

Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq

Pure Maximal Submodules and Related Concepts

Khawla Ahmed*≦ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq. Nuhad S. Al. Mothafar ≥ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

*Corresponding Author: <u>khawlahahmmed@gmail.com</u>

Article history: Received 11 December 2022, Accepted 28 Februray 2023, Published in October 2023

doi.org/10.30526/36.4.3139

Abstract

In this work we discuss the concept of pure-maximal denoted by (Pr-maximal) submodules as a generalization to the type of R- maximal submodule, where a proper submodule K of an Rmodule W is called Pr- maximal if $K < H \le W$, for any submodule H of W is a pure submodule of W, We offer some properties of a Pr-maximal submodules, and we give Definition of the concept, near-maximal, a proper submodule

H of an R-module *W* is named near (N-maximal) whensoever *K* is pure submodule of *W* such that $H < K \le W$ then K=*W*.Al so we offer the concept Pr-module, An R-module W is named Pr-module, if every proper submodule of *W* is Pr-maximal. A ring *R* is named Pr-ring if whole proper ideal of *R* is a Pr-maximal ideal, we offer the concept pure local (Pr-local) module an R-module *W* is named pure local (Pr-local) module. If it has only a Pr-maximal submodule which includes all proper submodule of *W*. A ring *R* is named pure local (Pr-local) ring, if *R* is a Pr-local R-module. We give some relatio among Pr-maximal submodules and others related concept.

Keywords: R-module, R-submodule, Pr-module, Pr-maximal, Pr-local, N-maximal.

Introduction

In this work *R* is commutative ring with identity, and all R-modules are left until. A proper submodule *P* of an R-module *W* is named a pure submodule "if for every ideal *I* of *R*, $P \cap IW = IP$ " [1]. A proper submodule *K* of an R-module *W*, is

named maximal in [3] "if whenever *H* is a submodule of R-Module *W* with $K < H \le W$ Implies H = W". Abduljaleel and Yaseen in [2] offer the concept of large maximal submodules as a generalization of the concept maximal submodules, "where a proper submodule *K* of an R-module *W* is named large-maximal(L-maximal) if $K < H \le W$ implies *H* is an essential submodule of *W*, where a submodule *H* of R-module *W* is named essential, if for every non-zero

359

submodule *L* of *W*, $H \cap L \neq (0)^{"}$ [3]. Many authors studies module and submodule for example see [4] and [5]. In [11] B.H.AL-Bahrani generalization of the type of a purely extending modules, defined using Y-closed submodules, In,this discuss, we introduce, the concept of pure-maximal (Pr-maximal) submodules as a generalization of maximal submodule

, where a proper submodule K of an R-module W is named Pr-maximal, if

 $K < H \le W$, for any submodule *H* of *W*, implies *H* is a pure a submodule of *W*, In section two we give several properties of this type of submodules as every multiplication module contains a Pr-maximal submodule. Also, if N, K are non-zero submodule of such that $N \le K$ if N is Pr-maximal in W then K is Pr-maximal in W and if N is Pr-maximal submodule of an R-module W and I be ideal of R, if $[N_W: I]$ is a proper submodule of W then $[N_W: I]$ is Pr-maximal submodule. We study the relation, among Pr-maximal (submodules and other related module), In section three we study Pr-maximal submodule, under the multiplication module and we check some condition under which Pr-maximal submodules and maximal submodules are equivalent. Every multiplication module contains a Pr-maximal submodule. Also, we have every cyclic R-module has Pr-maximal submodule. We found if W is a F-regular module then every submodule of W is Pr-maximal.

2. Preliminaries

This section is going to review some well-known definitions in a algebraic theory.

Definition 2.1 [3]

A proper submodule *K* of an R-module *W* is named maximal if $H \le W$ such that $K < H \le W$ namely $H_=W$

Definition 2.2 [1]

A submodule K of an R-module W is named pure R-submodule if $K \cap IW = IK$ for each ideal I of R

Definition 2.3 [6]

"A submodule Hof an R-module Wis called weak maximal if $\frac{W}{H}$ is F-regular R-module".

Lemma (2.4) [7]

"If $f:W_1 \to W_2$ is an epimorphism and K is pure submodule of W_2 , then $f^{-1}(K)$ is pure in W_1 ."

Definition 2.5 [8]

"An R-module W is named pure simple if $W \neq (0)$ and it has no pure, submodule except (0) and W.

Definition 2.6 [4]

An R-module W is called faithful if $ann_R W_{=}(\bar{0})$

Definition 2.7 [9,10]

"An R-module *M* is said to be multiplication if for each submodule Hof *M*, there exists an ideal *I* of *R* such that H=IM". Equivalently "*M* is a multiplication R-module if and only if for each submodule Hof *M*, $H=[H:_R M]M$ ".

Proposition 2.8 [10]

If *W* is an R-module and has an, unique maximal submodule *K*, then *W* is called local module.

3. Pr-Maximal Submodules:

In this section, the basic definitions and facts related to this work are recalled, which starts with the following definition.

Definition (3.1)

A sound R-submodule K of an R-module W is named pure-maximal (*Pr*-maximal) submodule of W if there exists $H \le W$ with $K < H \le W$ then H is pure R- submodule of W $(H \le_P W)$.

Remark and Example (3.2)

1. Every maximal submodule of R-module *W* is Pr-maximal.

Proof: Impose *K* maximal R- submodule of R-module *W* there exist $0 \neq H$ submodule of *W* such that $K < H \leq W$ since *K* is maximal then H = W but *W*

is pure of W therefore is Pr-maximal the convers is not true as the following example in W=Z₄₊ Z₂ as a Z-module Let, $K=2Z_4 \oplus (\bar{0})$ and $H=Z_4 \oplus (\bar{0})$ such that $2Z_4 \oplus (\bar{0}) < Z_4 \oplus (\bar{0}) \leq Z_4 \oplus Z_2$ since $H=Z_4 \oplus (\bar{0})$ is a summand of $W = Z_4 \oplus Z_2$, hence is pure in W, then K is Pr-maximal submodule of W but k is not maximal since $Z_4 \oplus (\bar{0}) \neq Z_4 \oplus Z_2$.

- 2. A subset of Pr-maximal *R*-submodule need not be Pr-maximal *R*-submodule as the breech example in Z_{12} as Z-module impose $3Z_{12} < Z_{12} \leq Z_{12}$ implies $3Z_{12}$ is Pr-maximal submodule of Z_{12} since $Z_{12} \leq_P Z_{12}$, but $6Z_{12}$ is not Pr-maximal submodule of Z_{12} since $6Z_{12} < Z_{12} < Z_{12}$ and $2Z_{12}$ is not pure in Z_{12} .
- 3. Z_4 as Z-module we have $\{\overline{0}, \overline{2}\}$ is Pr-maximal since Z_4 is pure of Z_4 and $\{\overline{0}, \overline{2}\} < Z_4 \leq Z_4$.
- 4. $Z_{6=} \{\overline{0},\overline{3}\} \oplus \{\overline{0},\overline{2},\overline{4}\}, 3Z_{6}$ is Pr-maximal of Z_{6} since $\{\overline{0},\overline{3}\} < Z_{6} \leq Z_{6}$ and $2Z_{6}$ is pr-maximal of Z_{6} also since $\{\overline{0},\overline{2},\overline{4}\} < Z_{6} \leq Z_{6}$
- 5. If $\frac{W}{H}$ is simple, then *H* is Pr-maximal.

Proof: clearly since \overline{H} is simple implies H is maximal then assist remark (2.2) every, H is Prmaximal.

6. Let *H* and *K* are nonzero submodule of *W* such that $H \le K \le W$ if *H* is Pr-maximal of *K* and *K* is Pr-maximal of *W* then *H* is not Pr-maximal of *W* for example let $W=2Z_{24}$ and $H=6Z_{24}, K=2Z_{24}$, *H* is Pr-maximal in *K* since $62Z_{24} \le 2Z_{24}$ and $2Z_{24} \le p2Z_{24}$ and *K* is Pr-maximal in *W* since *K* is maximal but *H* is not Pr-maximal in *W* since $6Z_{24} \le 2Z_{24} \le 2Z_{24} \le Z_{24}$ and $2Z_{24} \le Z_{24}$ and $2Z_{24}$

- 7. If $W = Z_{12}$ as, Z-module and $H = 4Z_{12}$ *R*-submodule of *W*, then *H* is not Pr-maximal in *W* since $4Z_{12} < 2Z_{12} \le Z_{12}$ and $2Z_{12}$ is not pure in *W*.
- 8. If W is a semi simple R-module, thence every sound *R*-submodule of W is *R* maximal if and only if it is Pr-maximal for example $2Z_{6}$ and $3Z_{6}$ are Pr-maximal submodule of Z_{6} as Z-module.

9. Every proper submodule contain in a pure submodule is, Pr-maximal.

Definition (3.3)

A proper submodule *H* of an R-module *W* is named near-maximal(N-maximal) whenever *K* is pure submodule of *W* such that $H < K \leq W$ then K = W.

Remark (3.4)

Pr-maximal submodule need not be N-maximal as the following example Show: In $Z_4 \oplus Z_2$ as a Z-module $2Z_4 \oplus (\overline{0})$ is Pr-maximal since, $2Z_4 \oplus (\overline{0}) < Z_4 \oplus (\overline{0}) \leq Z_4 \oplus Z_2$ and $Z_4 \oplus (\overline{0}) \leq_P Z_4 \oplus Z_2$ but $Z_4 \oplus (\overline{0}) \neq Z_4 \oplus Z_2$ so not N-maximal

 $4Z_{12} = \{\overline{0}, \overline{4}, \overline{8}\}$ is N-maximal in Z_{12} since $4Z_{12} < Z_{12} \le Z_{12}$ and $Z_{12} = Z_{12}$, but not Pr-maximal since $4Z_{12} < 2Z_{12} \le Z_{12}$ and $2Z_{12}$ is not pure in Z_{12}

Proposition (3.5)

If *W* is an F-regular module then every submodule of *W* is, Pr-maximal.

Proof

Let *H*, *K* be submodule of *W* such that $H < K \leq W$ since *W* is F-regular then

respective submodule of W is pure hence K is pure submodule of W then H is Pr-maximal.

Remark (3.6)

If Wis simple *R*-module thence every *R*-submodule of W is Pr-maximal.

Proof: Since every simple *R*-module is regular, thence every maximal is Pr-maximal. **Proposition** (3.7)

If $\frac{W}{W}$ is F-regular module then any pure submodule of W is Pr-maximal.

Proof

Let H is a pure R-submodule of W such that $H < K \le W$ and since $\frac{W}{H}$ is F-regular then $\frac{W}{H}$ is pure

submodule of $\frac{W}{H}$ since *H* is pure of W then *K* is pure in *W* [4] implies *H* is Pr-maximal submodule of *W*.

Corollary (3.8)

If H is a weak R-maximal submodule of an R-module W thence every pure submodule of W is P r-maximal.

Proposition (3.9)

If N, K are non-zero submodule of W such that $N \leq K$ if N is Pr-maximal in W then K is Pr-maximal in W.

Proof

Let *H* submodule of *W* such that $K < H \le W$ since N < K and N is pr-maximal of W then *H* is pure namely *K* is pr-maximal assist definition (3.1).

Corollary (3.10)

If *N* and *K* are sound submodules of R-module *W* and $N \cap K$ is pr-maximal of *W*, then both N and *K* are pr-maximal submodule of *W*.

Proof

Since $N \cap K \leq N$ and $N \cap K$ is Pr-maximal of W, thence assist proposition (3.9) N is Pr-maximal similarity we prove K is Pr-maximal.

Corollary (3.11)

If N, K are nonzero submodules of R-module W if N or K are Pr-maximal, then N + K is Pr-maximal.

Proof: Since N is, Pr-maximal and $N < N + K \leq W$ assist proposition (3.9) implies N + K is Pr-maximal.

Corollary (3.12)

If N is, Pr-maximal submodule of an R-module W and I is an ideal of R, if $[N_W: I]$ is a Proper submodule of W then, $[N_W: I]$ is pr-maximal R-submodule of W. Then $[[N_W: I]$ is Pr-maximal submodule of W.

Proof

Since $N < [N_W: I]$ assist [4] and N is pr-maximal submodule of W then, $[N_W: I]$ is Pr-maximal assist proposition (2.10).

Remark (3.13)

The convers of corollary (2.12) is not true since submodule of Pr-maximal not Pr-maximal as the following example let $W=Z_{12}$ as Z-module the ideal of Z-module the ideal I=2Z of Z, and $N=6Z_{12}$ so $[N_W:I]=\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}$ is Pr-maximal since $\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\} < Z_{12} \leq Z_{12}$ but $N = 6Z_{12}$ is not Pr-maximal of Z_{12} , since $6Z_{12} < 2Z_{12} \leq Z_{12}$ and $2Z_{12}$ not pure in Z_{12} , **Proposition (3.15)**

Proposition (3.15)

Let $f: W_1 \to W_2$ be an epimorphism, where W_1 and W_2 be R-modules. If H is Pr-maximal submodule of W_2 , then $f^{-1}(H)$ is Pr-maximal R-submodule of W_1 . **Proof** Suppose $f^{-1}(H) < S \leq W_1$, so $f(f^{-1}(H)) < f(s) \leq W_2$, then $H \leq f(s) \leq W_2$, since His Pr-maximal R-submodule of W_2 , thence $f(s) \leq_p W_2$, implies $S=f^{-1}(f(S)) \leq_p W_1$,

assist lemma (2.14), so $f^{-1}(H)$ is a Pr-maximal R-submodule of W_1 .

Theorem (3.16)

If W is a pure simple R-module and K be a proper submodule of W. Then let the following:

- **1.** *K* submodule is maximal.
- **2.** *K* submodule is Pr-maximal.
- **3**. *K* submodule is N-maximal.

Proof: (1) \leftrightarrow (2) clearly

(2) \rightarrow (3) let $K < S \leq W$, since K is, Pr-maximal then $S <_P W$, but W is semi-simple, hence K=W, so that K is N-maximal submodule of W.

(1) \rightarrow (3) clear.

If *W* is regular, then $(3)\rightarrow(1)$.

Proposition (3.17)

If W is a semi simple R-module and N be a proper submodule of W. thence consider the following of W

- **1.** *N* submodule is a maximal.
- **2.** *N* submodule is a Pr-maximal.
- **3.** *N* is a N-maximal.

Proof: (1) \leftrightarrow (2) clear

(2) \rightarrow (3) Let $N < K \leq W$, since N is, Pr-maximal then $K <_P W$, but W is semi

simple, hence K = W, so that N is N-maximal R-submodule of $W(1) \rightarrow (3)$

clear.

If W is regular, then $(3) \rightarrow (1)$

Remark (3.18): In Z_{12} as Z-module consider

the following.

$K < Z_{12}$	maximal	<i>N</i> -maximal	Pr-maximal
2Z ₁₂	\checkmark	\checkmark	\checkmark
3Z ₁₂	\checkmark	\checkmark	\checkmark
4Z ₁₂	×	\checkmark	×
6Z ₁₂	×	×	×

4. Pure Maximal Submodules and Related Concepts

Proposition (4.1)

Whole multiplication R- module deemed a Pr-maximal R-submodule.

Proof:

Since whole multiplication module breakpoint maximal R-submodule thence assist remark (3.2) we have respective multiplication module contains a Pr-maximal submodule.

Corollary (4.2)

Every cyclic R-module breakpoint Pr-maximal submodule.

Proof

Since respective cyclic R-module is a multiplication R-module so assist proposition (4.1), it breakpoint Pr-maximal.

Theorem (4.3)

If W is faithful finitely generated and multiplication R-module and H be a submodule of W thence, the following, are equivalent

1. H submodule is, Pr-maximal of W

2. $[H_R:W]$ ideal is Pr-maximal of *R*.

3. H=IW Pr-maxima for some ideal I of R.

Proof: $(1) \rightarrow (2)$

Let $H_R: W] < J \le R$ and J is an ideal of *R* is $J, H < JW \le RW$ since *W* is *R*-module multiplication, then $H = [H_R: W]W \le JW \le RW = W$, so $H < JW \le RW$, since *H* is, Pr-maximal then $JW \le_P RW = W$, so $J \le_P R$ [9] and hance $[H_R: W]$ is Pr-maximal ideal of *R*. (2) \rightarrow (3)

Since *W* R-module is multiplication thence for *H* a R-submodule of *W* thence *H* [H_R : *W*]*W* assist (2) each [H_R : *W*] is ideal Pr-maximal of *R* then, H=IW for some ideal Pr-maximal of *R*. (3) \rightarrow (1)

Let $H < K \le W$ since H=IW for some ideal Pr-maximal of *R*, since W is , multiplication then, K = JW for some Pr-maximal ideal Jof *R* since W is multiplication W =

RW, H = IW, then, $H = JW < JW \le RW = W$ but W faithful finitely generated multiplication *W* then $I < J \le R$, by (3) *I* is Pr-maximal ideal of *R*, hance $J \le_P R$ then $JW \le_P W$ by [8] implies *H* is Pr-maximal of *W*.

Now, we introduce the following concept.

Definition (4.4)

An R-module M is named Pr-module, if every proper submodule of M is Pr-maximal. A ring R is named Pr-ring if every proper ideal of R is an Pr-maximal ideal.

Examples (4.5):

- **1.** Z_6 is Pr-module as Z-module
- 2. Whole semisimpl R-module is Pr-module.

3. Z_{12} as Z-module is not Pr-module, since $6Z_{12}$ is not Pr-maximal submodule of Z_{12} .

Theorem (4.6): If M is a R-module finitely generated faithful and multiplication. Then, M is a Pr-module iff R is Pr-ring.

Proof: \rightarrow) Suppose, *M* is a Pr-module and impose *I* is a proper ideal of *R*. Since *M* is a multiplication R-module, Then, H = IM. But *M* is Pr-module, hence *H* is a Pr-

maximal submodule of M. Assists Theorem (3.3), I is an ideal, Pr-maximal of R.

 \leftarrow) Assume that R is a Pr-ring and let *H* be a proper submodule of M. Since M is R-module a multiplication, thence H = IM, for some ideal *I* of *R*. Since *I* is a Pr-maximal ideal, then assists Theorem (4.3) *H* is Pr-maximal submodule of *M*. thus *M* is Pr-module.

Remark (4.7)

Not all, finite R-module is local for example $Z_{6} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, 5\}$ is not local since $2Z_{6}$ and $3Z_{6}$ are maximal submodules this not local but Z_{4} R-module is local since $2Z_{4}$ is the only proper maximal submodule of Z_{4}

Proposition (4.8)

Every local R-module has Pr-maximal submodule.

Proof: Let W is local R-module, then W has only one maximal R-submodule implies has Prmaximal submodule assist remark (2.2).

Remark (4.9)

The convers of proposition (4.8) is not true for example Z_6 has Pr-maximal submodules but not local.

We need to give the following concept

Definition (4.10)

An R-module M is named pure local (Pr-local) module. If it has only one Pr-maximal submodule which contains all proper submodule of M. A ring R is called pure local (Pr-local) ring, if R is a Pr-local R-module

Remark and Examples (4.11)

1. The Z-module $3Z_{24}$ is a Pr-local module, since it has only one R-submodule Pr-maximal that is $6Z_{24}$.

2. Every local is, Pr-local but not conversely for example: The Z-module $2Z_{12}$ in Z_{12} as Z-module is Pr-local since $4Z_{12}$ is the only Pr-maximal submodule of $2Z_{12}$. But not local since $4Z_{12}$ and $6Z_{12}$ are maximal submodules of $2Z_{12}$.

3.If W is a non-zero multiplication and Pr-local R-module and H is a non-zero Pr-maximal R-submodule of W, thence H not necessary, pure submodule for example: If $W=Z_4$ as Z-module, W is non-zero multiplication and Pr-local Z-module and $2Z_4$ is non-zero, submodule, Pr-maximal of Z_4 but not pure.

Remark (4.12): description of R-module.

R-module	local	Pr-local
Z_4	\checkmark	\checkmark
Z ₆	x	x
3Z ₁₂	x	\checkmark

5. Conclusions

We will try to generalize the concept of Pr-maximal R-submodules to some other concepts in future works.

In this study, the concepts of Pr-maximal R-submodules is studied as a generalization of maximal submodule and some properties of this concept are investigated such as:

- 1. Every maximal submodule of R-module *W* is Pr-maximal.
- 2. A subset of Pr-maximal *R*-submodule need not be Pr-maximal *R*-submodule.
- 3. If *W* is an F-regular module then every submodule of *W* is Pr-maximal.
- 4. If N, K are non-zero submodule of W such that $N \le K$ if N is Pr-maximal in W then K is Pr-maximal in W.
- 5. Let $f: W_1 \to W_2$ be an epimorphism, where W_1 and W_2 be R-modules. If *H* is Pr-maximal submodule of W_2 , then $f^{-1}(H)$ is Pr-maximal R-submodule of W_1 .
- 6. Every cyclic R-module breakpoint Pr-maximal submodule.
- 7. Every local R-module breakpoint Pr-maximal R-submodule.

References

- 1. Nuhad S..Al-Mothafar; Mohammed B.H. Alhakeem, Nearly Semiprime Submodule, *Iraq*, *Journal of Science*, **2015**, *56*, *4B*, PP, 3210-3214.
- 2. Amira, A. A. ; Sahira, M. Y. Large-Maximal submodules, *J. Phys.: Conf. Ser.* 2019, 1294, 1-5.
- 3. Shahad, H. A.; Al-Mothafar, N. S. On P-Essential Submodules, *Iraqi Journal of Science*, **2021**; *62*, 4916–4922.
- 4. Ajeel, A. S. ; Mohammad Ali, H. K. Approximaitly Prime Submodules and Some Related Concepts. *Ibn AL-Haitham Journal For Pure and Applied Sciences*, **2019**, *32*(2), 103–113.
- 5. Abdulla, O. A. ; Mohammad Ali, H. K. Pseudo Quasi-2-Absorbing Submodules and Some Related Concepts. *Ibn AL-Haitham Journal For Pure and Applied Sciences*, **2019**,*32*(2), 114–122.
- 6. Shwkaca, M. R. ;Weak maximal Ideals and Weak Maximal submodules, M. Sc. Thesis, **2012**, College of Education, University of Tikrit.
- 7. Thaar; Y. C. Purely Quasi-Dedekind Modules and Purely Prime Modules, **2017**, University of AL-Qadisyah.
- 8. Wisbauer; R. Foundotion of Module and Ring Theory; Gordon and Breach, **1991**, Philadelphia.
- 9. Abd El-Bast, Z. ; Smith, P. F. Multiplication Modules; comm. Algebra, 1988, 16, 755-779.
- 10. Majid; M. A. ; David, J. S. Pure Submodules of Multiplication Module; Contributions to Algebra and Geometry, **2004**, *45*, 61-74.
- 11. B.H.AL-Bahrani , on purely y-Extending Modules , Iraqi Journal of scince, **2013** ,54,pp.672-675,