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Abstract

Let R be a commutative ring with 1 and M be left unitary R — module. In this papers we
introduced and studied concept P-small compressible module (An R — module M is said to be
P-small compressible if M can be embedded in every of it is nonzero P-small submodule of M.
Equivalently, M is P-small compressible if there exists a monomorphism :M — N ,0 #
N <p M, R —module M is said to be P-small retractable if Hom(M,K) # 0, for every non-
zero P-small submodule Kof M. Equivalently, M is P-small retractable if there exists a
homomorphism f: M — N whenever 0 # N < M as a generalization of compressible module
and retractable module respectively and give some of their advantages characterizations and
examples.

Keywords: Compressible module, Retractable module, Small submodule, P-small submodule, P-
small Compressible module, P-small Retractable module. Hollow module, PS-Hollow module.

1. Introduction

Let R be a commutative ring with 1 and M be left unitary R — module. Authors introduced
and studied concept small submodules. A proper submodule N of an R —module M is termed a
small submodule (N «< M), if N + L + M for every submodule L of M[1]. A proper submodule
N of M is said to be prime if whenever r € R, m € M such that r.m € N implies eitherm € N
or € [N:M] ; [N:M] ={r € R:rM < N}[2] . In [3] Iman M.A.Hadi and Tammader A.lbrahiem
introduced and studied the concept of P-small submodules , where a submodule N of an R —
module M is called P-small submodule N <, M if N + P += M for any prime submodule P of
M. An R — moduleM is called compressible if M can be embedded in every non-zero submodule.
An R —module M is said to be P-small compressible if M can be embedded in every of it is
nonzero P-small submodule of M. Equivalently, M is P-small compressible if there exists a
monomorphism f: M — N whenever 0 # N <p M.
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In this paper we introduce and study the concept of P-small compressible as a generalization of
compressible module, and we give some properties , characterization and examples. In addition,
we see that under condition. P-small compressible, small compressible and compressible are
equivalent.some of their advantages characterizations and examples are given. We also study the
relation between P-small compressible module, P-small retractable module and some of classes of
modules.

2. Preliminaries

Definition (2.1): Let M be an R —module and N < M:

1. N is called small submodule of M,(N <K M) if N+ K =M implies K =M , for any
submodule K of M[1].

2. An R —moduleM is called hollow if every proper submodule is small inM[4].

3. A proper submodule N of M is called prime if whenever r € R , m € M implies either m € N
orr € [N:M]:[N:M] ={r € R:rM S N} [2]

4. A proper submodule N is called P-small submodule of M, (N «p M) if N+ P + M , for any
prime submodule P of M, [3].

5. An R —moduleM is called PS-hollow if every proper submodule in M is P-small[3].

6. An R —module M is said to be small compressible if M can be embedded in every nonzero
small submodule of M. Equivalently, M is small compressible if there exists a monomorphism
fiM — N whenever 0 # N « M[5].

7. An R — module M is called quasi-Dedekind module if for all f € Endg(M) , f # 0 implies
Kerf =0,[7].

8. An R — module M is called small quasi-Dedekind module if for all f € Endg(M) ,f # 0
implies Kerf «< M, [7].

Remark(2.2) :[3](1) (2) is P-small submodule of Z, as Z — module.

(2) (2) and (3) are not P-small submodule of Z.
(3) If M is semi-simple module, then (0) is the only P-small submodule.

Remark (2.3): Each small submodule is P-small. But the converse is not true in general for
example(2) is P-small submodule of Z, as Z — module but not small.

Lemma (2.4):
1. Let N be a proper submodule of M. If Wc N «<p M, then W< M. In particular if W is a

direct summand of N and N <p M, then W< M.

2. Let N; and N, be proper submodules of M. If N; + N, <p M, then N; <p M, N, <p M, the
converse is not true.

3.LetAcBc Nc M.IfBKp N,then A Kp M.

4. Let M, M' be R — modules and y: M — M’ be an R — homomorphism. If A <p M, then
Y(A) Kp M.

3 .P-small Compressible Module

In this section, we introduce the concept of P-small compressible module as a generalization
of compressible module, give some of basic properties, examples and characterizations of this
concept.
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Definition (3.1): An R — module M is said to be P-small compressible if M can be embedded in
every of it is nonzero P-small submodule of M. Equivalently, M is P-small compressible if there
exists a monomorphism f: M — N whenever 0#N <Lp M.

Remarks and examples (3.2):

1. It’s obvious that every compressible module is P-small compressible module, but the converse
is not true. For example Z4 as Z-module is P-small compressible since (0) is the only P-small
submodule, but not compressible.

2. Z as Z — module is P-small compressible module, because it's compressible module.

Zp as Z — module is P-small compressible module; P is a prime number.

4. Every simple R —module is P-small compressible module but not conversely, because
Z as Z — module is a P-small compressible module but not simple.

5. Z, as Z —module is not P-small compressible.(Because Z, can’t be embedded in (2)
and (2) <p Z,) .

6. A homomorphic image of a P-small compressible module need not be P-
small compressible in general for example Z as Z — module is a P-small compressible module

and :—Z =~ z, is not P-small compressible module view remark (5).

w

Proposition(3.3): A P-small submodule of P-small compressible module is also P-small

compressible module.

Proof: Let 0 # K «<p M and M be P-small compressible module andlet 0 # L < K &p M,

then L «p M [3]. Since M is P-small compressible, so 3 a monomorphism f: M — L and

i: K — M is the inclusion homomorphism, then f oi:K — L is amonomorphism.

Therefore K is a P-small compressible module.

Proposition(3.5): If an R — module M has no prime submodule such that 3 a monomorphism

f:M — N ,VN & M ,then M is P-small compressible .

Proof: Suppose M has no prime submodule and let N & M, then N <, M [3]and by assumption
M is P-small compressible.

Proposition(3.6): Let M, and M, be isomorphic R — modules. Then M;is P-small compressible

if and only if M,is P-small compressible.

Proof: Let 0 # N «<p M; and suppose that M, is P-small compressible. Let ¢: M; — M, be an

isomorphism., then by[3] 0 # ¢(N) «p M,.Put K = ¢p(N) Kp My, sO a:M, — K is a

monomorphism (by assumption), let g= ¢! |K, then g: K — M, is a monomorphism.

g(K) = ¢~1(¢p(N)) = N. Hence, we have a composition Y =geo aod¢,hence

Y: M; — N is a monomorphism. Therefore M, is P-small compressible module.

Remark(3.7): The direct sum of P-small compressible module need not be P-small compressible.

Consider the following example let Z, ~ Z,&Z, as Z-module . Z, is P-small compressible

module, but Z, is not P-small compressible module see remarks and examples (2.3) point(5)
Proposition(3.8):Let M = M, ®M, be an R —module such that annyM; ®annyM, = R.

If M; and M, are P-small compressible modules, then M is P-small compressible.

Proof: Let 0 # N = K;@®K, <p M. Then by theorem (1.12)[3] .0 # K; Kp M; <M and 0 #

K, <p M, < M. But M;and M, P-small compressible modules, so 3 monomorphisms f: M; —

Kiand g: M, — K, . Define Y: M — N by v(a,b) = (f(a), g(b)), it can be easily show that

pis a monomorphism. Therefore M is P-small compressible.
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Proposition(3.9):Let M = M, @M, be P-small compressible module such that
anngM;®annyM, = .0 # K; Kp M; < M and 0 # K, <p M, < M with N =

K:®K, <p M, then M; and M, are P-small compressible modules .

Proof: Let 0+ K; < N = K;®K, <p M, then by remarks and examples(1.2)(7)[3] K; <p M,
but M be P-small compressible module, so 3 a monomorphisms f+M — K; and
J:M; — M ;®M, = M, hence we have a composition . Letp = f o], thus ¥ :M; — K; is a
monomorphism . Therefore M;is P-small compressible module.

The same way we can prove M, is P-small compressible module .

Remarks and Examples (3.10):

1. Every P-small compressible module is small compressible module.

Proof: Let 0 # N « M, thenby [3] N «p M and M is P-small compressible module,
therefor M is small compressible module.

2. Zgas Z — module is small compressible, since (0) the only P-small submodule of Z,.

3. Q as Z — module is not P-small compressible module, since Homz(Q,Z) = 0, where Z <, Q.
Proposition(3.11): Let M be an R — module and 0 # m € M such that R,,, & M, then M is
small compressible if and only if Mis P-small compressible.

Proof: Suppose that M is small compressible module and let N <, M , then by [3]

N « M and since M is small compressible module, therefore M is P-small compressible.
Conversely it's clear by remarks and examples (3.10)point(1)

Corollary(3.12): A small compressible module M is P-small compressible, if every cyclic

submodule of M is P-small submodule in M .

Proof: obviously by above proposition.
Proposition(3.13): Let M be a finitely generated (or multiplication) R — module . Then M is
small compressible if and only if Mis P-small compressible.
Proof: Let N «p M. We want to show that Mis P-small compressible. Since M is finitely
generated (or multiplication), then by proposition(1.4)[3], so N « M, but M is small compressible
R — module. Therefore M is P-small compressible. Conversely clear by remarks and examples
(3.10) point (2).
Corollary(3.14): Let M be a noetherian R — module. Then M is small compressible if and only
if Mis P-small compressible.
Proof: Since M is noetherian, then every submodule is finitely generated, then the result follows
by proposition(3.13). Therefore M is small compressible. Conversely clear by remarks and
examples (3.10) point (1).

Recall that an R — module M is called almost finitely generated if M is not finitely generated
and every proper submodule of of M is finitely generated[6].
Proposition(3.15): Let M be an almost finitely generated R — module. Then Mis P-small
compressible if and only if Mis small compressible.
Proof: Let N <p M. We want to show that Mis P-small compressible. Since M is almost finitely
generated[6], then by corollary (1.11)[3], we get N << M, but M is small compressible R —
module. Therefore M is P-small compressible. Conversely clear by remarks and examples (3.10)
point (1).
Proposition(3.16): Let M be a hollow module. Then the following statements are equivalent:

(1) M is compressible module.
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(2) M is P-small compressible module.
(3) small compressible module .
Proof: (1) = (2) It's clear by remarks and examples (3.2) point (1).
(2) = (3) It's clear by remarks (3.10) point (1)
(3) = (1)LetK < M. Since M is hollow module and small compressible module, then 3 a
monomorphism f: M — K. Therefor M is compressible module.

We introduce the following

Definition (3.17): An R — module M is called P-small quasi-Dedekind module if for all € (M)
, f # 0 implies Kerf <p M.

Remark (3.18): It's clear that every quasi-Dedekind is P-small quasi-Dedekind.
Proposition(3.19): If M is P-small quasi-Dedekind module, then M can't be compressible .
Proof: Suppose that M is P-small quasi-Dedekind module and let N = Kerf < M, but M is P-
small quasi-Dedekind, then Kerf «<p M, f # 0, thus can't be embedded M in Kerf , because
Hom(M,Kerf) = 0. Therefore M can't be compressible module.

Remark(3.20):

Every small quasi-Dedekind is P-small quasi-Dedekind.

Proof: Let 0 # f € Endg(M), where M is an R — module since M is a small quasi-Dedekind,
then Kerf <« M, hence Kerf «<p M. Thus M is a P-small quasi-Dedekind module.

4. P-small Retractable Module
In this section, we introduce the concept of P-small retractable module as a generalization of
retractable module, give some of basic properties, examples and characterizations of this concept.

Definition (4.1): An R —module M is said to be P-small retractable if M Hom(M,K) # 0,

for every non-zero P-small submodule Kof M. Equivalently, M is P-small retractable if there

exists a homomorphism f: M — N whenever 0#N <Lp M.

Remarks and Examples(4.2):

1. 1It’s obvious that every P-small compressible module is P-small retractable module, but the
converse is not true for instanceZ, is P-small retractable but not P-small compressible module see
remarks and examples (3.2) point(5).

2. Z as Z —module is P-small retractable module, because it's P-small compressible module.

3. Everysimple R — module is P-small retractable module but not conversely, because
Z as Z —module is a P-small retractable module but not simple.

4. Every retractable R — module is P-small retractable R — module, but the converse is not
true.

5. Every semi-simple R — module is P-small retractable because it is retractable.

6. Every compressible module is P-small retractable module, but the converse is not true for
instance Z, is P-small retractable but not P-small compressible module see remarks and
examples (3.2)point(5).

7. A homomorphic image of a P-small retractable module is a P-small retractable module.

Remark(4.3): The direct sum of P-small retractable module is P-small retractable module.
Proposition(4.4): A P-small submodule of P-small retractable module is also P-small retractable
module.
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Proof: Let 0 # K «<p M and M be P-small retractable module andlet 0 # L < K <p M , by
remarks and examples (1.2)point(3), [3]. L «<p M . Since M is P-small retractable, so 3 a
homomorphism f: M — L and i: K — M is the inclusion homomorphism, then f o i: K — L be

a homomorphism. Therefore K is a P-small retractable module.

Proposition(4.5): Let M; and M, be isomorphic R — modules. Then M;is P-small retractable if
and only if M,is P-small retractable

Proof: Let 0 # N «<p M; and suppose that M, is P-small retractable. Let f: M; — M, be an
isomorphism. Then by[3] 0 # f(N) <p M,. PutK = f(N) <p M,, we get h: M, — K isa
homomorphism (by assumption), let g = f~1 |K , then g: K — M; is a monomorphism. g(K) =
f~Y(f(N)) = N. Hence we have a composition

H = gohof.Hence H: M; — N is a monomorphism. Therefore M, is P-small retractable module.

Proposition(4.7): Let M be PS — hollow module, then the following are equivalent

(1) M is retractable module.

(2) M is P-small retractable module.
Proposition(4.8): If M is P-small quasi-Dedekind R — module, then M can't be P-small
retractable .
Proof: Suppose that M is P-small quasi-Dedekind module and let N = Kerf < M, but M is P-
small quasi-Dedekind, then Kerf «p M, f # 0,thus Hom(M, Kerf) = 0. Therefore M can't be
P-small retractable module.

Recall that an R — module M is called monoform if for each non-zero submodule N of M and

for each f € Homg(N, M), f # 0 implies Kerf = 0, [5].
Definition(4.9): An R — module M is called P-small monoform if for each non-zero submodule
N of M and for each f € Homgz(N, M), f #+ 0 implies Kerf <p N.
Remark(4.10): Every P-small compressible R —module is P-small monoform, but not
conversely. For example , Zg as Z — module is P-small monoform but not P-small compressible.
Proposition(4.11): Let M be a quasi-Dedekind R — module. Then M is P-small monoform if and
only if M is P-small compressible.
Proof: Suppose that M is P-small monoform. Let 0 # N <, M, then 0 = f € Homgz(N, M).
Since M is quasi-Dedekind , then f o g:M — N — M is a monomorphism, hence g:M — N is
a monomorphism. Thus M is P-small compressible. Conversely it is clear by remark (4.10).

5. Conclusion

In this work, the class of compressible and retractable modules have been generalized to a new
concepts called P-small compressible and P-small retractable modules. Several characteristics of
this type of modules have been studied. Sufficient conditions under which these modules with
compressible and retractable are discuss

Also we see relations between P-small compressible modules and other related modules as P-
small retractable module P-small quasi-Dedekind, P-small monoform.
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