1}$ and $g: M_{2} \to K_{2}$. Define $\psi: M \to N$ by $\psi(a, b) = (f(a), g(b))$, it can be easily show that ψ is a monomorphism. Therefore M is P-small compressible.
Proposition (3.9): Let $M = M_1 \oplus M_2$ be P-small compressible module such that
$\text{ann}_RM_1 \oplus \text{ann}_RM_2 = 0 \neq K_1 \ll_p M_1 \leq M$ and $0 \neq K_2 \ll_p M_2 \leq M$ with
$N = K_1 \oplus K_2 \ll_p M$, then M_1 and M_2 are P-small compressible modules.

Proof: Let $0 \neq K_1 \leq N = K_1 \oplus K_2 \ll_p M$, then by remarks and examples (1.2) (7) [3] $K_1 \ll_p M$, but M be P-small compressible module, so \exists a monomorphisms $f: M \rightarrow K_1$ and $j: M_1 \rightarrow M_1 \oplus M_2 = M$, hence we have a composition. Let $\psi = f \circ j$, thus $\psi : M_1 \rightarrow K_1$ is a monomorphism. Therefore M_1 is P-small compressible module.

The same way we can prove M_2 is P-small compressible module.

Remarks and Examples (3.10):
1. Every P-small compressible module is small compressible module.

Proof: Let $0 \neq N \ll M$, then by [3] $N \ll_p M$ and M is P-small compressible module, therefore M is small compressible module.

2. Z_6 as Z module is small compressible, since (0) the only P-small submodule of Z_6.

3. Q as Z module is not P-small compressible module, since $\text{Hom}_Q(Q,Z) = 0$, where $Z \ll_p Q$.

Proposition (3.11): Let M be an R module and $0 \neq m \in M$ such that $R_m \not\subseteq M$, then M is small compressible if and only if M is P-small compressible.

Proof: Suppose that M is small compressible module and let $N \ll_p M$, then by [3] $N \ll M$ and since M is small compressible module, therefore M is P-small compressible. Conversely it's clear by remarks and examples (3.10) point (1).

Corollary (3.12): A small compressible module M is P-small compressible, if every cyclic submodule of M is P-small submodule in M.

Proof: obviously by above proposition.

Proposition (3.13): Let M be a finitely generated (or multiplication) R module. Then M is small compressible if and only if M is P-small compressible.

Proof: Let $N \ll_p M$. We want to show that M is P-small compressible. Since M is finitely generated (or multiplication), then by proposition (1.4) [3], so $N \ll M$, but M is small compressible R module. Therefore M is P-small compressible. Conversely clear by remarks and examples (3.10) point (1).

Corollary (3.14): Let M be a noetherian R module. Then M is small compressible if and only if M is P-small compressible.

Proof: Since M is noetherian, then every submodule is finitely generated, then the result follows by proposition (3.13). Therefore M is small compressible. Conversely clear by remarks and examples (3.10) point (1).

Recall that an R module M is called almost finitely generated if M is not finitely generated and every proper submodule of M is finitely generated [6].

Proposition (3.15): Let M be an almost finitely generated R module. Then M is P-small compressible if and only if M is small compressible.

Proof: Let $N \ll_p M$. We want to show that M is P-small compressible. Since M is almost finitely generated [6], then by corollary (1.11) [3], we get $N \ll M$, but M is small compressible R module. Therefore M is P-small compressible. Conversely clear by remarks and examples (3.10) point (1).

Proposition (3.16): Let M be a hollow module. Then the following statements are equivalent:

1. M is compressible module.
(2) M is P-small compressible module.
(3) small compressible module.

Proof:
(1) \Rightarrow (2) It's clear by remarks and examples (3.2) point (1).
(2) \Rightarrow (3) It's clear by remarks (3.10) point (1)
(3) \Rightarrow (1) Let $K \leq M$. Since M is hollow module and small compressible module, then \exists a monomorphism $f: M \rightarrow K$. Therefore M is compressible module.

We introduce the following

Definition (3.17): An R-module M is called P-small quasi-Dedekind module if for all $\in (M)$, $f \neq 0$ implies $\ker f \ll_P M$.

Remark (3.18): It's clear that every quasi-Dedekind is P-small quasi-Dedekind.

Proposition (3.19): If M is P-small quasi-Dedekind module, then M can't be compressible.

Proof: Suppose that M is P-small quasi-Dedekind module and let $N = \ker f \leq M$, but M is P-small quasi-Dedekind, then $\ker f \ll_P M$, $f \neq 0$, thus can't be embedded M in $\ker f$, because $\text{Hom}(M, \ker f) = 0$. Therefore M can't be compressible module.

Remark (3.20):
Every small quasi-Dedekind is P-small quasi-Dedekind.

Proof: Let $0 \neq f \in \text{End}_R(M)$, where M is an R-module since M is a small quasi-Dedekind, then $\ker f \ll M$, hence $\ker f \ll_P M$. Thus M is a P-small quasi-Dedekind module.

4. **P-small Retractable Module**

In this section, we introduce the concept of P-small retractable module as a generalization of retractable module, give some of basic properties, examples and characterizations of this concept.

Definition (4.1): An R-module M is said to be P-small retractable if $M \text{Hom}(M, K) \neq 0$, for every non-zero P-small submodule K of M. Equivalently, M is P-small retractable if there exists a homomorphism $f: M \rightarrow N$ whenever $0 \neq N \ll_P M$.

Remarks and Examples (4.2):
1. It's obvious that every P-small compressible module is P-small retractable module, but the converse is not true for instance \mathbb{Z}_4 is P-small retractable but not P-small compressible module see remarks and examples (3.2) point(5).
2. Z as Z-module is P-small retractable module, because it's P-small compressible module.
3. Every simple R-module is P-small retractable module but not conversely, because Z as Z-module is a P-small retractable module but not simple.
4. Every retractable R-module is P-small retractable R-module, but the converse is not true.
5. Every semi-simple R-module is P-small retractable because it is retractable.
6. Every compressible module is P-small retractable module, but the converse is not true for instance \mathbb{Z}_4 is P-small retractable but not P-small compressible module see remarks and examples (3.2)point(5).
7. A homomorphic image of a P-small retractable module is a P-small retractable module.

Remark (4.3): The direct sum of P-small retractable module is P-small retractable module.

Proposition (4.4): A P-small submodule of P-small retractable module is also P-small retractable module.
Proof: Let \(0 \neq K \ll_p M \) and \(M \) be P-small retractable module and let \(0 \neq L \leq K \ll_p M \), by remarks and examples (1.2)point(3), [3]. \(L \ll_p M \). Since \(M \) is P-small retractable, so \(\exists \) a homomorphism \(f: M \rightarrow L \) and \(i: K \rightarrow M \) is the inclusion homomorphism, then \(f \circ i: K \rightarrow L \) be a homomorphism. Therefore \(K \) is a P-small retractable module.

Proposition 4.5: Let \(M_1 \) and \(M_2 \) be isomorphic \(R - \)modules. Then \(M_1 \) is P-small retractable if and only if \(M_2 \) is P-small retractable.

Proof: Let \(0 \neq N \ll_p M_1 \) and suppose that \(M_2 \) is P-small retractable. Let \(f: M_1 \rightarrow M_2 \) be an isomorphism. Then by[3] \(0 \neq f(N) \ll_p M_2 \). Put \(K = f(N) \ll_p M_2 \), we get \(h: M_2 \rightarrow K \) is a homomorphism (by assumption), let \(g = f^{-1} \mid_K \), then \(g: K \rightarrow M_1 \) is a monomorphism. \(g(K) = f^{-1}(f(N)) = N \). Hence we have a composition \(H = g \circ h \circ f \). Hence \(H: M_1 \rightarrow N \) is a monomorphism. Therefore \(M_1 \) is P-small retractable module.

Proposition 4.7: Let \(M \) be PS - hollow module, then the following are equivalent

(1) \(M \) is retractable module.

(2) \(M \) is P-small retractable module.

Proposition 4.8: If \(M \) is P-small quasi-Dedekind \(R - \)module, then \(M \) can't be P-small retractable.

Proof: Suppose that \(M \) is P-small quasi-Dedekind module and let \(N = Ker f \leq M \), but \(M \) is P-small quasi-Dedekind, then \(Ker f \ll_p M, f \neq 0 \), thus \(Hom(M, Ker f) = 0 \). Therefore \(M \) can't be P-small retractable module.

Recall that an \(R - \)module \(M \) is called monoform if for each non-zero submodule \(N \) of \(M \) and for each \(f \in Hom_R(N, M), f \neq 0 \) implies \(Ker f = 0 \), [5].

Definition 4.9: An \(R - \)module \(M \) is called P-small monoform if for each non-zero submodule \(N \) of \(M \) and for each \(f \in Hom_R(N, M), f \neq 0 \) implies \(Ker f \ll_p N \).

Remark 4.10: Every P-small compressible \(R - \)module is P-small monoform, but not conversely. For example, \(Z \) as \(Z - \)module is P-small monoform but not P-small compressible.

Proposition 4.11: Let \(M \) be a quasi-Dedekind \(R - \)module. Then \(M \) is P-small monoform if and only if \(M \) is P-small compressible.

Proof: Suppose that \(M \) is P-small monoform. Let \(0 \neq N \ll_p M \), then \(0 \neq f \in Hom_R(N, M) \). Since \(M \) is quasi-Dedekind, \(f \circ g: M \rightarrow N \rightarrow M \) is a monomorphism, hence \(g: M \rightarrow N \) is a monomorphism. Thus \(M \) is P-small compressible. Conversely it is clear by remark (4.10).

5. Conclusion

In this work, the class of compressible and retractable modules have been generalized to a new concepts called P-small compressible and P-small retractable modules. Several characteristics of this type of modules have been studied. Sufficient conditions under which these modules with compressible and retractable are discuss

Also we see relations between P-small compressible modules and other related modules as P-small retractable module P-small quasi-Dedekind, P-small monoform.
References