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Abstract 

Graphene-carbon nitride can be synthesized from thiourea in a single step at a temperature of four 

hours at a rate of 2.3 ℃/min. Graphene-carbon nitride was characterized by Fourier-transform 

infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), scanning electron 

microscopy, and spectrophotometry (UV-VIS). Graphene-carbon nitride was found to consist of 

triazine and heptazine structures, carbon, and nitrogen. The weight percentage of carbon and the 

atomic percentage of carbon are 40.08%, and the weight percentage of nitrogen and the atomic 

percentage of nitrogen are 40.08%. Therefore, the ratio and the dimensions of the graphene-carbon 

nitride were characterized by scanning electron microscopy, and it was found that the radius was 

within the range of (2 µm-147.1 nm). In addition, it was found that it absorbed light in the visible 

field (VIS). The objective of the manufacture and characterization of graphene-carbon nitride for 

use in the manufacture of a selective electrode for an organic pollutant (currently used in the 

manufacture of a selective electrode for the analysis of organic dye). 

Keywords: Graphene-Carbon Nitride, Structural characterization, Carbon Sheets, Polymer, 

Thermal method. 

1. Introduction 

 Increasing interest in the field of nanotechnology, especially graphene and graphene-carbon 

nitride  g − C3N4  is due to their interesting electrical, thermal, and mechanical properties. 

Graphene-carbon nitride g − C3N4  is a two-dimensional sheet(2D) [1-2] Metal-free [3-6], and 

semiconductor [7]. Band gaps are ( 2.7 eV) [8-9], hybridization sp2 − hybridized  [10] and  π −

conjugated [11] . Graphene-carbon nitride g − C3N4 can be prepared from several materials in 

the presence of temperature: melamine [12-13], dicyandiamide [14-15], trithiocyanuric acid [16-

17], urea [18-21], thiourea [22-23], cyanamide [24], as shown in Figure1: 
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Figure 1. Materials that can be used in the synthesis for 𝒈 − 𝑪𝟑𝑵𝟒 

 

Graphene-carbon nitride g − C3N4 is used in many applications, including: solar cells [25-26], 

super-capacitors [27-28], energy storage [29-30], and in the manufacture of electrochemical 

sensors, such as the mercury sensor [31]. The nitro sensor  𝑁𝑂𝑋 [32], the hydrogen sulfide sensor 

H2S [33], which is sensitive to silver ions 𝐴𝑔+ [34]. It is also used in fuel cells [35-36], the 

pharmaceutical and medical sides [37-38]. Recently, many studies have focused on the optical 

applications of g − C3N4 photo catalytic applications [39-44]. The g − C3N4 can be used in the 

removal and dissolution of many organic pollutants [45-47], also used to remove 𝐶𝑂2 gas from 

the air [48]. Recently, the g − C3N4 is used to generate hydrogen and oxygen from water according 

to the following potentials and equations (1-2-3) [49]: 
 

 Full reaction:                                    2H2O(l)    →  O2(g) + H2(g)                 ∆E0 = 1.23 V. (1) 

 Half-reaction: Oxidation reaction: 2H2O(l) → O2(g) + 4H+(aq) + 4e− ∆E0 = 1.23 V  vs. SHE(2) 

 Reduction reaction:                         4H+(aq) + 4e− → 2H2(g)              ∆E0 = 0.00 V vs. SHE(3) 

  𝐸0
 is the equilibrium potential under the standard conditions and 𝑆𝐻𝐸 is the standard hydrogen electrode 

The  g − C3N4  is a semiconductor used to increase its effectiveness. It is mixed with other 

materials; this doping is a suitable and effective technique to modify the band gap reducing the 

resistance of the large interface layer, enhancing the photocatalytic activity of g − C3N4  and 

removing to improve its properties as well. One of the strategies to improve the band gap, and 

enhance the photo catalytic activity of graphene-carbon nitride is to add doping, as shown in figure 

2 [50]. 

 
 

Figure 2.  Band gap positioning with respect to conduction and valence band potentials of bare 𝒈 − 𝑪𝟑𝑵𝟒 and non-

precious metal doped  𝒈 − 𝑪𝟑𝑵𝟒 
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The formation of g − C3N4 from its materials depends on time and temperature affects the spacing 

of the graphene-carbon nitride layers from each other, as in Figure 3:  

 
Figure 3. A schematic diagram of the formation of 𝒈 − 𝑪𝟑𝑵𝟒 nanosheets and their thermal effect at 𝟓𝟎𝟎 ℃ in air 

[51]. 

To confirm the fabrication of graphene-carbon nitride, measurements are done by fourier-

transform infrared spectroscopy (FTIR), [52-64] and energy dispersive x-ray analysis (EDX) [65-

68]. The objective of the manufacture is at 580  ℃  degrees, which is a critical point for its 

manufacture.  

The objective of the manufacture and characterization of graphene-carbon nitride is performed for 

use in the manufacture of a selective electrode for an organic pollutant, (currently it is used in the 

manufacture of a selective electrode for the analysis of organic dye). 

 

2.   Chemical, instruments and method  

The chemicals used in this research are high-purity materials: thiourea CH₄N₂S, thermal furnace 

(CARBOLITE), energy dispersive X-ray analysis (EDX), which is company namel; EDAX, 

scanning electron microscopy (SEM), which is a company name; TESCAN model VEGA II Xmu; 

spectrophotometer (UV-VIS) D-Lab model SP-UV1000; Fourier-transform infrared spectroscopy 

(FTIR); Balance Sartorius type TE64, porcelain crucible; and agate mortar. 

Graphene-carbon nitride 𝑔 − 𝐶3𝑁4  is made by an easy, one-step method, through the direct 

polymerization process of thiourea, approximately 5.0016 g of thiourea is placed in a covered 

crucible of 50 ml, and then heated at 580 ℃  for 4 ℎ in a muffle furnace. The temperature is 

gradually increased at a rate of 2.3 ℃/𝑚𝑖𝑛, and then left to cool to reach the temperature of the 

laboratory. Then it is ground in an agate mortar, and we get a yellow powder, as in Figure 4. When 

it is manufactured at 580 ℃ which is a critical point for its manufacture, when the temperature 

600 ℃ , it is noted that there is disappearance in the porcelain crucible, which denotes the 

decomposition of thiourea.  
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Figure 4.  Photographs of the formation stages of carbon nitride sheets 𝒈 − 𝑪𝟑𝑵𝟒    A) Thiourea weight B) 

incineration at a temperature of 580 ℃ for four hours at a rate of 2.3 ℃/min C) after cooling D) grinding the product 

in an agate mortar 

 

 

3. Results and Discussion: 

The graphene carbon nitride 𝑔 − 𝐶3𝑁4   was characterized using FTIR spectroscopy based on 

molecular vibration within the range of (500 − 4000) 𝑐𝑚−1 shown in Figure 5. 

 
Figure 5. FTIR Spectroscopy for 𝒈 − 𝑪𝟑𝑵𝟒 

 

Peaks at 808.7 𝑐𝑚−1and 888.2 𝑐𝑚−1  correspond to the presence of s-triazine in 𝑔 − 𝐶3𝑁4. This 

bending is caused by the vibration of the tri-s-triazine (heptazine) ring. The peaks from 

1242.6  𝑐𝑚−1  to 1632.5 𝑐𝑚−1 are attributed to the expansion vibration of the heterocyclic 
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aromatic C6N7  heptazine. Peaks are observed at 1319.5 𝑐𝑚−1, 1385.0 𝑐𝑚−1, 1411.9 𝑐𝑚−1, and 

1568.1𝑐𝑚−1 sticking together due to stretching vibrations of the C − N  bonds, while a peak 

appears at 1632.5 cm−1 related to the expansion vibration of the C − N bond with heptazine units. 

Peaks between 900 cm−1 and 1800 cm−1 are attributed to the trigonal C –  N (– C) – C  or C −

NH − C in ring. The absorption band centered at 3426.9 cm−1  corresponds to the vibrational 

stretching of the N −  H bond which denotes the presence of NH and NH2 groups at edges in the 

g − C3N4 . The broad peaks between 3000 cm−1 and 3500cm−1 are contributed by the 

lengthening of N –H [52-64]. So, graphene-carbon nitride is consisted the triazine and tri-s-triazine 

(heptazine) [69-74], as in Figure 6.  

 
Figure 6. Tri-s-triazine (heptazine) and triazine  structures of 𝒈 − 𝑪𝟑𝑵𝟒  

 

The process of manufacturing g − C3N4 depends on the formation of a polymer from thiourea after 

exposure to temperature, as is shown in Figure 7. 
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Figure 7.  The stages of  𝒈 − 𝑪𝟑𝑵𝟒 polymerization from thiourea  

The 𝑔 − 𝐶3𝑁4 is characterized by energy dispersive X-ray analysis (EDX) as in table (1) and 

Figure 8 : 

 
Figure 8. spectrum for 𝒈 − 𝑪𝟑𝑵𝟒 by (EDX) 
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Table1. Elemental analysis 𝑔 − 𝐶3𝑁4 by energy dispersive X-ray analysis (EDX) 

 

Element Weight  Atomic  Error  Net Int. K Ratio Z R A F 

C  K 36.45% 40.08% 3.77% 2795.78 0.2654 1.0132 0.9936 0.719 1 

N  K 63.55% 59.92% 9.85% 1065.86 0.0854 0.9921 1.0035 0.1356 1 

 

The energy dispersive X-ray analysis (EDX) showed that there is a peak at 0.27𝑘𝑒𝑉 indicating the 

presence of 𝐶 − 𝐾 carbon, and a peak at 0.39 𝑘𝑒𝑉 indicating the presence of N-K nitrogen, the 

weight percentage of carbon is 36.45 %, and the atomic percentage of carbon is 40.08%, and the 

weight percentage of nitrogen is 63.55 %, and the atomic percentage of nitrogen is 59.92 %, so 

the ratio is 3 𝐶  and 4 𝑁 .The 𝑔 − 𝐶3𝑁4  is  characterized using scanning electron microscopy 

(SEM) as shown in Figure 9 . 

 

 

Figure 9. SEM scanner for 𝒈 − 𝑪𝟑𝑵𝟒 

sheet sheet 
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From the SEM scanning and using the Image J program, it is found that the shape is 𝑔 − 𝐶3𝑁4 

graphene-carbon nitride sheets, which are lamellar interfaces (sheet) with a radius within the range 

of (2 µm -147.1 nm). 

The optical spectrum is studied for the graphene - carbon nitride g-C3N4 sheets, as shown in Figure 

10: 

 

 

Figure 10. Scanning spectrum of 0.005 g/5ml of 𝑔 − 𝐶3𝑁4 

The solution is absolute  A) ethanol B) distilled water 

It is noted that 𝑔 − 𝐶3𝑁4 is not soluble in solutions (water - ethanol) and it has a superior ability 

to absorb visible light 𝑔 − 𝐶3𝑁4 [8,9]. This is due to its band gap of 2.7 eV [8, 9, 75] by 

spectrophotometry  

 

4. Conclusion 

Graphene-carbon nitride can be synthesized from thiourea in a single-step. Graphene-carbon 

nitride is characterized. It is found to consists of triazine and heptazine structures. It also consists 

of carbon and nitrogen. The atomic percentage of carbon is 40.08%, and the atomic percentage of 

nitrogen is 59.92 %, so the ratio is 3𝐶 and 4𝑁. The dimensions of the graphene-carbon nitride are 

characterized by (SEM) , and it is found that the radius is within the range of (2 µm- 147.1 nm).  
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