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Abctract

Based on the needs of the scientific community, researchers tended to find new iterative
schemes or develop previous iterative schemes that would help researchers reach the fixed point
with fewer steps and with stability, will be define in this paper the Multi_Iplicit Four-Step
Iterative (MIFSI) which is development to four-step impicit fixed point iterative, to develop the
aforementioned iterative scheme, we will use a finite set of projective functions ,nonexpansive
function and finite set from a new functions called generalized quasi like contractive which is an
amalgamation of quasi contractive function and contractive like function , by the last function
and a set of sequential organized steps, we will be able to prove the existence of the fixed point(f-
point) of the MIFSI and Fur-Step lIterative(FSI), furthermore, we found MIFSI faster than FSI.
On the other hand, the stability of the new iterative is proved.

Keywords: Fixed point, implicit iterative schemes, convergent, projective function, stability,
contractive function, four-step iterative.

1. Introduction and preliminary notes

The fixed-point theory is a key component in the solution of numerous issues in a wide
range of scientific disciplines. Takahashi who originally introduced the idea of convexity in
metric spaces[1]. Metric spaces that are convex are more generalized. Fixed point theorems in
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convex metric spaces (CMS) have been studied by numerous researchers, including Ciric [2],
Shimiz, and Takahashi [3], and many more.
Definition 1.1:[1]: Let X:S X S x [0,1] = S is namely convex structure when the condition is
hold:

d(t,X(,s,%) <3d(tr) + (1 —Nd(t,s) (1.1)
When S is metric space, say about the metric space and convex structure X’ which is denoted by
(S,d, ). Let U be a nonempty, closed subset of metric space S, say U is closed convex subset if
X(,s,2) €eUforally,s € Uand € [0,1].F: S — S be self mapping, while some CMS cannot
be embedded into normed spaces, all normed spaces are inherently CMS.
Examplel.1. Let S = {(#,7%,73) € R3:9, 75,73 > 0}. Forr = (1,75, 73),
S = (51,52,53) €S t = (ti,ty,t3), and o, B,y €I =[0,1] with a + B +y =1, we define a
mapping X: 53 x I3 - S by :

X(s ta,B,y) = (ary + sy +yty, ary + Bsy + yt,, ars + Bss + yts).
And define a metric d: S X S = [0, ) by :
d(r,s) = |r15; + 755, + 1355].
Then, it is clear that (S, d, X') is CMS, but not normed space.
When the Banach principle could not be applied, Mann [4] developed the Mann iterative
technique, recognized as one-step iterative, so as to demonstrate that the series tends toward the
f- points. As a follow-up to Mann's iterative technique, Ishikawa [5] developed a new iterative
process recognized as two-step iterative to attain the convergence of a Lipschitzian
pseudocontractive operator in 1974, using the techniques of solution iteration and the auxiliary
principle.Noor [6] developed the Noor iterative scheme and also recognized the three-step
iterative scheme to investigate the approximation of the solutions to the inclusions of variations
in Hilbert spaces. Using contractive-like operators, Asaduzzaman studied a four-step fixed-point
iterative technique and its convergence in real Banach space [7].
The set for all f-points of F denoted byF (¥) = {y € U; ¥ = s} can be written as the f-point
equation: ¥y = y for a wide variety of physical equations. We solve this problem by selecting an
initial value, y,, and solving it iteratively. The iterative definition of the sequence {7, },_, leads
to an increasing f-point in the constant U, or a mapping g from U on to U nonexpansive if the
next statement holds forany r,s € U
d(gr,9s) < d(.s) (1.4)

Numerous writers have presented and explored alternative iteration strategies for approximating
fixed points for diverse classes of contractive circumstances and studied the convergence, rate of
convergence and stability (see[8-23]).
The function pPy:S — U is called the projective metric function, such that d(]’, pu(r)) <
mingeyd(r,s) forall y € Sand s € U. There are three main parts to this paper: first, a study of
the convergence of each of MIFSI and FSI; second, a study of the acceleration between the two
previous iterative schemes and third, a proof of stability for the new iterative.

Definition 1.2 [14]: Any mapping¥ is called quasi-contractive if there exists @ > 0 and p €

(0,1) such that
d(®r,%s) < wd(, %) + pd(,s) VrseU (1.5)
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Definition1.3 [15]: Any mapping¥ is called contractive-like mapping if the statement below is
true:

d(®r,%s) < 0(d(, %)) + wd(r,s)  VrseU (1.6)
Where @: Rt — R* strictly increasing with #(0) = 0 and w € (0,1).

Definition1.4 [7]: The FSI is defined as follows:

In = (1- an)fn_l + an¥sy

sn=(01- bn)fn_l + by ¥t,

th=01- Cn)fn_l + ety

v == qlr,_, + 9%, nx1 (1.7)
{a,},{b,},{c,}nd {q,} real sequences in [0,1].
Definition1.5 [16]: Let (S, d) be a metric space, then the sequence {, };_, convergence to f €
S. If for every e > 0, there exists k € N, such that d(r,, f) <, for every n >k, and write
lim y = f orwritey, - f.

n—-oo

Definition 1.6 [17]: Let {fn}:;O and {s, }n—, be two sequences lies in R converge to y and s,

respectively, such that £ = lim b=l .

n—oo [Sp_sl
1- If £ = 0 then {]’n}:;() is converge to - faster than {s,,}%°_, converge to s.
2- If 0 < £ < oo then {fn}:;o and {5, }°_, have the same rate.
Some authors have defined new iterative schemes in different spaces and functions,and
demonstrated their acceleration compared to the currently leading iterative schemes, see [18-21].

Definition1.7 [22]: suppose(S,d,X) are a CMS and %:S — S self-mapping, f € F(%). Let
{r, Jn=0 © S be the sequence produced by an iterative method of hiring ¥ with the definition
given by:

=fr ,n=0,1,2,... (1.8)

Inv1 = Fan °
Some functions J"T”an have a convex structure with a, € [0,1] and y, € S the initial

approximation , y, = f. Let {s;}5=o €S and €, = d(snﬂ,j‘;flan),n =012,...838y7, ., =

fa

Lemma 1.1[17]: If c €R, 0 <0 <1 and {€,},=o IS @ sequence of positive numbers and
lim €, = 0, {g,}n=0o any sequence of positive number satisfying:

n—-oo

fir is F-stable if and only if lim €, = 0 implies lim s, = f
n n—oo n—oo

Ini1 < 0gn+€, n=0,12,... (1.9)
Then 111% gn = 0.
In this paper, we denote that Pyy, P1u, P2u, ---, and Py are finite projective metric functions,
g nonexpansive function. We represent for f-point of %Py, g by F(%),(Py)and F(g)
respectively, f is common f-point if f € F(F) n F(g) N F(Py), and represent for the set of all
common f-point by CF (%, Py, 9).

2. Main Results
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In this section we define MIFSI and study the convergence, rate of converge and stability with
respect to generalized quasi like contractive.
Definition 2.1 Any mapping7¥ is called generalized quasi like contractive mapping if

d(%r,Fs) < 3d(r,s) + E0(d(Fr,p) + n min{d(%r,7),d(¥s,5)} VI,s €U (2.1)
Where @: R* - R* with @(0) = 0,3 € [0,1]andn, & = 0.
Definition 2.2 The multi_implicit four-step iterative (MIFS) is defined as follows:
I = AnoPoulp_; + Z{'(=1ani Tis,
Sp = bpogtn + (1 — bno)piUr’FOtn
tn = CnoPoytn + Z?:l Cni piU?iUn
Un = Qnoty, T 1- qno)?ofn nz1 (2.2)
Where T are finite generalized quasi like contractive mapping define by (2.1) such that
i=0,1,2,...k. {a,}, {b,}, {c,} and {q,,} real sequences in [0,1].
Now we state and prove the convergence and stability theorem,for MIFS iteratives .
Theorem 2.1: Let ¥ be a finite generalized quasi like contractive mappings for all i =
0,1,2,...,k and g be a nonexpansive mapping if f € CF(F, Py, ). Then, the MIFS {7 }n=o
defined by (2.2) with X (1 — a,,) = oo, converges to the f-point f of F:.
Proof: Let f € CF(F, Py, 9), then from {r,}o,MIFS
d(r, f) = d(X(Povsp_y FSn @ni), f)
< anodPouvtp_1p ) + Y, anid(TiSn: f)
l
< anod(r )+ Ty ( Mo ) + §i0:(F f,if) )
+n; mm{d(T Sn,sn),d(? f, f)}
< anod(Fn_y f) + Ji Z{'czl anid(snf f) (23)
d(snr f) = d(x(gtn' pOU?Otn' bnO)' f)
< byod(gtn, f) + (1 = byo)d(fou ¥ty )
< bnod(tn' f) + (1 - bno)d(Totn'f)
L
< buod(tn, f) + (1 — bno)< odlin 1) fo0(F/ S ) )
+nomin{d(¥°t,, tn),d(? f, f)}
= (bno + (1 - bno)lo)d(tn' f) (2-4)
d(tnr f) = d(x(pOUvn' piU?iUn' Cni)' f)
< cnod(fouvn, ) + Lot cnid(fisF o, )
< Cnod(vnrf) + Z{'(zl Cnid(?ivnf f)
2
< Caod (v ) + Tl ( e, ) +80(71.f) )
+n; mm{d(? vn,vn), d('? f, f)}
< d(Wn, f)(Cno + 3 g i) (2.5)
d(n, f) = d(X(r,, T, Gno), )
< Qnod(fn: f) + (1 - Qno)d(Tofn»f)
0
< grod(r, )+ (1 20) < uod_(fn,f): £000(F f,i f )
+no min{d(¥% ., ), d(F'f, f)}
< (Gno + (1 — Clno)lo)d(!’n'f) (2.6)
Take 3 = max{3;,i =0,1,2 ... k}.
From (2.3),(2.4),(2.5), and (2.6) we have :
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5011 < ano 1 1)+ [15Hr (0™ 02) (8 ) () 6 )

a=[tan (o0 o ) ()| 40 ) < @l f)
Ano d(fn—l'f)

dly, . f) <
( " ) 1- [-1 Zf=1 Ani (Qno + (1 - Qno)l) (CnO + JZ;‘:]_ Cni) (bnO + (1 - bno)l)]
R_n — Ano
Let Sn 1_[1211'{:1 ani(Gno+(1=qnol3) (Cno‘l'lZ{'(:l cni) (bno+(1—bpo)N)]
1— & —1— Ano
STL 1- [-1 Zf:l Ani (Qno + (1 - CInO)J) (CnO + JZ;‘:]_ Cni) (bnO + (1 - bno)l)]

2 <IZE 1 @ni (Gno + (1= 420 (cno +3Zhoy cni) (o + (1= b)) + o
) <ot () G ) ) o]
7)< [0 (X n) ™ er00) (6 2 ps) + 0] €0

< [1= = e (1300 (a Ps) (a2 (@ ) €

b:

-1 1= 00 (13 () (1) (1 ) (s )] 60

Take limit asn — oo for both side we have d(r, f) = 0.

By the same way, we can prove the four-step iterative converges to the f-point f of F:.
Now, we prove the MIFSI convergent is faster than FSI.

Theorem 2.2 Let ¥ be a finite generalized quasi like contractive mapping forall i = 0,1,2, ..., k
defined by (2.1) and g be a nonexpansive mapping, If f € CF(¥%, Py, g). Then, for 1, € U, the
MIFSI {7, }nz, defined by (2.2) convergence faster than FSI {,_};_, defined by (1.4):
Proof: Since f € CF(¥, Pyy, g), then from {37, MIFS
d(r, f) = d(X(Povs,_y FSn ani), f)

< nod(Pouvtp_yp ) + i, anid('?isn, f)

< Gnod(ry_p, ) + 3 Zis anid (s, f) (2.3)
d(sp, f) = d(X(gtn, PouFtn, bno), f)

< brod(gtn, f) + (1 = bpo)d(fou ¥ty )

< (bpo + (1 = bpo)2o)d(tn, f) (2.4)
d(tn, f) = d(x(pouvn: PivFvy, Cni)»f)

< Cnod (fouvn, f) + Lie1 cnid (fiFvn, f)

< d(Wn, f)(Cno + % iy i) (2.5)
d(vp, f) = d(X(]’n, ?Orn: qn)'f)

< Qnod(fn: f) + (1 - Qno)d(Tofn»f)

< (Gno + (1 = @no)30)d(,, f) (2.6)
Take 3 = max{3;,i =0,1,2 ... k}.
From (2.3),(2.4),(2.5) ,and (2.6) we have :
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() < (in_?l) (0% %n) ™ e.) ((1@%;)3); o] o)
- no t Cno + no +
= [1(ar0) (=3 (a2 ) (@ ) (6 ) 4o

We can write

1= (13 ((1q—noczjo)z) ((ﬁocjo)z) ((1%019:;)1))] <1-(-an)=3
d(r,, f) < (1= (1= ap)(1 =2)d@,_,. )

1 (1= (1= a0) (1= 9)d(y ) (27)

Now, to get the {y }n=, for FSI:
d(fn' f) = d(x(fn_y sy, ano)»f)

< (1= an)d(f,_y, f) + @nod(Fsn, f)

< (1= an)d(f,_y f) + 3anod(sn, ) (2.8)
d(sp f) = d(X(r,,_, Ftn, bno), f)

< (1= bno)d(ry_y, ) + brod (Ftn, f)

< (1= bno)d(r,,_y, ) + Mbpod (tn, f) (2.9)
d(ty, f) = d(X (- FVn o), f)

< (1= cpo)d(f,_y f) + Cnod(Fvn, f)

< (1= cn)d(f,_y f) + 3cnod(vn, ) (2.10)
Ay, ) =d(X(r,_, %%, 1 an). f)

< (1= qno)d(rp_yp ) + dnod (1,1, )

< (1= Gn)d(r,_y, ) + Mnod (g, f) (2.12)
From (2.8),(2.9),(2.10) ,and (2.11) we have:
(7, f) < (1= @no) + 3ano (1 = bp) + 3byo((1 = cpo) +
3eno (1 = Gno) + 3420))))A (10 f)

= (1 = apo(1 = 3(1 = byo(1 = 3(1 = cpp) — ¥cpp(1 =2) — 33Cn0¢1n0))))d(l”n_1»f)
= (1 = ano(1 =31 = bpo(1 = 3(1 = cno(1 = 3(1 = gno(1 = )N A(G,_1» )
We can write :
(1 = (1 = 31 = byo(1 = 31 = o (1 = 3(1 = Go (1 = ))NN)) < (1 = apo(1 =)

Ay, f) < (1= ano(1 =2)d(r,_y, f)

<M (1= a1 =) Gy ) (2.12)

Take limy Latico M17sT _ a(1-(1-aj0) AD)dGo /) _
noo Uulizo FST I (1-aj0(1-0))aGy )

Then, by definition 1.6 the MIFSI converges faster than FSI to f-point when 1 — a;q > aj.
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Theorem 2.3 Let ¥ be a finite generalized quasi-like contractive mapping satisfying (2.1)
WithCF (%%, iy, g) # ©. Then, fory, € U, the sequence {r,},-, defined by the MIFSI iterative
(2.2) with the converging point at f € CF (%%, Py, g) ,is F-stable.

Proof: Let {I,}s-o © U be an arbitrary sequence such that e, = d (1, X (Pouln-1, T, @ni))

where, Jn = x(gmn» piU?Omn» bnO) yMy = x(pounn: piUr’Finn' Cni) ) n, =
X(,,F°L,, g,0)and

lime, =0.

n—oo

d(ln' f) < d(ln' x(DOUln—lf Tijnr ani) ) + d(x(pouln—li Tijn' ani)r f)
< €n + Anod(Poyln-1, ) + Xicy anid(Fjin, f)
3G ) + &0 (A(F£. 1)) ]
+1; mln{d(]n' £ ]n)' d(Tlf' f)}
< €nt+ < anod(ln-1, f) + i andidGn ) (2.13)
AU, f) < brod(gmy, f) + (1 = bpo)d(PoyFmy, f)
< bpod(My, f) + (1 = bpo)d(F°my, f)
Jod(my, ) + &@o(d(°f, f)
< udm )+ = | ot
< (bpo + (1 = bpo)3o)d(my, f) (2.14)
d(mnr f) < Cnod(pOUnn: f) + 21 1 Cmd(pLU?lnn' f)
= Cnod(nn: f) + 21 1 Cmd(Tlnn'f)
Nd(nn, ) + &9 (d(¥'7.£)) ]
+7; mm{d(nn, ?‘nn), d(T‘f, f)}
< Cnod(Mn, ) + Ty i 2id (i, f)
< (CnO + Zi’czl Cni Ji)d(nrv f) (2-15)
d(Nn, ) < qrod(ln, f) + (1 = qno)d(F°L, f) ( )
2od(ly, f) + &80 (d(F°f, )
d(My, f) < qrod(ln, f) + (1 — qno) l ny min{d(l,, T°L,), d(F°F, £}
d(nn, f) < (Gno + (1 — qno)P0)d(ln, ) (2.16)
Take 3 = max{J3;,i = 1,2,...,k}.
From (2.13),(2.14),(2.15), and (2.16) we have .
d(ln»f) < 6n+ = anod(ln 1'f) +
l 1 anll(leO + (1 - no)l)(cno + Zl 1 CTll 3)(%0 + (1 - Qno)l)d(ln’ f)

(1 - l 1 ani D) (bno + (1 no)l)(z Qno )l))d(ln: f) = €n + anod (ln 1 f)

d(ln, f) < 1

< 6n+ < anod(ln 1»f) + 21 1 Api

< Cnod(nn'f) + 21 1 Cni

€n
- [ ?:1 anil(bno + (1 no)l)(cno + Zl 1 Cni J)(qno + (1 - Qno)l)]
+ anod (ln—lf f)
1- [Z?:l anil(bno + (1 - bno)l)(cno + Zlic=1 Cni 3)(%0 + (1 - Qno)l)]
Al ) < o
v [1 - l 1 AniM(bno + (1 — bno)l)(cno + Zl 1 Cni 3)(61110 +(1- Qno)l)]ano
n anod (L1, f)
1- [2?:1 anil(bno + (1 no)l)(cno + Zl 1 Cni 3)(qn0 + (1 - Qno)l)].

llTll
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But

ano
<l1-(1-a 1-2
1“[2{'(=1 anil(bn0+(1_bn0)l)(cno +Z{'(=1 Cnil)(QnO"'(l—Qno)J)] ( nO)( )

Al ) < 1= (1= ap)(1 = D] =+ [1 = (1 = ) (1 = V]d (-1, )

no
But,1—(1—a,)(1 -2 <1.
since lim €,, = 0, and by Lemma(1.1), we have llm d(l,, f)=0:

n—-oo

which implies that lim L, = f.
n—-oo

Conversely, if lim L, = f
n—oo

en = d(ly, x(pouln—b ?ijn: ani)
< dlp, ) + d(X (Pouln-1,Fjn, ani) . f)
< d(lw f) + anod(pouln—p f) + Z{F:l anid(?ijn' f)
3, £) + &9; (d(Ff. f)) ]
+1; min{d (jn, Fjn), d(¥'f, )}
< d(ln: f) + anod(ln 1'f) + 21 1 amJ d(]n: f) (2-17)
d(jn, f) < bpod(gmap, f) + (1 = bpo)d(F°my, f)
Jod(my, ) + & @0 (d(°f, f)
< bdtma )+ (b | o P
< (bno + (1 = bp)3g)d(myy, f) (2.18)
d(mnr f) < Cnod(pOUnn: f) + Zk 1 Cmd(pLU?inn' f)
= Cnod(nn' f) + 21 1 Cmd(? nn'f)
3d(nn, ) + &9, (d(F, f)) ]
+7n; mm{d(nn, T nn), d(T f, f)}
< Cnod(Mn, ) + Ty i 2id (i, f)
< (Cno + Z?:l Cni Ji)d(nn: f) (2-19)
d(M, f) < Gnod (L, f) + (1 = Gro)d(F°Ly, f)
2od(Ln, f) + &80 (d(F°f, )
< i )+ (=) | o f))}l
< (Gno + (1 = gno)30)d(Ln, f) (2.20)
Take X = max{;,i =1,2,..., k}.
From (2.17),(2.18),(2.19) ,and (2.20) we have:

€n < d(ln'f) + anod(ln—lff) + (Z{;lam

< d(ly ) + anod(ly-1, ) + Zl 1 ani

< Cnod(nnlf) + Zl 1Cni

(bnO + (1 no)l)
( nO + Zl 1Cni 3)(%0 + (1 - CInO)J)

e < (14 Zly a3 (o 4 (L= b)) (0 3 (0 ™) 53l 1) + ol

Take limit for two sides with lim d(L,, f) = 0, we have lim €, = 0.
n—->oo n—->oo

>d(ln.f)

3. Conclusion
The results of this paper as follows:

1. MIFSI is convergent to the f-point of generalized quasi-like contractive.
2. MIFSI has a rate of convergence faster than FSI.
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We proved the stability of MIFSI with generalized quasi-contractive.
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