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Abstract

In this paper, we present new algorithm for the solution of the second order nonlinear
three-point boundary value problem with suitable multi boundary conditions. The algorithm is
based on the semi-analytic technique and the solutions which are calculated in the form of a
rapid convergent series. It is observed that the method gives more realistic series solution that
converges very rapidly in physical problems. Illustrative examples are provided to
demonstrate the efficiency and simplicity of the proposed method in solving this type of three
point boundary value problems.

Keywords: Differential Equation, Multi-point Boundary Value Problem, Approximate
Solution.
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Introduction

Some problems which have wide classes of application in science and engineering have
usually been solved by perturbation methods. These methods have some limitations, e.g., the
approximate solution involves a series of small parameters which poses difficulty since the
majority of nonlinear problems have no small parameters at all. Although appropriate choices
of small parameters do lead to ideal solution while in most other cases, unsuitable choices
lead to serious effects in the solutions [1]. The semi-analytic technique employed here, is a
new approach for finding the approximate solution that does not require small parameters,
thus over-coming the limitations of the traditional perturbation techniques. The method was
first proposed by Grundy (2003) and successfully applied by other researchers like Grundy
(2003- 2007) who examined the feasibility of using two points Hermite interpolation as a
systematic tool in the analysis of initial-boundary value problems for nonlinear diffusion
equations. In 2005 Grundy analyzed initial - boundary value
problems involving nonlocal nonlinearities using two points Hermite interpolation[1], also,
in 2006 he showed how two-points Hermite interpolation can be used to construct
polynomial representations of solutions to some initial-boundary value problems for
the inviscid Proudman-Johnson equation. In 2008, Magbool [2] used a Semi-analytical
Method to Model Effective SINR Spatial Distribution in WiMAX Networks. Also ,in 2008,
Debabrata[3] studied Elasto-plastic strain analysis by a semi-analytical method .In 2009,
Mohammed [4] investigated the feasibility of using osculatory interpolation to solve two
points second order boundary value problems .In 2011, Samaher[5] used semi-analytic
technique for solving High order ordinary two point BVPs.

The existence of positive solutions for multi-point boundary value problems is one of
the key areas of research these days owing to its wide application in engineering like in the
modeling of physical problems involving vibrations occurring in a wire of uniform cross
section and composed of material with different densities, in the theory of elastic stability and
also its applications in fluid flow through porous media.

Kwong [6], studied of multiple solutions of Two and multi-point BVPs of nonlinear second
order ODE as fixed points of a cone mapping.

Thompson [7] established existence results to three-point BVPs for nonlinear second order
ODE with nonlinear boundary conditions.

Castelani [8] studied the existence of solution of second order nonlinear three-point BVPs
using Fixed Point Theorems.

In this paper we use two-point osculatory interpolation, essentially this is a
generalization of interpolation using Taylor polynomials. The idea is to approximate a
function y by a polynomial P in which values of y and any number of its derivatives at given
points are fitted by the corresponding values and derivatives of P.

We are particularly concerned with fitting function values and derivatives at the two
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end points of a finite interval, say [0,1] where a useful and succinct way of writing osculatory

interpolation P2n+1 of degree 2n + 1 was given for example by Phillips [9] as :

n

Pansi(x) = Z {y”0) q,x)+ D7y (1) q,(1-x)} (1)
o LY (n+s )
q,(x)=(x"/jH1-x)"" {S j x*=Q,;(x)/j! (2)

so that (1) with (2) satisfies :
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) () ) () _
y ! (O): P2n+1 (0) B y ! (1): P2n+l (1) B _]207 1925"'711'

Implying that P2n+1 agrees with the appropriately truncated Taylor series for y about
x =0 and x = 1. We observe that (1) can be written directly in terms of the Taylor coefficients

a; and b; about x = 0 and x = 1 respectively, as:

n

Pan(x)= D, {4, Q,(x)+(-1)’ b; Q,(1-x) } 3)

Jj=0

2. Solution of Three-Point 2" Order Nonlinear BVP's for ODE
A general form of 2™ - order BVP's is:-

Y =f(xyy) 0<x<lI (4a)
Subject to the boundary conditions:
y(0)=Ay , y(1)=By(n) , wherene(0,1) , BeR (4b)

The simple idea of semi - analytic method is to use a two - point polynomial
interpolation to replace y in (4) by a Pan+1 which enables any unknown derivatives of y to be
computed, the first step therefore is to construct the Pan+1. To do this we need to evaluate
Taylor coefficients of y about x =0:

Y= Do A XX 3 a; =yY0)/i! , (5a)

Then insert the series form (5a) into (4a) and put x= 0 and equate the coefficients of
powers of x to obtain ai , i > 2 . Also, evaluate Taylor coefficients of y about x = n:

y=Dizo bi(x = ci(x-n) 3 b;= c=yOm/il , (5b)

Then insert the series form (5b) into (4a) and put x = n and equate coefficients of
powers of ( x- N ), to obtain C; , 1> 2 . Also, evaluate Taylor coefficients of y about x =1 :

y=Xico bi(x—1" 3 b;=y"W)/i! : (5¢)

Then insert the series form (5¢) into (4a) and put x = 1 and equate coefficients of powers
of (x-1),to obtain bi, i > 2 ,then derive equation (4a) with respect to X to obtain new form of
equation say (6) then, insert the series form (5a) into (6) and put
x = 0 and equate coefficients of powers of X, to obtain a3 , also insert the series form (5b) into
(6) and put x = n and equate coefficients of powers of x, to obtain c¢3 , also insert the series
form (5c) into (6) and put x = 1 and equate coefficients of powers of X, to obtain b3 , now
iterate the above process many times to obtain a4, cs4, bs, then as, cs, bs and so on, that is ,we
can get ai , ci and bi for all i > 2, the resulting equations can be solved using MATLAB to
obtain ai,ciand bi for all i>2 | the notation implies that the coefficients depend only on the
indicated unknowns ao, ai, co, ¢1 , bo, b1, and we get ao, bo defined by co, by the boundary
conditions. Now, divided the domain [0,1] by 11 into two subinterval [0,n] and [n,1] then
construct a Pan+1(x) for each subinterval from these coefficients ( ais , c¢iS and bis ) by the
following :

Do) = Y160, (0) + () €Q,07 - 1)+ Y (60, (x =) + (1B O,(1- )} .. (Ta)

) o = (n+s]
Where Q, (x)/j!=(x"/jH)(1-x)" xS , (7b)
« < s

§=

We see that (7a) have 4 unknown coefficients a1, c1, b1 and co = bo.

Now, to evaluate the remainder coefficients integrate equation (4a) on [0, x] to obtain:
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X

Y -y(0)- [ fx,y,y)dx=0

0

ie. y'(x)—ar - ]ﬁ fx,y,y)dx=0 (8a)

and again integrate equation (8a) on [0, x] to obtain:

X

yx) —y(0)—al x-* (I-x)f(x,y,y) dx=0

X

i.e. y(x)—ao—arx- 'f (1-x)f(x,y,y)dx=0 (8b)

0
use Pan+1 as a replacement of y, y' in (8) and putting x= 1 in all above integration . Again
integrate equation (4a) on [1, x] to obtain .

X

y'(x)—c1 - j fix,y,y)dx=0 (9a)

n

and again integrate equation (9a) on [ 1, X] to obtain:

y(X)—co—c1 X - ji (1-x)f(x,y,y)dx=0 (9b)

n
Use Pan+1 as a replacement of y, y' in (9) and putting x= 1 in all above integration.

We have system of 4 equations (8), (9) with 4 unknown coefficients which can be solved
using the MATLAB package, version 7.9, to get the unknown coefficients, thus insert it into
(7a), thus (7a) represent the solution of (4) .

Now, we introduce many examples of 2" order three-point BVP's for ODE to illustrate

suggested method. Accuracy and efficiency of the suggested method is established through
comparison with other methods.

Example 1

Consider the following nonlinear, 2" order, 3point BVP's:
y'+2=0 , 0<x<l1,

Subject to the BC: y(0)=0 , y(1) =3 y(0.5)

The exact solution for this problem is: y(x) = — 0.5 x — x>

Now, we solve this equation using semi-analytic method from equation (7) we have:
P3=-x>-0.5x
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Liu[10] constructed a two-stage Lie-group shooting method for finding solution of this
example, Figure(la) compared the numerical result of [10] with exact solution. It can be seen

that the numerical error of x is of order of 107> as shown in Figure (1b) and Figure(2)
illustrates the accuracy of suggested method P3

Example 2
Consider the following linear, 2™ order, 3 point BVP's:

y'"+6x=0 , 0<x<1
With BC: y(0)=0 , y(1) = y(0.12) / 2,

The exact solution for this problem is y(x) = 31223 x / 29375 — x*

Now, we solve this equation using semi - analytic method from equations (7) we have:
P3 =1.0629106382978723404255319148936 x — x*

Figure (3) illustrate the comparison between the exact and suggested method Ps.

E. V. Castelani [11], solved this example using iterative method with mesh size

h =0.1and h = 0.05 the maximum absolute error in the k-th iteration are given in Tablel, but
the maximum absolute error of suggested method P3 is 0.111022302462516¢-015.

Example 3
Consider the linear, 2" order, 3 point BVP's.
y" +cosx =0 , 0<x<1
Subject to the BC: y(0) =0, y'(1) =-3y(1/3) / 2
With exact solution is: y = (2xsinl) /3 —x cos(1/3) + x + cosx— 1
Now, we solve this equation using semi-analytic method from equation (7), if n = 7, we
have:

P15 =2.18915110"3 x5 -1.1627290310°!! x'4 -1.0514471510-12x!3 + 0.00000000209094434x 2
- 4.4374915110°"2x!" - 0.000000275569894 x'°- 1.3142893210'? x° + 0.0000248015875 x® -
0.00138888889 x6 + 0.0416666667 x* - 0.5 x>+ 0.61602371 x

For more details, Table (2) gives the results for different nodes in the domain, for n=7, i.e.
Pis and errors obtained by comparing it with the exact solution. Figure (5) illustrate the
comparison between the exact and suggested method Pis.

Liu [10] construct a two-stage Lie-group shooting method for finding solution of this

example, figure(4a) compared the numerical result of [10]
with exact solution. It can be seen that the numerical error of x is of order of 107 as shown in
Figure (4b).
3. Conditioning of BVP's

In particular, BVP's for which a small change to the ODE or boundary conditions
results in a small change to the solution must be considered, a BVP's that has this property is
said to be well-conditioned. Otherwise, the BVP's is said to be ill-conditioned[12] . To be
useful in applications, a BVP's should be well posed. This means that given an input to the
problem there exists a unique solution, which depends continuously on the input. Consider the
following 2" order BVP's

Y'x)=f(x,yx),y®)) , xe[0,1] (102)
With BC: y(0)=A,y(1)=By(n) , wherene(0, 1) (10b)
For a well-posed problem we now make the following assumptions:
1. Equation (10) has an approximate solution P € C"[0, 1], with this solution and
p>0, we associate the spheres:
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2. f( x, P(x), P'(x) ) is continuously differentiable with respect to P, and
of / 0P is continuous.
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This property is important due to the error associated with approximate solutions to
BVP's, depending on the semi-analytic technique, approximate solution ¥ to the linear 2"
order BVP's (10) may exactly satisfy the perturbed ODE :

y'=dx) ¥ +q(x) ¥ +1(x) , 0<x<1 (11a)

Where r: R — R™, and the linear BC:

Bo §(0) + B1 §(1) =B + X (11b)

Where § + X =06, 0 € R™ and {X, B, 6} are constants. If ¥ is a reasonably good
approximate solution to (10), then || 1(x) || and || 0” are small. However, this may not imply
that ¥ is close to the exact solution y. A measure of conditioning for linear BVP's that relates
both || r(x) || and ||0|| to the error in the approximate solution can be determined. The
following discussion can be extended to nonlinear BVP's by considering the variational
problem on small sub domains of the nonlinear BVP's [13].

Letting: e(x) = [¥(x)—y(x)|; then subtracting the original BVP's (10) from the perturbed
BVP's (11) results in:

e'(X)=¥"(0) -y (x) (12a)
e'X)=dx)e'x)+tqx)ex)+rx) ;0<x<l1 (12b)
With BC: Boe(0)+Bie(l)=0o (12¢)

However, the form of the solution can be furthered simplified by letting:
O(x) = Y(x) Q; where Y is the fundamental solution and Q is defined in (7b). Then the
general solution can be written as:

ex)=0x) o+ [ G(x, 0 r(t) dt (13)

Where G(x, t) is Green's function [14], taking norms of both sides of (13) and using the
Cauchy - Schwartz inequality [14] results in :
le@)]|=<ki| o |+ ke ||rx) || (14)

1

Where ki=[[Y®)Q'[l» : and ko= sup [ [G(x ) |-t
0

<x<1
In (14), the L» norm, sometimes called a maximum norm, is used due to the common use
of this norm in numerical BVP's software. For any vector v € RN, the L norm is defined as:
| v ||~= max |wvil.

1<isN
The measure of conditioning is called the conditioning constant k, and it is given by:
k = max (ki, k2) (15)

When the conditioning constant is of moderate size, then the BVP's is said to be well-
conditioned.
Referring again to (14), the constant k thus provides an upper bound for the norm of

the error associated with the perturbed solution,

et [l <kl [+ [lreo) || (16)
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It is important to note that the conditioning constant only depends on the original BVP's
and not the perturbed BVP's. As a result, the conditioning constant provides a good measure

of conditioning that is independent of any numerical technique that may cause such

perturbations. The well conditioned nature of a BVP's and the local uniqueness of its desired
solution are assumed in order to numerically solving of the problem.
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Table No. (1): Maximum absolute error of iterative method in [11]

Iteration maximum maximum
error error
when h=0.1 when h=0.05

1 .629106e-1 .629106e-1

2 377465e-2 .377463e-2

3 .226494e-3 .226478e-3

10 .165500e-7 .300000e-9

20 .165500e-7 .300000e-9

30 .165500e-7 .300000e-9

Table No.(2): the comparison between exact solution & Pis

Xi Suggestle)(lismethod Exact y(x) Error |y(x) - P15
0 0 0 0
0.1 | 0.056606536300412 | 0.056606536300412 | 0.006938893903907e-015
0.2 | 0.103271319886014 | 0.103271319886014 | 0.138777878078145e-015
0.3 | 0.140143602192764 | 0.140143602192764 0
0.4 | 0.167470478092429 | 0.167470478092429 | 0.138777878078145e-015
0.5 | 0.185594417002303 | 0.185594417002303 0
0.6 | 0.194949841043994 | 0.194949841043994 | 0.083266726846887¢e-015
0.7 | 0.196058784441190 | 0.196058784441191 | 0.055511151231258e-015
0.8 | 0.189525677526254 | 0.189525677526253 | 0.027755575615629¢e-015
0.9 | 0.176031307472139 | 0.176031307472138 | 0.083266726846887¢-015
1 0.156326016092000 | 0.156326016092000 | 0.083266726846887¢-015
S.S.E. 6.321865042451102¢-032

508 | Mathematics



2014 ple (3) 230l 27 sl £ kb Al 548 poall o slal wligll () Al
Ibn Al-Haitham Jour. for Pure & Appl. Sci. » Yol. 27 (3) 2014

(a)
L) —
\_1__“-‘—‘
— . —
a0 —08s
— 1.2
—1.a —
—— — IMNumerical
— Exact
()
aE — 5 —
_% aFE — 5 —
% 2E — 5 —
= 4
OFE + O T 1
O o2 0.4 0.6 0.8 1
Figure No.(1) : solution of examplelgiven in[10] :
(a)comparing numerical and exact solutions, (b) displaying the error
the solslion aft n—1
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Figure No.(2) : A comparison between exact & P3 of examplel
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Figure No.(3) : A comparison between exact & P3 of example2
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Figure No.(4) : solution of example 3 given in [10] :

(a) comparing numerical and exact solutions, (b) displaying the error.
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Figure No.(5) : A comparison between exact & Pi5 of example3
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