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Abstract

In this paper, we estimate the survival function for the patients of lung cancer using
different nonparametric estimation methods depending on sample from complete real data
which describe the duration of survivor for patients who suffer from the lung cancer based on
diagnosis of disease or the enter of patients in a hospital for period of two years (starting with
2012 to the end of 2013). Comparisons between the mentioned estimation methods has been
performed using statistical indicator mean squares error, concluding that the survival function
for the lung cancer by using shrinkage method is the best .

Keywords: Nonparametric Estimation , Lung Cancer Disease, Complete Real Data,

Empirical Estimator, Borkowf —type estimator, Thompson— type estimator, and Nelson-Aalen
Estimator, Mean Squares Error
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1. Introduction
1.1: Preface and History

Survival analysis is one of the widely used techniques in medical statistics; its
importance also arises in diverse fields such as medicine, engineering, epidemiology, biology,
economics, physics, public health and or event history analysis in sociology. survival analysis
involves the modeling of time to event data; in this context, death or failure is considered an
"event" in the survival analysis literature — traditionally only a single event occurs for each
subject, after which the organism or mechanism is dead or broken[6]. Cancer is a class of
diseases when a cell or group of cells display uncontrolled growth, invasion and sometimes
spread to other locations in the body via lymph or blood (metastasis)[2]. Lung cancer is the
most common cancers in the world and the cause of cigarette smoking most types of lung
cancer, the more the number of cigarettes smoked per day more and more beginning was in
the habit of smoking in the age of the youngest whenever the risk of lung cancer the biggest,
as well as the high levels of air pollution and exposure radiation and asbestos may also
increase the risk of lung cancer.

Nelson, W. [11] presents theory and applications of a simple graphical method, called

hazard plotting for the analysis of multiply censored life data consisting of failure times of
failed units intermixed with running times on un failed units. Applications of the method are
given to multiply censored data on service life of equipment, for strength data on an item
with different failure modes, and for biological data multiply censored on both sides from
paired comparisons. Theory for the hazard plotting method, which is based on the hazard
function of a distribution, is developed from the properties of order statistics from Type II
multiply censored samples.

Petrson ,A.V.[12] proved that the Kaplan-Meier estimator has consistency property and
proposed an estimator for the cumulative hazard function.

Haifa, K. [5] estimated the reliability function for the tools of 14 Ramadan factory of
tissues with Non-parameters Kaplan and Meier methods . She made a comparison between
Kaplan and Meier method and the reliability function when failure data is exponential
distribution and concluded that no differences had been significant between the two
estimations.

Al-Qurashi,I.LK.[1] suggested two formulas for estimating the reliability function whatever
of the size of their data especially with small size data without access in the theoretical
probability distributions, and comparing the proposed formulas with other parametric and
non-parametric estimation methods.

Borkowf, C. B. [3] proposed a survival function under the framework of the Kaplan-Meier
survival function which is called Shrunken Kaplan-Meier survival function. The Shrunken
Kaplan-Meier survival function having n number of cases in the study and proved that these
estimators performed better as compared to the Greenwood and Peto’s estimators. Borkowf in
his study analyzed only the variance estimators.
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Mei-C. W. [9] presented some Non-Parametric estimation methods in Survival analysis and
gave summary notes for survival analysis in Biostatistics

Basher, F .M.[4] presented some Non-parametric methods to estimate the reliability
function with the practical application using eight estimation methods , Empirical (EM),
Product Limit (PLEM) Empirical Kaplan Meier (EKMEM), Empirical Weighted Kaplan-
Meier (WEKM) ,Modified Kaplan-Meier (MKMM),a weighted for reliability
function( WMR) , Modified One( MMO) , Modified Two( MMT ) and reached best Non-
parametric method is an Empirical (EM) method using statistical indicator , integral mean
square error (IMSE).

The knowledge of statistics is one of the important measurements in the pivotal trial
and the method of data analysis and evaluation of results [10] In this paper, we rely on real
data for patients with lung cancer was the size of the sample ( 118 ), the number of males (68)
and the number of females (50) for the years 2012 and 2013 may have got more types of
cancers in humans killed .

The aim of this paper is to estimate the survival function for the mentioned complete real

data. Comparisons between the proposed estimation methods has been performed using
statistical indicator mean squares error, concluding that the survival function for the lung
cancer by using shrinkage method is the best.
Kaplan, E.L. & Meier, P. [6] suggested estimating the conditional probability of failure of
time t by the observed proportion of failures of time t , and combined these estimates in the
usual manner to obtain an estimate of the underlying survival distribution S(t).They studied
the properties of proposed estimates and concluded the maximum likelihood estimate was
strongly consistent and asymptotically normal.

1.2 Basic Concepts

1.2.1 Survival Function

The object of primary interest is the survival function, conventionally denoted by S, which is
defined as [7]:

S(t) =Pr(T > 1) (1)
Where , T is ar.v., tis the time of death, .
The survival function S(t) is the probability that the patient will survive till time t.

Survival probability is usually assumed to approach zero as age increases. i.e.;
1. S(0)=1.
2. gim Sit)=0

3. S(t) is decreasing and continuous from right side.

Another characteristic of survival data is that the survival time cannot be
negative[13]. See figure (1).
2. Nonparametric Estimation Method

Nonparametric method is often very easy and simple to understand as compared to
parametric method .Furthermore, nonparametric analyses are more widely used in situation,
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where there is doubt about the exact form of distribution [13]. In this research we use some
nonparametric methods like Empirical Survival Function (EM), Borkowf —type (BE), Nelson

-type (NE), and Thompson— type(TB) estimators for estimating the survival function for
the patient of lung cancer based on complete censored data .
2.1 Empirical survival Function Estimation Method(EM)

Let F ( t) denotes the life distribution for a certain type of items. We want to estimate the
distribution function F ( t ) and the survivor function S (t)=1-F (t) from a complete data
set of m independent lifetimes. Let t (1) = t@) = . . . =tm) be the data set arranged in ascending
order. The empirical distribution function is defined as [6],[14]

(Number of life time < t)
n

F(t) =

(2)

If we assume that there are no ties in the data set, the empirical distribution function may
be written
0 for t< t(l)

F(v = L fort; Sttty i=ln 3)
1 fort, <t

The corresponding empirical survivor function is
Number oflife time > ¢t
S@)=1-F@®) = = (4)
If there are no ties in the data set, the Empirical survivor function may also be written

1 for t< t(l)

SMem =1 1 —% fort; S t < tgyq) 1= 1, eeem (5)
0 fort, <t
The variance of Empirical survivor function is [14]
a §(t)EM(1 - §('C)EM)
Var(S(t)gy = - (6)

If all observations are distinct, S(t) is a step function that decreases by 1/n
just before each observed failure time[6]. A simple adjustment accommodates any ties present
in the data. S(t) as a function of tis illustrated, so we have

S(Opy = 1 —% i=1mm %)
2.2 Borkowf —Type Estimator Method (BE)

Borkowf proposed a survival function under the framework of the Empirical survival
function[3] .The Borkowf Empirical survival function having n number of cases in the study
which is defined by the expression

- - 1)$ 1
S(t)BE = w-l_z (8)
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Borkowf proved that the Greenwood’s variance of the proposed estimator S(t)gg less than
the Greenwood’s variance of Empirical survival function (5 (t)em ). The standard error of 5(t)

is usually found from Greenwood’s formula. The variance of Borkowf proposed a survivor
function is[3],[14]

28(0gm (1 = S(gm)
n

Var(§(ae) = () ©)

2.3: Thompson— Type Estimator Method (TE)

The shrinkage estimation method is the Bayesian approach depending on prior information
regarding the value of the specific parameter & from past experiences or previous studies.

In this section we have to estimate S(t) when a prior information about S(t) available as
initial value So(t).

Thus, Thompson- type shrinkage estimator have the following form [15]
SO =ESMem+ (1 —8)S:(t), 0<¢E<1 (10)
Where £is a shrinkage factor. () « £ - 1. Here, S:(t) is selected based on Wald test statistic
for Ho : S(t) = So(t) , against Ha: S(t) #So(t) with Level of significance equal toa = 0.05.
Where test statistic is

SAEM -S 0

1/2

Z = -
[varSg, |

In this paper, we put forward the shrinkage weight function & a5 Exp(-10/n) -
2.4:Nelson-Aalen Estimator Method (NE)

The Nelson-Aalen Estimator[11], an alternative estimate of the survival function which is
based on the individual event times and of cumulative hazard rate H(t) at time t as
below:-

H(v) =Z% fort >0 (11)

tist

Suppose that there are n individuals with observed survival times t 1, t2 ,...,ta. The ordered
death times ti) ,i=1,2,...,n. Where di is the number of individuals who die at time t (i) .

t

H(t) = f h(x)dx = —LnS(t)
0
Where h(t) refers to hazard rate at time t.

Thus ,we can write the survival Nelson estimation as following

12)( ) S(t)ne=Exp (-H(t)

535 | Mathematics



2014 ple (3) 232l 27 alall
Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Akl 5 4 peall o slall ngl) ) dlaa

Yol. 27 (3) 2014

3. Estimation of Survival Function Methods

The results of the estimation for the Survival Function using four mentioned methods
under complete data using the MATLAB (2012a) program [8,14] are shown in Table( 1 ).

4.Numerical Result and Conclusions
1. As an expected the values of survival function of all estimation methods which are proposed in this
paper has been decreasing gradually with increasing failure times for lung cancer patients , that is
means there is an opposite relationship between failure times and survival function. This shows that
the value of survival function for patients was high when the patients were alive in the hospital and
became low otherwise [14].
2. The mean squares error [14], for proposed estimation methods of the survival function are given in
table (2).

Where;

LolS) — S(ti)]z
n

MSE[S(t)] = (13)

Where 5(t;) is the Median rank survival function, g (t;) is the specific estimated survival function
and n refer to the sample size of the patient .
3. As a consequence, the computations of mentioned statistical indicators which are shown
in table (2) above, leads to the result that the mean squares error(MSE) for Thompson
estimator (TE) method are less than those of the EM, BE and NE methods, so the shrinkage
Method is the best estimation method.
4. By observing figure (4) below, one can note the matching of the proposed estimation
methods in this paper and the extent of convergence resulting accuracy of these methods,
especially to real Median rank survival function methods S (t) .See figure (2).
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Table No. (1): Estimated Values for the Survival Function

No. Time/d S EM S BE S_NT S NL
1 3 0.9915 0.9874 0.9917 0.9916
2 37 0.9831 0.9790 0.9833 0.9832
3 72 0.9746 0.9706 0.9748 0.9749
4 75 0.9661 0.9622 0.9663 0.9667
5 91 0.9576 0.9537 0.9578 0.9585
6 100 0.9492 0.9453 0.9494 0.9504
7 103 0.9407 0.9369 0.9409 0.9424
8 121 0.9322 0.9285 0.9324 0.9345
9 127 0.9237 0.9201 0.9240 0.9266
10 140 0.9153 0.9117 0.9155 0.9187
11 154 0.9068 0.9033 0.9070 0.9110
12 156 0.8983 0.8949 0.8985 0.9033
13 164 0.8898 0.8865 0.8901 0.8957
14 186 0.8814 0.8781 0.8816 0.8881
15 211 0.8729 0.8697 0.8731 0.8806
16 212 0.8644 0.8613 0.8646 0.8732
17 213 0.8559 0.8529 0.8562 0.8658
18 217 0.8475 0.8445 0.8477 0.8585
19 218 0.8390 0.8361 0.8392 0.8513
20 221 0.8305 0.8277 0.8308 0.8441
21 221 0.8220 0.8193 0.8223 0.8370
22 233 0.8136 0.8109 0.8138 0.8299
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0.1191 0.4142
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Table No. (2): Comparing between four Non-parametric Methods

Methods MSE[S(¢t;]]
EM 0.000018
NE 0.0292

BK 0.000019
TH 0.000015

\ 4

S (1)

Figure No.( 1): Shows the curve of the survival function

0 100 200 40 500 600

) 300
Time , days

Figure No.(2): Shows the curve of four used estimation methods for the survival function
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