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Abstract

Graphene-carbon nitride can be synthesized from thiourea in a single step at a temperature of four
hours at a rate of 2.3 °C/min. Graphene-carbon nitride was characterized by Fourier-transform
infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), scanning electron
microscopy, and spectrophotometry (UV-VIS). Graphene-carbon nitride was found to consist of
triazine and heptazine structures, carbon, and nitrogen. The weight percentage of carbon and the
atomic percentage of carbon are 40.08%, and the weight percentage of nitrogen and the atomic
percentage of nitrogen are 40.08%. Therefore, the ratio and the dimensions of the graphene-carbon
nitride were characterized by scanning electron microscopy, and it was found that the radius was
within the range of (2 um-147.1 nm). In addition, it was found that it absorbed light in the visible
field (VIS). The objective of the manufacture and characterization of graphene-carbon nitride for
use in the manufacture of a selective electrode for an organic pollutant (currently used in the
manufacture of a selective electrode for the analysis of organic dye).

Keywords: Graphene-Carbon Nitride, Structural characterization, Carbon Sheets, Polymer,
Thermal method.

1. Introduction

Increasing interest in the field of nanotechnology, especially graphene and graphene-carbon
nitride g — C3N, is due to their interesting electrical, thermal, and mechanical properties.
Graphene-carbon nitride g — C3N, is a two-dimensional sheet(2D) [1-2] Metal-free [3-6], and
semiconductor [7]. Band gaps are ( 2.7 eV) [8-9], hybridization sp? — hybridized [10] and 1 —
conjugated [11] . Graphene-carbon nitride g — C3N, can be prepared from several materials in
the presence of temperature: melamine [12-13], dicyandiamide [14-15], trithiocyanuric acid [16-
17], urea [18-21], thiourea [22-23], cyanamide [24], as shown in Figurel:
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Figure 1. Materials that can be used in the synthesis for g — C3N,

Graphene-carbon nitride g — C;N, is used in many applications, including: solar cells [25-26],
super-capacitors [27-28], energy storage [29-30], and in the manufacture of electrochemical
sensors, such as the mercury sensor [31]. The nitro sensor N Oy [32], the hydrogen sulfide sensor
H,S [33], which is sensitive to silver ions Ag*[34]. It is also used in fuel cells [35-36], the
pharmaceutical and medical sides [37-38]. Recently, many studies have focused on the optical
applications of g — C3N, photo catalytic applications [39-44]. The g — C3N, can be used in the
removal and dissolution of many organic pollutants [45-47], also used to remove CO, gas from
the air [48]. Recently, the g — C5N, is used to generate hydrogen and oxygen from water according
to the following potentials and equations (1-2-3) [49]:

Full reaction: ZHZO(I) 4 OZ(g) + HZ(g) AEO =1.23V. (1)
Half-reaction: Oxidation reaction: 2H,0y = O + 4H*(aq) + 4e~ AE® = 1.23 V vs.SHE(2)
Reduction reaction: 4H"* (aq) + 4e~ - 2H2(g) AE® = 0.00 V vs.SHE(3)

is the equilibrium potential under the standard conditions and SHE is the standard hydrogen electrode E°
The g — C3N, is a semiconductor used to increase its effectiveness. It is mixed with other

materials; this doping is a suitable and effective technique to modify the band gap reducing the
resistance of the large interface layer, enhancing the photocatalytic activity of g — C3N, and
removing to improve its properties as well. One of the strategies to improve the band gap, and
enhance the photo catalytic activity of graphene-carbon nitride is to add doping, as shown in figure

2 [50].
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Figure 2. Band gap positioning with respect to conduction and valence band potentials of bare g — €3N, and non-
precious metal doped g — C3N,
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The formation of g — C;N, from its materials depends on time and temperature affects the spacing
of the graphene-carbon nitride layers from each other, as in Figure 3:
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Figure 3. A schematic diagram of the formation of g — €3N, nanosheets and their thermal effect at 500 °C in air

51].

To confirm the fabrication of graphene-carlgorg nitride, measurements are done by fourier-
transform infrared spectroscopy (FTIR), [52-64] and energy dispersive x-ray analysis (EDX) [65-
68]. The objective of the manufacture is at 580 °C degrees, which is a critical point for its
manufacture.

The objective of the manufacture and characterization of graphene-carbon nitride is performed for
use in the manufacture of a selective electrode for an organic pollutant, (currently it is used in the
manufacture of a selective electrode for the analysis of organic dye).

2. Chemical, instruments and method

The chemicals used in this research are high-purity materials: thiourea CH,N,S, thermal furnace
(CARBOLITE), energy dispersive X-ray analysis (EDX), which is company namel; EDAX,
scanning electron microscopy (SEM), which is a company name; TESCAN model VEGA Il Xmu;
spectrophotometer (UV-VIS) D-Lab model SP-UV1000; Fourier-transform infrared spectroscopy
(FTIR); Balance Sartorius type TE64, porcelain crucible; and agate mortar.

Graphene-carbon nitride g — C3N, is made by an easy, one-step method, through the direct
polymerization process of thiourea, approximately 5.0016 g of thiourea is placed in a covered
crucible of 50 ml, and then heated at 580 °C for 4 h in a muffle furnace. The temperature is
gradually increased at a rate of 2.3 °C/min, and then left to cool to reach the temperature of the
laboratory. Then it is ground in an agate mortar, and we get a yellow powder, as in Figure 4. When
it is manufactured at 580 °C which is a critical point for its manufacture, when the temperature
600 °C, it is noted that there is disappearance in the porcelain crucible, which denotes the
decomposition of thiourea.
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Figure 4. Photographs of the formation stages of carbon nitride sheets g — C3N, A) Thiourea weight B)
incineration at a temperature of 580 °C for four hours at a rate of 2.3 °C/min C) after cooling D) grinding the product
in an agate mortar

3. Results and Discussion:
The graphene carbon nitride g — C3N, was characterized using FTIR spectroscopy based on
molecular vibration within the range of (500 — 4000) cm™? shown in Figure 5.
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Figure 5. FTIR Spectroscopy for g — C3N,

Peaks at 808.7 cm~'and 888.2 cm™! correspond to the presence of s-triazine in g — C3N,. This
bending is caused by the vibration of the tri-s-triazine (heptazine) ring. The peaks from
1242.6 cm™! to 1632.5 cm™tare attributed to the expansion vibration of the heterocyclic
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aromatic C;N, heptazine. Peaks are observed at 1319.5 cm™1, 1385.0 cm™1, 1411.9 cm™1, and
1568.1cm™~tsticking together due to stretching vibrations of the C — N bonds, while a peak
appears at 1632.5 cm™! related to the expansion vibration of the C — N bond with heptazine units.
Peaks between 900 cm™! and 1800 cm™! are attributed to the trigonal C- N (-C)-C or C—
NH — C in ring. The absorption band centered at 3426.9 cm™! corresponds to the vibrational
stretching of the N — H bond which denotes the presence of NH and NH,, groups at edges in the
g —C3N, . The broad peaks between 3000 cm™! and 3500cm™! are contributed by the
lengthening of N —H [52-64]. So, graphene-carbon nitride is consisted the triazine and tri-s-triazine
(heptazine) [69-74], as in Figure 6.
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Figure 6. Tri-s-triazine (heptazine) and triazine structures of g — C3N,

The process of manufacturing g — C;N, depends on the formation of a polymer from thiourea after
exposure to temperature, as is shown in Figure 7.
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Figure 7. The stages of g — €3N, polymerization from thiourea

The g — C3N, is characterized by energy dispersive X-ray analysis (EDX) as in table (1) and
Figure 8:
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Figure 8. spectrum for g — €3N, by (EDX)
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Tablel. Elemental analysis g — C3N, by energy dispersive X-ray analysis (EDX)

Element Weight Atomic Error NetiInt. KRatio Z R A F
C K 36.45% 40.08% 3.77%  2795.78 0.2654 1.0132 0.9936 0.719 1
N K 63.55% 59.92% 9.85%  1065.86 0.0854 0.9921 1.0035 0.1356 1

The energy dispersive X-ray analysis (EDX) showed that there is a peak at 0.27keV indicating the
presence of C — K carbon, and a peak at 0.39 keV indicating the presence of N-K nitrogen, the
weight percentage of carbon is 36.45 %, and the atomic percentage of carbon is 40.08%, and the
weight percentage of nitrogen is 63.55 %, and the atomic percentage of nitrogen is 59.92 %, so
the ratio is 3C and 4 N .The g — C3N, is characterized using scanning electron microscopy
(SEM) as shown in Figure 9 .
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Figure 9. SEM scanner for g — C3N,
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From the SEM scanning and using the Image ] program, it is found that the shape is g — C5N,
graphene-carbon nitride sheets, which are lamellar interfaces (sheet) with a radius within the range
of (2 um -147.1 nm).

The optical spectrum is studied for the graphene - carbon nitride g-C3N4 sheets, as shown in Figure
10:

1.0000

Figure 10. Scanning spectrum of 0.005 g/5ml of g — C5N,
The solution is absolute A) ethanol B) distilled water

It is noted that g — C5N, is not soluble in solutions (water - ethanol) and it has a superior ability
to absorb visible light g — C;N, [8,9]. This is due to its band gap of 2.7 eV [8, 9, 75] by
spectrophotometry

4. Conclusion
Graphene-carbon nitride can be synthesized from thiourea in a single-step. Graphene-carbon

nitride is characterized. It is found to consists of triazine and heptazine structures. It also consists
of carbon and nitrogen. The atomic percentage of carbon is 40.08%, and the atomic percentage of
nitrogen is 59.92 %, so the ratio is 3C and 4N. The dimensions of the graphene-carbon nitride are
characterized by (SEM) , and it is found that the radius is within the range of (2 pm- 147.1 nm).
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