

Ibn Al-Haitham Journal for Pure and Applied Sciences

Journal homepage: jih.uobaghdad.edu.iq

P-small Compressible Modules and P-small Retractable Modules

Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq.

Nuhad S. Al-Mothafar

Department of Mathematics, College of Science, Baghdad University, Baghdad, Iraq.

*Corresponding Author: mbhmsc2015110@gmail.com

Article history: Received 27 October 2022, Accepted 19 December 2022, Published in July 2023.

doi.org/10.30526/36.3.3089

Abstract

Let R be a commutative ring with 1 and M be left unitary R-module. In this papers we introduced and studied concept P-small compressible module (An R-module M is said to be P-small compressible if M can be embedded in every of it is nonzero P-small submodule of M. Equivalently, M is P-small compressible if there exists a monomorphism $: M \to N$, $0 \ne N \ll_P M$, R-module M is said to be P-small retractable if $Hom(M,K) \ne 0$, for every nonzero P-small submodule K of M. Equivalently, M is P-small retractable if there exists a homomorphism $f: M \to N$ whenever $0 \ne N \ll_P M$ as a generalization of compressible module and retractable module respectively and give some of their advantages characterizations and examples.

Keywords: Compressible module, Retractable module, Small submodule, P-small submodule, P-small Compressible module, P-small Retractable module. Hollow module, PS-Hollow module.

1. Introduction

Let R be a commutative ring with 1 and M be left unitary R-module. Authors introduced and studied concept small submodules. A proper submodule N of an R-module M is termed a small submodule N of $N + L \neq M$ for every submodule N of M is said to be prime if whenever $n \in R$, $n \in M$ such that $n \in N$ implies either $n \in N$ or N or N in N in

In this paper we introduce and study the concept of P-small compressible as a generalization of compressible module, and we give some properties, characterization and examples. In addition, we see that under condition. P-small compressible, small compressible and compressible are equivalent.some of their advantages characterizations and examples are given. We also study the relation between P-small compressible module, P-small retractable module and some of classes of modules.

2. Preliminaries

<u>Definition (2.1):</u> Let M be an R —module and $N \leq M$:

- **1.** N is called small submodule of M, $(N \ll M)$ if N + K = M implies K = M, for any submodule K of M[1].
- **2.** An R -module M is called hollow if every proper submodule is small in M[4].
- **3.** A proper submodule N of M is called prime if whenever $r \in R$, $m \in M$ implies either $m \in N$ or $r \in [N:M] : [N:M] = \{r \in R : rM \subseteq N\}$ [2]
- **4.** A proper submodule N is called P-small submodule of M, $(N \ll_P M)$ if $N + P \neq M$, for any prime submodule P of M, [3].
- **5.** An *R* —module *M* is called PS-hollow if every proper submodule in *M* is P-small[3].
- **6.** An $R-module\ M$ is said to be small compressible if M can be embedded in every nonzero small submodule of M. Equivalently, M is small compressible if there exists a monomorphism $f: M \to N$ whenever $0 \ne N \ll M[5]$.
- 7. An $R-module\ M$ is called quasi-Dedekind module if for all $f\in End_R(M)$, $f\neq 0$ implies Kerf=0,[7].
- **8.** An $R-module\ M$ is called small quasi-Dedekind module if for all $f\in End_R(M)$, $f\neq 0$ implies $Kerf\ll M$, [7].

<u>Remark(2.2):</u>[3](1) ($\overline{2}$) is P-small submodule of Z_6 as Z-module.

- (2) $(\bar{2})$ and $(\bar{3})$ are not P-small submodule of Z_6 .
- (3) If *M* is semi-simple *module*, then (0) is the only P-small submodule.

Remark (2.3): Each small submodule is P-small. But the converse is not true in general for example $(\bar{2})$ is P-small submodule of Z_6 as Z-module but not small.

Lemma (2.4):

- **1.** Let *N* be a proper submodule of *M*. If $W \subset N \ll_P M$, then $W \ll_P M$. In particular if W is a direct summand of *N* and $N \ll_P M$, then $W \ll_P M$.
- **2.** Let N_1 and N_2 be proper submodules of M. If $N_1 + N_2 \ll_P M$, then $N_1 \ll_P M$, $N_2 \ll_P M$, the converse is not true.
- **3.** Let $A \subset B \subset N \subset M$. If $B \ll_P N$, then $A \ll_P M$.
- **4.** Let M, M' be R modules and $\psi: M \to M'$ be an R homomorphism. If $A \ll_P M$, then $\psi(A) \ll_P M'$.

3.P-small Compressible Module

In this section, we introduce the concept of P-small compressible module as a generalization of compressible *module*, give some of basic properties, examples and characterizations of this concept.

<u>Definition (3.1):</u> An $R-module\ M$ is said to be P-small compressible if M can be embedded in every of it is nonzero P-small submodule of M. Equivalently, M is P-small compressible if there exists a monomorphism $f: M \to N$ whenever $0 \ne N \ll_P M$.

Remarks and examples (3.2):

- 1. It's obvious that every compressible module is P-small compressible *module*, but the converse is not true. For example Z_6 as Z-module is P-small compressible since $(\overline{0})$ is the only P-small submodule, but not compressible.
- **2.** Z as Z module is P-small compressible module, because it's compressible module.
- **3.** Z_P as Z module is P-small compressible module; P is a prime number.
- **4.** Every simple R module is P-small compressible module but not conversely, because Z as Z module is a P-small compressible module but not simple.
- **5.** Z_4 as Z module is not P-small compressible.(Because Z_4 can't be embedded in $\langle \overline{2} \rangle$ and $\langle \overline{2} \rangle \ll_P Z_4$).
- **6.** A homomorphic image of a P-small compressible *module* need not be small compressible in general for example Z as Z module is a P-small compressible module and $\frac{z}{4z} \simeq z_4$ is not P-small compressible module view remark (5).

<u>Proposition(3.3):</u> A P-small submodule of P-small compressible *module* is also P-small compressible *module*.

Proof: Let $0 \neq K \ll_P M$ and M be P-small compressible *module* and let $0 \neq L \leq K \ll_P M$, then $L \ll_P M$ [3]. Since M is P-small compressible, so \exists a monomorphism $f: M \to L$ and $i: K \to M$ is the inclusion homomorphism, then $f \circ i: K \to L$ is a monomorphism. Therefore K is a P-small compressible *module*.

<u>Proposition(3.5):</u> If an $R-module\ M$ has no prime submodule such that \exists a monomorphism $f:M\to N$, $\forall N\subsetneq M$, then M is P-small compressible.

Proof: Suppose M has no prime submodule and let $N \subseteq M$, then $N \ll_P M$ [3] and by assumption M is P-small compressible.

<u>Proposition(3.6):</u> Let M_1 and M_2 be isomorphic R-modules. Then M_1 is P-small compressible if and only if M_2 is P-small compressible.

Proof: Let $0 \neq N \ll_P M_1$ and suppose that M_2 is P-small compressible. Let $\phi: M_1 \to M_2$ be an isomorphism., then by [3] $0 \neq \phi(N) \ll_P M_2$. Put $K = \phi(N) \ll_P M_2$, so $\alpha: M_2 \to K$ is a monomorphism (by assumption), let $g = \phi^{-1} \mid_K$, then $g: K \to M_1$ is a monomorphism. $g(K) = \phi^{-1}(\phi(N)) = N$. Hence, we have a composition $\psi = g \circ \alpha \circ \phi$, hence $\psi: M_1 \to N$ is a monomorphism. Therefore M_1 is P-small compressible *module*.

Remark(3.7): The direct sum of P-small compressible *module* need not be P-small compressible. Consider the following example let $Z_4 \simeq Z_2 \oplus Z_2$ as Z-module . Z_2 is P-small compressible module, but Z_4 is not P-small compressible module see remarks and examples (2.3) point(5)

<u>Proposition(3.8):</u> Let $M = M_1 \oplus M_2$ be an R -module such that $ann_R M_1 \oplus ann_R M_2 = R$. If M_1 and M_2 are P-small compressible *modules*, then M is P-small compressible.

Proof: Let $0 \neq N = K_1 \oplus K_2 \ll_P M$. Then by theorem (1.12)[3] $0 \neq K_1 \ll_P M_1 \leq M$ and $0 \neq K_2 \ll_P M_2 \leq M$. But M_1 and M_2 P-small compressible modules, so \exists monomorphisms $f: M_1 \to K_1$ and $g: M_2 \to K_2$. Define $\psi: M \to N$ by $\psi(a, b) = (f(a), g(b))$, it can be easily show that ψ is a monomorphism. Therefore M is P-small compressible.

Proposition(3.9): Let $M = M_1 \oplus M_2$ be P-small compressible *module* such that $ann_R M_1 \oplus ann_R M_2 = .0 \neq K_1 \ll_P M_1 \leq M$ and $0 \neq K_2 \ll_P M_2 \leq M$ with $N = K_1 \oplus K_2 \ll_P M$, then M_1 and M_2 are P-small compressible *modules*.

Proof: Let $0 \neq K_1 \leq N = K_1 \oplus K_2 \ll_P M$, then by remarks and examples(1.2)(7)[3] $K_1 \ll_P M$, but M be P-small compressible module, so \exists a monomorphisms $f: M \to K_1$ and $J: M_1 \to M_1 \oplus M_2 = M$, hence we have a composition . Let $\psi = f \circ J$, thus $\psi: M_1 \to K_1$ is a monomorphism . Therefore M_1 is P-small compressible module.

The same way we can prove M_2 is P-small compressible module.

Remarks and Examples (3.10):

1. Every P-small compressible module is small compressible module.

Proof: Let $0 \neq N \ll M$, then by [3] $N \ll_P M$ and M is P-small compressible *module*, therefor M is small compressible module.

- 2. Z_6 as Z module is small compressible, since $(\bar{0})$ the only P-small submodule of Z_6 .
- 3. Q as Z module is not P-small compressible module, since $Hom_R(Q,Z) = 0$, where $Z \ll_P Q$.

<u>Proposition(3.11):</u> Let M be an R-module and $0 \neq m \in M$ such that $R_m \subsetneq M$, then M is small compressible if and only if M is P-small compressible.

<u>Proof:</u> Suppose that M is small compressible module and let $N \ll_P M$, then by [3]

 $N \ll M$ and since M is small compressible *module*, therefore M is P-small compressible. Conversely it's clear by remarks and examples (3.10)point(1)

<u>Corollary(3.12):</u> A small compressible $module\ M$ is P-small compressible, if every cyclic submodule of M is P-small submodule in M.

Proof: obviously by above proposition.

<u>Proposition(3.13):</u> Let M be a finitely generated (or multiplication) R-module. Then M is small compressible if and only if M is P-small compressible.

Proof: Let $N \ll_P M$. We want to show that M is P-small compressible. Since M is finitely generated (or multiplication), then by proposition(1.4)[3], so $N \ll M$, but M is small compressible R - module. Therefore M is P-small compressible. Conversely clear by remarks and examples (3.10) point (1).

<u>Corollary(3.14):</u> Let M be a noetherian R-module. Then M is small compressible if and only if M is P-small compressible.

Proof: Since M is noetherian, then every submodule is finitely generated, then the result follows by proposition (3.13). Therefore M is small compressible. Conversely clear by remarks and examples (3.10) point (1).

Recall that an R – $module\ M$ is called almost finitely generated if M is not finitely generated and every proper submodule of of M is finitely generated [6].

<u>Proposition(3.15):</u> Let M be an almost finitely generated R-module. Then M is P-small compressible if and only if M is small compressible.

Proof: Let $N \ll_P M$. We want to show that M is P-small compressible. Since M is almost finitely generated [6], then by corollary (1.11)[3], we get $N \ll M$, but M is small compressible R-module. Therefore M is P-small compressible. Conversely clear by remarks and examples (3.10) point (1).

Proposition(3.16): Let *M* be a hollow *module*. Then the following statements are equivalent:

(1) *M* is compressible module.

- (2) *M* is P-small compressible *module*.
- (3) small compressible module.

Proof: (1) \Rightarrow (2) It's clear by remarks and examples (3.2) point (1).

- $(2) \Rightarrow (3)$ It's clear by remarks (3.10) point (1)
- (3) \Rightarrow (1)Let *K* ≤ *M*. Since *M* is *hollow module* and small compressible *module*, then \exists a monomorphism $f: M \rightarrow K$. Therefor *M* is compressible *module*.

We introduce the following

<u>Definition (3.17):</u> An R – $module\ M$ is called P-small quasi-Dedekind module if for all $\in (M)$, $f \neq 0$ implies $Kerf \ll_P M$.

Remark (3.18): It's clear that every quasi-Dedekind is P-small quasi-Dedekind.

Proposition(3.19): If M is P-small quasi-Dedekind module, then M can't be compressible.

Proof: Suppose that M is P-small quasi-Dedekind module and let $N = Kerf \le M$, but M is P-small quasi-Dedekind, then $Kerf \ll_P M$, $f \ne 0$, thus can't be embedded M in Kerf, because Hom(M, Kerf) = 0. Therefore M can't be compressible module.

Remark(3.20):

Every small quasi-Dedekind is P-small quasi-Dedekind.

<u>Proof:</u> Let $0 \neq f \in End_R(M)$, where M is an R-module since M is a small quasi-Dedekind, then $Kerf \ll M$, hence $Kerf \ll_P M$. Thus M is a P-small quasi-Dedekind module.

4. P-small Retractable Module

In this section, we introduce the concept of P-small retractable module as a generalization of retractable *module*, give some of basic properties, examples and characterizations of this concept. **Definition (4.1):** An $R - module\ M$ is said to be P-small retractable if $M + m(M, K) \ne 0$, for every non-zero P-small submodule K of M. Equivalently, M is P-small retractable if there exists a homomorphism $f: M \to N$ whenever $0 \ne N \ll_P M$.

Remarks and Examples(4.2):

- 1. It's obvious that every P-small compressible module is P-small retractable *module*, but the converse is not true for instance Z_4 is P-small retractable but not P-small compressible *module* see remarks and examples (3.2) point(5).
- 2. Z as Z module is P-small retractable module, because it's P-small compressible module.
- 3. Every simple R module is P-small retractable module but not conversely, because Z as Z module is a P-small retractable module but not simple.
- 4. Every retractable R-module is P-small retractable R-module, but the converse is not true.
- 5. Every semi-simple R module is P-small retractable because it is retractable.
- 6. Every compressible *module* is P-small retractable *module*, but the converse is not true for instance Z_4 is P-small retractable but not P-small compressible *module* see remarks and examples (3.2)point(5).
- 7. A homomorphic image of a P-small retractable *module* is a P-small retractable *module*.

<u>Remark(4.3):</u> The direct sum of P-small retractable *module* is P-small retractable *module*.

<u>Proposition(4.4):</u> A P-small submodule of P-small retractable *module* is also P-small retractable *module*.

Proof: Let $0 \neq K \ll_P M$ and M be P-small retractable *module* and let $0 \neq L \leq K \ll_P M$, by remarks and examples (1.2)point(3), [3]. $L \ll_P M$. Since M is P-small retractable, so \exists a homomorphism $f: M \to L$ and $i: K \to M$ is the inclusion homomorphism, then $f \circ i: K \to L$ be a homomorphism. Therefore K is a P-small retractable module.

<u>Proposition(4.5):</u> Let M_1 and M_2 be isomorphic R-modules. Then M_1 is P-small retractable if and only if M_2 is P-small retractable

Proof: Let $0 \neq N \ll_P M_1$ and suppose that M_2 is P-small retractable. Let $f: M_1 \to M_2$ be an isomorphism. Then by [3] $0 \neq f(N) \ll_P M_2$. Put $K = f(N) \ll_P M_2$, we get $h: M_2 \to K$ is a homomorphism (by assumption), let $g = f^{-1} \mid_K$, then $g: K \to M_1$ is a monomorphism. $g(K) = f^{-1}(f(N)) = N$. Hence we have a composition $H = g \circ h \circ f$. Hence $H: M_1 \to N$ is a monomorphism. Therefore M_1 is P-small retractable *module*.

Proposition(4.7): Let M be PS - hollow module, then the following are equivalent

- (1) *M* is retractable *module*.
- (2) *M* is P-small retractable *module*.

Proposition(4.8): If M is P-small quasi-Dedekind R-module, then M can't be P-small retractable.

Proof: Suppose that M is P-small quasi-Dedekind module and let $N = Kerf \le M$, but M is P-small quasi-Dedekind, then $Kerf \ll_P M$, $f \ne 0$, thus Hom(M, Kerf) = 0. Therefore M can't be P-small retractable module.

Recall that an $R-module\ M$ is called monoform if for each non-zero submodule N of M and for each $f\in Hom_R(N,M), f\neq 0$ implies Kerf=0,[5].

<u>Definition(4.9):</u> An R – $module\ M$ is called P-small monoform if for each non-zero submodule N of M and for each $f \in Hom_R(N, M)$, $f \ne 0$ implies $Kerf \ll_P N$.

Remark(4.10): Every P-small compressible R-module is P-small monoform, but not conversely. For example, Z_8 as Z-module is P-small monoform but not P-small compressible. **Proposition(4.11):** Let M be a quasi-Dedekind R-module. Then M is P-small monoform if and only if M is P-small compressible.

Proof: Suppose that M is P-small monoform. Let $0 \neq N \ll_P M$, then $0 \neq f \in Hom_R(N, M)$. Since M is quasi-Dedekind, then $f \circ g: M \to N \to M$ is a monomorphism, hence $g: M \to N$ is a monomorphism. Thus M is P-small compressible. Conversely it is clear by remark (4.10).

5. Conclusion

In this work, the class of compressible and retractable modules have been generalized to a new concepts called P-small compressible and P-small retractable modules. Several characteristics of this type of modules have been studied. Sufficient conditions under which these modules with compressible and retractable are discuss

Also we see relations between P-small compressible modules and other related modules as P-small retractable module P-small quasi-Dedekind, P-small monoform.

References

- **1.** Wisam, A. Ali.; Nuhad S. Al. Mothafar .On Quasi-Small Prime Submodules. *Iraqi Journal of Science*, **2022**,*63*, *4*,1692-1699.
- **2.** Nuhad, S. Al-Mothafar,; Mohammed B. H. Alhakeem. Nearly Semiprime submodules. *Iraqi Journal of Science*, **2015**, *56*, *4*, 3210-3214.
- **3.** Inam, M.A. Hadi.; Tamadher A. Ibrahiem ,"P-small submodules and PS-hollow Module" journal of pure and applied science. **2010**.(22).
- 4. Fluery ,P.; Hollow modules and local endomorphism rings. Pacific J. Math. 1974.53. 379–385.
- **5.** Israa. H. Muslem.;Some types Of Retractable and Compressible Modules. M.Sc.thesis. **2016**. College of Education for pure Science. University of Baghdad.
- **6.** Wealely, W.D. Modules whose proper submodules are finitely generated", journal of algebra. **1983**. 84.189-219.
- **7.** Mijbass, A.S.; *Quasi-Dedekind Modules*. Ph. D. Thesis. **1997**. College of Science. University of Baghdad.