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Abstract 

    Suppose that A is an abelain ring with identity and B is a unitary (left) A-module. In this paper, 

we introduce a type of module, namely quasi-semiprime. A-module, whenever √[𝑁: 𝐵]  is a 

prime ideal for proper submodule N of  B, then B is called quasi -semiprime module, which is a 

generalization of quasi-Prime A-module, whenever annAN is a prime ideal for proper submodule 

N of B, then B is quasi-prime module. A comprehensive study of these modules is given, and we 

study the relationship between quasi-semiprime modules and quasi-prime. We put the condition 

coprime over cosemiprime ring for the two cocept quasi-prime modules and quasi-semiprime 

modules, which are equivalent. The concepts of prime modules and quasi-semiprime modules 

are equivalent. The condition of anti-hopfain makes quasi-prime is quasi-semiprime A-module. 

Whenever B is cyclic, coprime C-module, where C is the ring, each ideal is semiprime, which 

implies quasi-prime, quasi-simepime, and annCB are prime ideals. If F is an epimorphism from 

B1 →   B2, whenever B1 is a quasi-prime module, it implies B2 is a quasi-prime A-module, and 

the inverse image of quasi-semiprime is a quasi-prime A-module. 

Keywords: Prime module, Quasi-prime R-modules, Quasi-semiprime R-modules, Coprime R-

modules, Antihopfian R-modules. 

1. Introduction  

   Suppose that W is a left A-module, where A is a ring with unity. An A-module B is said to be 

prime whenever annAB=annAN for each non-zero submodule Nof B, where annAB={a ∈ 

A;bx=0 for each b ∈ B}[1,2]. Hasan in [3] introduced the concept of qasi-prime A-modules, 

which is a generalization of prime A-modules, where an A-module W is called quasi-prime 

modulles if and only if for each non-zero submodule N of W, annA N is a prime ideal. Annin 

[9] calls an A-module W a coprime (dual notion of prime modules) if annAW=annAW/A for 

every proper submodule A of W. In this paper, we study a generalization of the quasi-prime 

module which we called the Quasi-semiprime A-module if  √annB/N   =  √[N: B]  is a prime 

ideal for each submodule N of B. 

This paper consists of two sections. In section one; we study the basic properties of a quasi-
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semiprime A-module. In section two, we study the relation between quasi-semiprime A-

modules and prime A-modules. 

 

2. Materials and Methods 

Definition (2.1) 

B is said to be a quasi-semiprime A-module if √[N: W] is a prime ideal for the proper 

submodule N of B. 

 

Examples and Remarks (2.2) 

1- It is clear that Zn is a quasi-semiprime A-module if and only if n is a prime number. 

2- If n can be written as a product of two prime numbers, then Zn is a quasi-semiprime A-module. 

Proof: 

Let n=p1p2; p1, p2 be two prime numbers, so N1= (p1),N2=(p2), then√[(𝑃1: 𝑍𝑛] =√(𝑝1) = (p1), 

N2=(p2), then √[(𝑝2):𝑍𝑛] = √(𝑝2) = (p2) is a prime ideal, henc   Zn is a quasi-semiprime A-

module. 

3- Zp∞ is not a quasi-semiprime module, since we know that every submodule of Zp∞ is of the 

form (1/pn +Z), where n is a non-negative integer, so √[
1

𝑝𝑛 + 𝑍: 𝑍𝑝∞]         = √[
1

𝑃𝑛 + 𝑍]      = 

(pn Z) is not prime ideal. 

4- Suppose B is a simple A-module, then B is a Quasi-Semiprime A-Module. 

Proof: it is clear. 

Proposition (2.3) 

Every proper submodule N of quasi-semiprime module is a quasi-semiprime module. 

Proof: 

Suppose N is a proper submodule of quasi-semiprime A-module W. Let K be a proper submodule 

of N to show that √[𝐾: 𝑁] is a prime ideal if  ab∈ √[𝐾: 𝑁], so anbn∈  [K:N], so that anbnN ⊆  K 

⊆  W that is anbn ∈  [N:W], but W is a quasi-semiprime A-modul implies either an ∈ [N:W] or bn 

∈ [N:W], thus either  an∈   [K:N] or bn ∈ [K:N] which means either a∈ √[𝐾: 𝑁] or b∈ √[𝐾: 𝑁], 

so √[𝐾: 𝑁] is a prime ideal. 

Recall that whenever B ≅ B/N for all proper submodule Nof modules B, then we said that anon-

simple A-module B anti-hopfian module [4, 5]. 

Proposition (2.4) 

 Suppose that B is an anti-hopfian quasi-prime A-module, then B is quasi-semiprime. 

Proof: 

Since B is an anti-hopfian module, then B ≅ B/N for N be a proper submodule of B, so there 

exists an isomorphism function f: B→   B/N; f(b)=b+N for each  b ∈ B, so it is easy to check that  
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annAB=annAB/N, then by [6], every anti-hopfian A-module is a coprime E-module, where 

E=End(W) and by [5] every f ∈ E, either f=0 or f is subjective, thus f(b)=0 or f(b)=B for every w 

∈ W If f(w)=0 implies W=N which is a contradiction, so f(W)=W, which means annAB=[N:B], 

implies √𝑎𝑛𝑛𝐴𝐵 =√𝑎𝑛𝑛𝑁
𝐵  if anbn ∈[N:B], then anbn ∈ annAB but B is a quasi-prime A-module, 

so by [3] implies annAW is a prime ideal, so either an∈  annAW or bn ∈ annAB. Thus, either a ∈

√[𝑁: 𝐵] or b∈ √[𝑁: 𝐵], which means B is a quasi-semiprime A-module. 

The condition anti-hopfian we cannot drop for example: Z6 is quasi-semiprime A-module by  

(2.2), while it is not quasi-prime by [3], and Z6 is not anti-hopfain by [6]. 

Prorosition (2.5) 

Suppose B is a coprime A-module of quasi-prime, then B is  quasi-semiprime A-module. 

Proof 

Let B be a quasi-prime A-module, then by [3], annAB is a prime ideal, but W is a coprime A-

module, so annAB/N is a prime ideal for each non-zero submodule N of B, which means√[𝑁: 𝐵] 

is a prime ideal. Thus, W is a quasi-semiprime A-module. 

Recall that an ideal K of the ring A is called nil radical and denoted by√𝐾, and is defined by: √𝐾    

={a∈  A; an∈  K , for some n Z+}[8]. 

Not (2.6) 

Suppose C is a ring where every ideal is nil radical, which we call cosemiprime ring. 

Theorem M (2.7) 

Suppose that B is a coprime C-module. The following statements are equivalent: 

1) B is a Quasi-Prime Module.  

2) B is a Quasi-Semiprime Module.  

Proof: 

1)  →    (2) (by Theorem ( 2-5))  

(2) →  ( 1) for each a,b ∈  C if ab  annC N,then abN=0 implies ab ∈ [(0):N],which means ab∈

√[(0): 𝑁], but W is quasi-semiprime module so either a∈ √[(0): 𝑁] or b∈ √[(0): 𝑁] implies 

either a∈ annCN or b∈  annCN. Thus, B is a quasi-prime C-module. 

Theorem (2.8) 

Let B be a cyclic coprime C-module, then the following statements are equivalent: 

1- B is a Quasi-Prime C-Module. 

2- B is a quasi-semiprime C-module. 

3- annCB is a prime ideal. 
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Proof: 

1→    2 (by Theorem (2.5)) 

2   → 3 if ab ∈ annCB, then ab∈ √𝑎𝑛𝑛𝐵. Thus, ab∈ √[𝑁: 𝐵] for every submodule N of B which 

means anbn ∈ [N:B], but B is a quasi-semiprime C-module, so either an∈  [N:B] or bn ∈ [N:B], 

but B is coprime by [9] implies either anB=0 or bnB=0, which means either a∈ √𝑎𝑛𝑛𝐵  or b∈

√𝑎𝑛𝑛𝐵.Thus, either a∈ annCW or b∈ anncB. 

3 →  1 by [3] implies the result.  

 

Proposition (2.9) 

Suppose that B is an A-Module and J is an Ideal Of A which that is contained in annAB/N where 

N is a submodule of B. Then, B is a quasi-semiprime A-module ⟷ B is a quasi-semiprime A/J-

Module. 

Proof 

To show B is quasi-semiprime A\J-module if (a1+J)(a2+J)∈ √[𝑁:𝐴/𝐽 𝐵], where a1+J,a2+J∈  B/J, 

then (a1a2+J)n∈ [N:A/IB]. Thus, (a1
na2

n+J)x=0 for all x∈ annA/JB/N. Hence, a1
na2

nx=0 for all x∈ 

annAB/N which means a1
na2

n∈ [N:B], so a1a2 ∈ √[𝑁:𝐴 𝐵], but B is quasi-semiprime A-module, 

which implies either a1 ∈ √[𝑁:𝐴 𝐵] or a2∈ √[𝑁:𝐴 𝐵]. Thus, either a1
n ∈ [N:𝐴B] or a2

n ∈[N:𝐴B]. 

However, a1
n+I ∈  annAB/N or a2 

n+J ∈ ann B/N. Thus, either (a1+I)∈ √[𝑁:𝐴/𝐽 𝐵] or (a2+I)∈

√[𝑁:𝐴/𝐽 𝐵], which means B is a quasi-semiprime B/I module. 

Conversely ,if B is quasi-semiprime A/J-module ,let N be a nonzero A-submodule of B,let a1,a2∈

√[𝑁:𝐴 𝐵]   ,then a1
n a2

nx=0 for all x ∈annAB/N.Hence (a1
n+J)(a2

n+J)x=0 for all x∈  annA/JW/N 

,so(a1+J)(a2+J)∈ √[𝑁:𝐴/𝐽 𝐵] ,whille   is a prime ideal,so either (a1+I)∈ √[𝑁:𝐴/𝐽 𝐵]  or (a2+I)∈

√[𝑁:𝐴/𝐽 𝐵]   .Then we get either a1
n x=0 or a2

nx=0 f0r each x ∈ annAB/N,so either a1∈ √[𝑁:𝐴 𝐵]  

or a2 ∈ √[𝑁:𝐴 𝐵] . 

Theorem (2.10) 

Suppose B1, and B2 are two A-modules, if f: B1 →   B2, is an epimorphism function, then if B1 is 

a quasi-semiprime module, then B2 is a quasi-semiprime A-module. 

Proof: 

Since B1 is a quasi-semiprime A-module, so if anbnB1⊆ N1 for each a,b∈ A, then either anB1⊆ N 

or bnB1⊆ N. Thus, f(anbnB1)⊆ f(N1) since f is a homomorphism implies f(an).f(bn)∈ [f(N):f(W1)]. 

Suppose f(a)=x,f(b)=y. Thus, either f(anB1) ⊆f(N1) or f(bnB1)⊆ f(N), so either f(an)f(W1) ⊆f(N) 

or f(bn)f(B1)⊆ f(N) implies either xnf(B1)⊆ f(N) or ynf(B1)⊆ f(N1), but f is onto, so 

f(B1)=B2,f(N)=N2, which means either x∈ √[𝑁2∶𝐵2 or y∈ √𝑁2: 𝐵2, whenever xy∈ √𝑁2: 𝐵2 . 

Thus, √𝑁2: 𝐵2  is a prime ideal, which means B2 is a quasi-semiprime module. 
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Corollary (2.11) 

The inverse image of the quasi-semiprime module is a quasi –semiprime module. 

Theorem (2.12) 

 Let B1 and B2 be two quasi-semiprime A-modules such that for each proper submodule K,T of 

B1,B2, respectively, if [K⨁ T:W]=[K:W]∩ [T:W], then B=B1⨁ B2 is a quasi-semiprime A-

module, where√[𝐾: 𝐵]  ⊆ √[𝑇: 𝐵]   or √[𝑇: 𝐵] ⊆ √[𝐾: 𝐵] .  

Proof 

We must prove √[𝐾⨁𝑇: 𝐵]  is a prime ideal for the proper submodules K, T of B1 and B2 in the 

order. Since √[𝐾 ⨁𝑇: 𝐵]  =√[𝐾: 𝐵] ∩ √[𝑇: 𝐵]  where either√[𝐾: 𝐵]    ⊆ √[𝑇: 𝐵]. 

 Or√[𝑇: 𝐵]  ⊆  √[𝐾: 𝐵]. Thus, either √[𝐾⨁𝑇: 𝐵]  =√[𝐾: 𝐵] or √[𝐾⨁𝑇: 𝐵] =√[𝑇: 𝐵], but W1, 

and W2 are quasi-semi-prime modules. Therefore,√[𝐾: 𝑊], and √[𝑇: 𝑊] are prime ideals in A. 

Implies √[𝐾⨁𝑇: 𝐵] is a prime ideal in A. Thus, B1⨁ B2 is quasi-semiprime A-modules. 

The condition √[𝐾: 𝐵] ⊆ √𝑇: 𝐵] or √[𝑇: 𝐵]  ⊆ √[𝐾: 𝐵] we cannot be dropped, for example, let 

B1=Z6, and B2=Z3 are two quasi-semiprime A-modules by (Examples and Remark (2.2), 

√[(2): 𝑍18]   ⊈ √[(3): 𝑍18 and √[(3): 𝑍18    ⊈ √[(2): 𝑍18 

Since√(3)  ⊈ √(2) and √(2)  ⊈ √(3) so√[𝑍2⨁ 𝑍3: 𝑍18   ≠ √𝑍2: 𝑍18   ∩ √𝑍3: 𝑍18  

=√9𝑍  ∩ √6𝑍 =(3)  ∩(6)=(6) is not a prime ideal, implying W =W1 ⨁W2 is not a quasi-semiprime 

module. 

3. Quasi-Semi-Prime A-Module and Prime Module 

Now, we turn our attention to the relationship between quasi-semiprime modules and prime 

modules. 

Proposition (3.1) 

 Suppose B is a coprime A-module, then every prime A-module is a quasi-semiprime A-module. 

Proof 

It follows directly by from [3] and Propositions (2.5). 

The next example shows that the converse of Proposition (3.1) is not valid in general. 

 Let Z6 as a Z –module is quasi-semiprime module by Examples and Remarks (2.2), while it is 

not a prime module [1]. 

 

 



IHJPAS. 36 (4) 2023 

382 
 

Theorem (3.2) 

 Suppose B is a coprime C-module, then the following statements are equivalent: 

1-B is a prime C-module. 

2-B is a quasi-semiprime C-module. 

Proof: 

1→ 2 by (Proposition (3-1)), 2 → 1 because B is a quasi-semiprime C-module, so √[𝑁: 𝐵]  is a 

prime ideal for each N submodule of M, so [N:B] is a prime ideal, but B is a coprime C-module, 

so [6] implies annCB is a prime ideal, which means if rb=0 for b∈ B and c∈ C. Suppose that b≠ 0 

and Cb≠ o, so cB=N≠ 0, thus there exists that b∈ B and n∈ N such that cb=n, this means N=0, 

which is a contradiction. So B is a Prime.  

Proposition (3.3) 

Let B be a coprime C-module, then the following statements are equivalent: 

1- Bis a quasi-prime module. 

2- B is a quasi-semiprime modul. 

3- B is a prime module. 

Proof 

1 → 2 by Theorem(2.7). 

2  → 3 by Theorem (3.2). 

3→   1  by [3]. 

Corollary (3.4)  

If B is a coprime C-module, then B is a quasi-semiprime C-Module ⟷ (0) is a prime C-

submodule. 

Proof 

It is clear.  

Conclusion 

From this research, we introduced a new definition of quasi-semiprime modules and studied the 

relationship between quasi-semiprime modules and other modules, such as quasi-prime modules 

and prime modules. If we put the condition coprime, the cocept quasi-prime module, quasi-

semiprime module, and prime module are equivalent. 
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