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Abstract 

Cantilever beams are used in many crucial applications in machinery and 

construction. For example, the airplane wing, the microscopic probe for atomic force 

measurement, the tower crane overhang and twin overhang folding bridge are typical 

examples of cantilever beams. The current research aims to develop an analytical solution for 

the free vibration problem of cantilever beams. The dynamic response of AISI 304 beam 

represented by the natural frequencies was determined under different working surrounding 

temperatures ((-100 ℃ to 400 ℃)). A Matlab code was developed to achieve the analytical 

solution results, considering the effect of some beam geometrical dimensions. The developed 

analytical solution has been verified successfully with real experimental data and the error was 

not exceeded 1%. 

Keywords: analytical solution, cantilever beam, free vibration, mathematical modeling. 

 

1. Introduction 

The mathematical modeling of the vibration properties of the cantilever beam seems a 

crucial topic due to its wide range of applications in structural and construction technology and 

other sectors. In service conditions, those cantilever beams expose to various levels of vibrations 

that influence their functional behavior. The prolonged working under such vibration conditions  
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threatens the performance stability of those vital structural parts [1].  

Studying the response of the cantilever beam to the applied vibration is an important 

issue because it enables us to analyze and interpret a variety of typical real cases, as stated 

in the examples above. These applications can be molded as cantilever beam that gives 

flexibility in design tuning for the most effective real systems. The vibration analysis is one 

of the most important and effective analyses of the structure in different industrial sectors. 

Where, the vibration results can be assisted to identify faults or detect warning signs of 

potential failures. It can also aid in the detection of misalignment or unbalance of assets such 

as bearings and rotating pieces of equipment. 

A cantilever beam will oscillate at its natural frequency when given a stimulus and 

left to vibrate on its own. Free vibration is the name given to this state. The system's mass 

and stiffness parameters are the only ones that affect the natural frequency. There are several 

presumptions made for modeling and analysis when a real system is approximated to a 

straightforward cantilever beam. 

Some conducted works have been cited here chronologically. For example, a 

modified theory of couple stress was applied by Akgoz and Civalek[1] to determine the 

natural frequencies of the tapered beam. The natural frequency of simply supported beams 

guided elastically at one end was investigated by Calioand Elishakoff[2].He considered the 

trigonometric functions of the elasticity modulus in mathematical modeling.  

The static and dynamic responses of a prismatic beam were studied by Li [3], who 

took into account shear deformation and rotational inertia. A piecewise element was adopted 

by Singh and Li [4]to evaluate the performance of a cantilever column restrained by the 

elastic foundation and subjected to buckling load. Huang and Li [5]proposed a new method 

to study the free vibration of tapered beams under different conditions. The beam conditions 

were: clamped at two ends, simply supported, cantilever ends, and clamped-pinned, 

respectively. They used integral equations of Fredholm in the mathematical modeling of 

beams.  

The stability and free vibration of a non-prismatic column were investigated by 

Shahba et al. [6]under boundary conditions of classical and non-classical. Shahba and 

Rajasekaran[7]applied the differential quadrature element method to solve the equation of 

motion to evaluate the tapered beam's stability under buckling and free vibration conditions. 

Also, the free vibration was analyzed by Kukla and Rychlewska[8]for fixed ends beams 

made from functionally graded materials. Again, Yilmaz et al. [9] applied the differential 

quadrature element approach to study the performance of non-prismatic columns under 

buckling conditions.  
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Chandran and Rajendran[10] adopted the fundamental of conversation energy to 

present a closed-form solution for prismatic cantilever columns under buckling conditions. 

Also, Shafiei et al. [11] applied the differential quadrature element method to solve the 

governing equations of square cross-section tapered microbeams to analyze the non-linear 

vibration behavior. Ranganathan et al. [12] integrated linear perturbation with the Rayleigh-

Ritz methods to determine the maximum buckling load under a constant modulus of 

elasticity. Elishakoff et al. [13]studied column vibration and buckling by adopting the 5th-

order polynomial and sharing mode. The buckling loads and natural frequencies for semi-

rigid tapered beam-column were determined by Rezaiee and Masoodi[14] by closed-form 

solutions. Also, Lee and Lee [15] investigated the buckling and free vibration of circular and 

square tapered cantilever columns.  

Chain et al [16] applied classical and modified Rayleigh method (CRM and 

MRM)with finite element (FEM) to find out the natural frequency for non-uniform cantilever 

beam. For beam length greater than half, good matching was achieved between CRM and 

FEM. From the other side, excellent matching was obtained for beam length less than half.  

Du et al [17] introduced an enhanced mathematical model for free vibration analysis 

of rotating cantilever beam having free mass end. The model was developed based on the 

theory of non-linear green strain. The discrete dynamic behavior was derived by applying 

the Galerkin and Hamilton principle to find out the chordwise and axial motions. The model 

was validated with numerical calculations and the comparison revealed the dynamic 

response of the beam is influenced even with little end mass.  

In this paper, it was presented full details of the mathematical modeling for the 

cantilever beam to find the Dynamic Response (the natural frequencies) under different 

working surrounding conditions (Temperatures). It was investigated the effect of a wide 

range of temperatures (-100 ℃ to 400 ℃) for the selected alloy (AISI 304 austenitic stainless 

steel).Thedevelopment of mathematical model was started from scratch to find the analytical 

solution. This analytical solution takes intoaccount the effect of the surrounding 

temperatures on the material properties of the beam. Consequently, it can be found the effect 

of the surrounding temperatures on the vibration behaviour of the cantilever beam (natural 

frequencies). A new Matlab code was developed to achieve the analytical solution results, 

considering the effect of some beam geometrical dimensions. 
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Figure 1. cantilever beam 

 

2. Free Vibration for cantilever beam 

The solution of free vibration for the cantilever beam, shown in Fig. 1, is proposed 

between the perpendicular and its centroidal axis. 

 

Total Energy Relation Ships 

Equation 1 shows the strain energy ( bV ) of the cantilever beam under bending-bending vibration 

conditions [18]: 
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energy is expressed by When the beam is subjected to torsional vibration, its strain 

equation 2:  
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Considering that the beam has a uniform cross-section with a small thickness (t). Therefore, 

merging the above two equations yields the beam strain energy Punder bending-

bending-torsion conditions: 
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(3) 

If the gravitational influence is neglected, the Pc will equal the total potential energy (P). Further, 

the total kinetic energy (T) of the cantilever beam exposed to integrated bending –torsion is 

illustrated by 
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(4)  

Thus, shown below refers to the Lagrangian function that yields from subtracting kinetic 

frompotential energies (L=T-P). 
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If Hamilton's principal (16) ( 
1

0

t

t

Ldt ) is applied, we get: 
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Also, it can be expressed as in: 
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Equations of Motions 

Fig. 1 illustrates the section of the cantilever beam with centroid to flexure center position. 

The principle of Hamilton [18]shows that 
1t

to

Ldt is applied at two fixed time points, namely, 

and which are stationary for the dynamic trajectory. When the Euler equation is applied to the 

integral, the two Stationary times can be obtained as revealed in: 
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The obtained equations are motional system equations. The integral form of equation 6 

consists of three dependent parameters, namely; q, p, and β, and applying the Euler equations by 

replacing with either q, p or β yields: 
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Solution of system motion Equations 

The shape functions of q, p, and β that were taken from [19] are assumed to be in the following forms: 
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The error in the differential equation 11a, b, c can be achieved if the proposed solution expressed by 

equation 12 a, b, c for u, v, and θ is used.: 
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Three simultaneous equations can be achieved if equation 13 a, b, is subjected to the Ritz 

–Galerkin operation. 
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The Eigenvalues are obtained when equation 14 a, b, and c is integrated to yield equation 15: 
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If we assume a symmetrical cross-section about principal axes (i.e.,  and ), 

the solution will be reduced to equation 16: 
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The terms D,E,..etc in the Eigenvalues matrix presented in equation 15 are given in 

equations 17-27 shown below:  
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Where 

 

𝐽5 = (𝑗 + 2) (𝑗 + 3)/6 , 𝐽6 = 𝑗 (𝑗 + 3)/3 , 𝐽7 = 𝑗 (𝑗 + 1)/6 , 𝐽8 = 𝑗/(𝑗 + 1) 

And 

𝑅1 =  𝑟 (𝑟 + 1) (𝑟 + 2) (𝑟 + 3) , 𝑅2 =  (𝑟 − 1) (𝑟 − 2)/6 , 𝑅3 =  𝑟 (𝑟 − 1)/3 , 𝑅4 =  𝑟 (𝑟 + 1)/6 

𝑅5 =  (𝑟 + 2) (𝑟 + 3)/6 , 𝑅6 =  𝑟(𝑟 + 3)/3 , 𝑅7 =  𝑟(𝑟 + 1)/6 , 𝑅8 =  𝑟/(𝑟 + 1) , 

𝑅9 =  𝑟(𝑟 − 1) , 𝑅10 =  𝑟² , 𝑅𝐽 =  𝑟 + 𝑗 

It is basically that  as well as   are involved in the U of equation 27. Otherwise, an 

error will be produced in the calculated frequencies.  

 

Developed Program 

The values and parameters for the derived and integrated equations are computed by the 

developed computer program to calculate the natural frequencies of the cantilever beam. The 

developed program is given in the flow chart depicted in Fig. 2. 
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Figure 2. Flow chart of the developed Matlab code for solving the proposed analytical solution of the free 

vibration cantilever beam. 

 

Verification Case 

A verification case is used here to investigate the reliability of the developed analytical 

model [20]. The fundamental natural frequency was calculated using the proposed analytical 

solution over various temperatures and aspect ratios. The Young modulus of elasticity and 

passion ratio of the AISI 304 austenitic stainless steel for different temperatures are presented in 

Table 1. The density of this type of steel is =7850 . The experimental results in Ref.[20]is 

invoked here for comparison. 

 

Table 1. Modulus of elasticity and passion ratio of AISI 304 austenitic stainless steel for different temperatures 

[20] 

Temperature ℃ Modulus of elasticity Position ratio (ν) 

-100 204 - 

25 194 0.265 

50 193 0.267 

100 190 0.272 

150 187 0.276 

200 184 0.280 


3m

Kg

 

Start 

          
  Input the dimensions of cantilever 

beam (a, b & t) and material density

Calculate the moment of inertias and all the 
geometrical factors (Ixx, Iyy, A  etc) 

Compute the elements values of the 
Eigenvalue problem matrix (D, E, L, M, T, 

U etc)

Compute the natural frequency under a 
specific temperature based on Eq. (16)

Present natural frequencies under a specific 
temperature 

End

Input the modulus of elasticity and 
Poisson s ratio under a specific  

surrounding temperature

Change Temperature value

Is cross-sectional area symmetric? 

The values of rx and ry

Compute the natural frequency under a 
specific Temperature based on Eq. (15)

Present natural frequencies as a function of 
surrounding temperature

Yes 

No 
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250 181 0.284 

300 177 0.288 

350 173 0.292 

400 168 0.295 

 

3. Results And Discussion 

This study used different aspect ratios to involve the effect of geometry besides the temperature 

on the fundamental natural frequency. Also, three thicknesses of the cantilever beam are utilized: 

0.001, 0.002, and 0.003 m, respectively.  

Fig. 3 shows the analytical results of the principal natural frequencies at various given lengths. 

The experimental findings in Ref.[20] related to measuring the fundamental natural frequency 

for the cantilever beam at different lengths is provided here to make a fair comparison. The same 

different lengths used in Ref. [20]are replaced in the analytical solutions to perform a fair 

comparison. The figure reveals a good match between experimental and analytical solutions. The 

figure indicates that the fundamental natural frequency decreases with increasing beam length. If 

the statistical analysis for percentage errors between analytical and experimental findings is 

applied in terms of mean, standard deviation, max, and min, we get 0.653, ±0.093, 0.79, and 0.54, 

respectively. 

The general trend of these figures illustrates that at any aspect ratio or thickness, the values of 

fundamental natural frequency decrease with increasing temperature. Also, increasing the aspect 

ratio, particularly at 2.5, led to a reduction in the natural frequency but less extent compared to 

temperature. The significant impact on the natural frequency is attributed to the beam thickness, 

as Fig.s 4-6 reveal. For example, the range of natural frequency (min-max) over the limits of 

temperature (-100-400 ℃) and aspect ratio (0.4-2.5) for the three thicknesses is found to be: 

(76.2956-84.6124 Hz); (152.5911-169.2247Hz); and (228.8867-253.8371 Hz) respectively. In 

other words, the fundamental natural frequency was strongly influenced by the beam thickness 

compared with temperature and aspect ratio.The effect of aspect ratio, thickness, and temperature 

on the fundamental natural frequency is also presented, as Fig.s 4-6 depict. The beam length for 

the cases in Fig.s 4-6 is taken at 0.1m, and the width is changeable to give different aspect ratios. 
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Figure3.Comparison between analytical and experimental results of the natural frequency for different beam 

lengths 

 

 

 
 

Figure 4. Effect of temperature (℃) and aspect ratio on the fundamental natural frequency (Hz) for the 0.001 m 

thickness beam 
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Figure 5. Effect of temperature (℃) and aspect ratio on the fundamental natural frequency (Hz) for the 0.002 m 

thickness beam 

 

 
Figure 6. Effect of temperature (℃) and aspect ratio on the fundamental natural frequency (Hz) for the 0.003 m 

thickness beam 

 
4. Conclusions 

This study proposed an analytical solution for free vibration analysis of cantilever beam. The 

mathematical model was verified with experimental findings that measured fundamental natural 

frequency experimentally. Further, the author also studied the influence of temperature and 

geometrician factors represented by aspect ratio and thickness on the fundamental natural 

frequency. Based on the obtained findings, the following conclusions can be picked up: 

1. The developed analytical solution successfully determined the fundamental natural 

frequency and verified it with actual experiments with a percentage error of no more than 

0.79. 

2. The beam thickness greatly influenced the calculated natural frequency, followed by 

temperature and aspect ratio. 

3. The calculated natural frequency recorded high increases with increasing beam thickness 

while slightly decreasing with increasing temperature and aspect ratio. 

152

154

156

158

160

162

164

166

168

170

-100 25 100 200 300 400

Fu
n

d
am

en
ta

l N
at

u
ra

l f
re

q
u

en
cy

 (
H

z)

Temperature ℃

t=0.002 m 0.4

2/3

1

1.5

2.5

225

230

235

240

245

250

255

1 2 3 4 5 6

Fu
n

d
am

en
ta

l N
at

u
ra

l f
re

q
u

en
cy

 (
H

z)

Temperature ℃

t=0.003 m 0.4

2/3

1

1.5

2.5



IHJPAS. 36 (4) 2023 

442 
 

 

References 

1. Akgöz B, Civalek Ö. Free vibration analysis of axially functionally graded tapered Bernoulli–

Euler microbeams based on the modified couple stress theory. Composite Structures. 2013 

2013/04/01/;98:314-22. 

2. Caliò I, Elishakoff I. Closed-form solutions for axially graded beam-columns. Journal of 

Sound and Vibration. 2005 2005/02/23/;280(3):1083-94. 

3. Li XF. A unified approach for analyzing static and dynamic behaviors of functionally graded 

Timoshenko and Euler–Bernoulli beams. Journal of Sound and Vibration. 2008 

2008/12/23/;318(4):1210-29. 

4. Singh KV, Li G. Buckling of functionally graded and elastically restrained non-uniform 

columns. Composites Part B: Engineering. 2009 2009/07/01/;40(5):393-403. 

5. Huang Y, Li X-F. A new approach for free vibration of axially functionally graded beams with 

non-uniform cross-section. Journal of Sound and Vibration. 2010 2010/05/24/;329(11):2291-

303. 

6. Shahba A, Attarnejad R, Marvi MT, Hajilar S. Free vibration and stability analysis of axially 

functionally graded tapered Timoshenko beams with classical and non-classical boundary 

conditions. Composites Part B: Engineering. 2011 2011/06/01/;42(4):801-8. 

7. Shahba A, Rajasekaran S. Free vibration and stability of tapered Euler–Bernoulli beams made 

of axially functionally graded materials. Applied Mathematical Modelling. 2012 

2012/07/01/;36(7):3094-111. 

8. Stanisław Kukla, Rychlewska J. FREE VIBRATION ANALYSIS OF FUNCTIONALLY 

GRADED BEAMS Journal of Applied Mathematics and Computational Mechanics. 

2013;12(2):39-44. 

9. Yilmaz Y, Girgin Z, Evran S. Buckling Analyses of Axially Functionally Graded Nonuniform 

Columns with Elastic Restraint Using a Localized Differential Quadrature Method. 

Mathematical Problems in Engineering. 2013 2013/07/28;2013:793062. 

10. GEETHU CHANDRAN, M.G.RAJENDRAN. STUDY ON BUCKLING OF COLUMN 

MADE OF FUNCTIONALLY GRADED MATERIAL. International Journal of Mechanical 

And Production Engineering. 2014;2(2):52-4. 

11. Shafiei N, Kazemi M, Ghadiri M. Nonlinear vibration of axially functionally graded tapered 

microbeams. International Journal of Engineering Science. 2016 2016/05/01/;102:12-26. 

12. Ranganathan SI, Abed FH, Aldadah MG. Buckling of slender columns with functionally 

graded microstructures. Mechanics of Advanced Materials and Structures. 2016 

2016/11/01;23(11):1360-7. 

13. Elishakoff I, Eisenberger M, Delmas A. Buckling and Vibration of Functionally Graded 

Material Columns Sharing Duncan's Mode Shape, and New Cases. Structures. 2016 

2016/02/01/;5:170-4. 

14. Rezaiee-Pajand M, Masoodi AR. Exact natural frequencies and buckling load of functionally 

graded material tapered beam-columns considering semi-rigid connections. Journal of 

Vibration and Control. 2016 2018/05/01;24(9):1787-808. 

15. Lee JK, Lee BK. Free vibration and buckling of tapered columns made of axially functionally 

graded materials. Applied Mathematical Modelling. 2019 2019/11/01/;75:73-87. 

16. Ghani, Suadad Noori, Neamah, Raghad Azeez, Abdalzahra, Ali Talib, Al-Ansari, Luay S. 

and Abdulsamad, Husam Jawad. "Analytical and numerical investigation of free vibration for 



IHJPAS. 36 (4) 2023 

443 
 

stepped beam with different materials" Open Engineering, vol. 12, no. 1, 2022, pp. 184-

196. https://doi.org/10.1515/eng-2022-0031. 

17. Du, Xiaokang, Jing Zhang, Xian Guo, Liang Li, and Dingguo Zhang. 2022. "Dynamics 

Analysis of Rotating Cantilever Beams with Free End Mass" Applied Sciences 12, no. 15: 

7553. https://doi.org/10.3390/app12157553 

18. Carnegie W. Vibrations of Pre-Twisted Cantilever Blading: An Additional Effect Due to 

Torsion. Proceedings of the Institution of Mechanical Engineers. 1962 

1962/06/01;176(1):315-22. 

19. Rao JS, Carnegie W. Solution of the equations of motion of coupled-bending bending torsion 

vibrations of turbine blades by the method of ritz-galerkin. International Journal of 

Mechanical Sciences. 1970 1970/10/01/;12(10):875-82. 

20. Abbas BAH, Irretier H. Experimental and theoretical investigations of the effect of root 

flexibility on the vibration characteristics of cantilever beams. Journal of Sound Vibration. 

1989 May 01, 1989;130:353-62. 

 

 

https://doi.org/10.1515/eng-2022-0031

