Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq

Quasi-Semiprime Modules

Muntaha Abdul- Razaq Hasan
Department of Mathematics, College of Basic
Education, Mustansiriyah University, Baghhdad-Iraq

Article history: Received 9 January 2023, Accepted 20 February 2023, Published in October 2023

doi.org/10.30526/36.4.3181

Abstract

Suppose that A is an abelain ring with identity and B is a unitary (left) A-module. In this paper, we introduce a type of module, namely quasi-semiprime. A-module, whenever $\sqrt{[N: B]}$ is a prime ideal for proper submodule N of B , then B is called quasi -semiprime module, which is a generalization of quasi-Prime A-module, whenever $\mathrm{ann}_{\mathrm{A}} \mathrm{N}$ is a prime ideal for proper submodule N of B , then B is quasi-prime module. A comprehensive study of these modules is given, and we study the relationship between quasi-semiprime modules and quasi-prime. We put the condition coprime over cosemiprime ring for the two cocept quasi-prime modules and quasi-semiprime modules, which are equivalent. The concepts of prime modules and quasi-semiprime modules are equivalent. The condition of anti-hopfain makes quasi-prime is quasi-semiprime A-module. Whenever B is cyclic, coprime C-module, where C is the ring, each ideal is semiprime, which implies quasi-prime, quasi-simepime, and annCB are prime ideals. If F is an epimorphism from $B_{1} \rightarrow B_{2}$, whenever $B 1$ is a quasi-prime module, it implies $B 2$ is a quasi-prime A-module, and the inverse image of quasi-semiprime is a quasi-prime A-module.

Keywords: Prime module, Quasi-prime R-modules, Quasi-semiprime R-modules, Coprime Rmodules, Antihopfian R-modules.

1. Introduction

Suppose that W is a left A-module, where A is a ring with unity. An A-module B is said to be prime whenever $a n n_{A} B=a n n_{A} N$ for each non-zero submodule Nof B, where $\operatorname{ann}_{A} B=\{a \in$ $A ; b x=0$ for each $b \in B\}[1,2]$. Hasan in [3] introduced the concept of qasi-prime A-modules, which is a generalization of prime A-modules, where an A-module W is called quasi-prime modulles if and only if for each non-zero submodule N of $\mathrm{W}, \mathrm{ann}_{\mathrm{A}} \mathrm{N}$ is a prime ideal. Annin [9] calls an A-module W a coprime (dual notion of prime modules) if $\mathrm{ann}_{\mathrm{A}} \mathrm{W}=\mathrm{ann}_{\mathrm{A}} \mathrm{W} / \mathrm{A}$ for every proper submodule A of W . In this paper, we study a generalization of the quasi-prime module which we called the Quasi-semiprime A-module if $\sqrt{\mathrm{annB} / \mathrm{N}}=\sqrt{[\mathrm{N}: \mathrm{B}]}$ is a prime ideal for each submodule N of B .
This paper consists of two sections. In section one; we study the basic properties of a quasi-
semiprime A-module. In section two, we study the relation between quasi-semiprime Amodules and prime A-modules.

2. Materials and Methods

Definition (2.1)
B is said to be a quasi-semiprime A-module if $\sqrt{[\mathrm{N}: \mathrm{W}]}$ is a prime ideal for the proper submodule N of B .

Examples and Remarks (2.2)

1- It is clear that Zn is a quasi-semiprime A -module if and only if n is a prime number.
2- If n can be written as a product of two prime numbers, then Zn is a quasi-semiprime A -module. Proof:

Let $\mathrm{n}=\mathrm{p}_{1} \mathrm{p}_{2} ; \mathrm{p}_{1}, \mathrm{p}_{2}$ be two prime numbers, so $\mathrm{N}_{1}=\left(\mathrm{p}_{1}\right), \mathrm{N}_{2}=\left(\mathrm{p}_{2}\right)$, then $\left.\left.\sqrt{\left[\left(P_{1}\right.\right.}: Z_{n}\right]=\sqrt{\left(p_{1}\right.}\right)=\left(\mathrm{p}_{1}\right)$, $\mathrm{N}_{2}=\left(\mathrm{p}_{2}\right)$, then $\left.\sqrt{\left[\left(p_{2)}: Z_{n}\right]\right.}=\sqrt{\left(p_{2}\right.}\right)=\left(\mathrm{p}_{2}\right)$ is a prime ideal, henc Z_{n} is a quasi-semiprime Amodule.

3- $\mathrm{Z}_{\mathrm{p} \infty}$ is not a quasi-semiprime module, since we know that every submodule of $\mathrm{Z}_{\mathrm{p} \infty}$ is of the form $\left(1 / \mathrm{p}^{\mathrm{n}}+\mathrm{Z}\right)$, where n is a non-negative integer, so $\sqrt{\left[\frac{1}{p^{n}}+Z: Z p^{\infty}\right]}=\sqrt{\left[\frac{1}{p^{n}}+Z\right]}=$ ($\mathrm{p}^{\mathrm{n}} \mathrm{Z}$) is not prime ideal.
4- Suppose B is a simple A-module, then B is a Quasi-Semiprime A-Module.
Proof: it is clear.

Proposition (2.3)

Every proper submodule N of quasi-semiprime module is a quasi-semiprime module.

Proof:

Suppose N is a proper submodule of quasi-semiprime A-module W . Let K be a proper submodule of N to show that $\sqrt{[K: N]}$ is a prime ideal if $\mathrm{ab} \in \sqrt{[K: N]}$, so $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \in[\mathrm{K}: \mathrm{N}]$, so that $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{N} \subseteq \mathrm{K}$ $\subseteq \mathrm{W}$ that is $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \in[\mathrm{N}: \mathrm{W}]$, but W is a quasi-semiprime A-modul implies either $\mathrm{a}^{\mathrm{n}} \in[\mathrm{N}: \mathrm{W}]$ or b^{n} $\in[\mathrm{N}: \mathrm{W}]$, thus either $\mathrm{a}^{\mathrm{n}} \in[\mathrm{K}: \mathrm{N}]$ or $\mathrm{b}^{\mathrm{n}} \in[\mathrm{K}: \mathrm{N}]$ which means either $\mathrm{a} \in \sqrt{[K: N]}$ or $\mathrm{b} \in \sqrt{[K: N]}$, so $\sqrt{[K: N]}$ is a prime ideal.

Recall that whenever $B \cong B / N$ for all proper submodule Nof modules B, then we said that anonsimple A-module B anti-hopfian module [4, 5].

Proposition (2.4)

Suppose that B is an anti-hopfian quasi-prime A-module, then B is quasi-semiprime.

Proof:

Since B is an anti-hopfian module, then $B \cong B / N$ for N be a proper submodule of B, so there exists an isomorphism function $f: B \rightarrow B / N ; f(b)=b+N$ for each $b \in B$, so it is easy to check that

IHJPAS. 36 (4) 2023

$\operatorname{ann}_{A} B=\operatorname{ann}_{A} B / N$, then by [6], every anti-hopfian A-module is a coprime E-module, where $E=\operatorname{End}(W)$ and by [5] every $f \in E$, either $f=0$ or f is subjective, thus $f(b)=0$ or $f(b)=B$ for every w \in W If $f(w)=0$ implies $W=N$ which is a contradiction, so $f(W)=W$, which means ann ${ }_{A} B=[N: B]$, implies $\sqrt{a n n_{A}} B=\sqrt{a n n_{N}^{B}}$ if $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \in[\mathrm{N}: \mathrm{B}]$, then $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \in \operatorname{ann}_{\mathrm{A}} \mathrm{B}$ but B is a quasi-prime A-module, so by [3] implies $\operatorname{ann}_{A} W$ is a prime ideal, so either $a^{n} \in \operatorname{ann}_{A} W$ or $b^{n} \in a n n_{A} B$. Thus, either $a \in$ $\sqrt{[N: B]}$ or $\mathrm{b} \in \sqrt{[N: B]}$, which means B is a quasi-semiprime A-module.

The condition anti-hopfian we cannot drop for example: Z_{6} is quasi-semiprime A-module by (2.2), while it is not quasi-prime by [3], and Z_{6} is not anti-hopfain by [6].

Prorosition (2.5)

Suppose B is a coprime A-module of quasi-prime, then B is quasi-semiprime A-module.

Proof

Let B be a quasi-prime A -module, then by [3], $\operatorname{ann}_{\mathrm{A}} \mathrm{B}$ is a prime ideal, but W is a coprime A module, so ann $_{\mathrm{A}} \mathrm{B} / \mathrm{N}$ is a prime ideal for each non-zero submodule N of B , which means $\sqrt{[N: B]}$ is a prime ideal. Thus, W is a quasi-semiprime A -module.

Recall that an ideal K of the ring A is called nil radical and denoted by \sqrt{K}, and is defined by: \sqrt{K} $=\left\{a \in A ; a^{n} \in K\right.$, for some $\left.n Z+\right\}[8]$.

Not (2.6)
Suppose C is a ring where every ideal is nil radical, which we call cosemiprime ring.

Theorem M (2.7)

Suppose that B is a coprime C-module. The following statements are equivalent:

1) B is a Quasi-Prime Module.
2) B is a Quasi-Semiprime Module.

Proof:

1) \rightarrow (2) (by Theorem (2-5))
(2) \rightarrow (1) for each $\mathrm{a}, \mathrm{b} \in \mathrm{C}$ if ab annc N ,then abN=0 implies $\mathrm{ab} \in[(0): \mathrm{N}]$, which means $\mathrm{ab} \in$ $\sqrt{[(0): N]}$, but W is quasi-semiprime module so either $\mathrm{a} \in \sqrt{[(0): N]}$ or $\mathrm{b} \in \sqrt{[(0): N]}$ implies either $\mathrm{a} \in \mathrm{ann}_{\mathrm{C}} \mathrm{N}$ or $\mathrm{b} \in a \mathrm{an}_{\mathrm{C}} \mathrm{N}$. Thus, B is a quasi-prime C -module.

Theorem (2.8)

Let B be a cyclic coprime C-module, then the following statements are equivalent:
1- B is a Quasi-Prime C-Module.
2- B is a quasi-semiprime C -module.
3- $a n n_{C} B$ is a prime ideal.

Proof:

$1 \rightarrow 2$ (by Theorem (2.5))
$2 \rightarrow 3$ if $\mathrm{ab} \in$ ann $_{C} \mathrm{~B}$, then $\mathrm{ab} \in \sqrt{a n n B}$. Thus, $\mathrm{ab} \in \sqrt{[N: B]}$ for every submodule N of B which means $a^{n} b^{n} \in[N: B]$, but B is a quasi-semiprime C-module, so either $a^{n} \in[N: B]$ or $b^{n} \in[N: B]$, but B is coprime by [9] implies either $\mathrm{a}^{\mathrm{n}} \mathrm{B}=0$ or $\mathrm{b}^{\mathrm{n}} \mathrm{B}=0$, which means either $\mathrm{a} \in \sqrt{a n n B}$ or $\mathrm{b} \in$ $\sqrt{a n n B}$. Thus, either $a \in a n n_{C} W$ or $b \in a n n_{c} B$.
$3 \rightarrow 1$ by [3] implies the result.

Proposition (2.9)

Suppose that B is an A-Module and J is an Ideal Of A which that is contained in $\operatorname{ann}_{A} B / N$ where N is a submodule of B. Then, B is a quasi-semiprime A-module $\leftrightarrow B$ is a quasi-semiprime $A / J-$ Module.

Proof

To show B is quasi-semiprime $A \backslash J$-module if $\left(a_{1}+J\right)\left(a_{2}+J\right) \in \sqrt{\left[N:_{A / J} B\right]}$, where $\mathrm{a}_{1}+\mathrm{J}, \mathrm{a}_{2}+\mathrm{J} \in \mathrm{B} / \mathrm{J}$, then $\left(a_{1} a_{2}+J\right)^{n} \in[N: A / B]$. Thus, $\left(a_{1}{ }^{n} a_{2}{ }^{n}+J\right) x=0$ for all $x \in a n n_{A / J} B / N$. Hence, $a_{1}{ }^{n} a_{2}{ }^{n} x=0$ for all $x \in$ $\operatorname{ann}_{A} B / N$ which means $a_{1}{ }^{n} a_{2}{ }^{n} \in[N: B]$, so $a_{1} a_{2} \in \sqrt{\left[N:_{A} B\right]}$, but B is quasi-semiprime A-module, which implies either $\mathrm{a}_{1} \in \sqrt{\left[N:_{A} B\right]}$ or $\mathrm{a}_{2} \in \sqrt{\left[N:_{A} B\right]}$. Thus, either $\mathrm{a}_{1}{ }^{\mathrm{n}} \in\left[\mathrm{N}:_{A} \mathrm{~B}\right]$ or $\mathrm{a}_{2}{ }^{\mathrm{n}} \in\left[\mathrm{N}:_{A} \mathrm{~B}\right]$. However, $\mathrm{a}_{1}{ }^{\mathrm{n}}+\mathrm{I} \in$ ann ${ }_{A} \mathrm{~B} / \mathrm{N}$ or $\mathrm{a}_{2}{ }^{\mathrm{n}}+\mathrm{J} \in$ ann B / N. Thus, either $\left(\mathrm{a}_{1}+\mathrm{I}\right) \in \sqrt{\left[N:_{A / J} B\right]}$ or $\left(\mathrm{a}_{2}+\mathrm{I}\right) \in$ $\sqrt{\left[N_{:_{A / J}} B\right]}$, which means B is a quasi-semiprime B / I module.

Conversely , if B is quasi-semiprime A / J-module , let N be a nonzero A-submodule of B, let $a_{1}, a_{2} \in$ $\sqrt{\left[N:{ }_{A} B\right]}$,then $\mathrm{a}_{1}{ }^{\mathrm{n}} \mathrm{a}_{2}{ }^{\mathrm{n}} \mathrm{x}=0$ for all $\mathrm{x} \in \operatorname{ann}_{A} B / N$.Hence $\left(\mathrm{a}_{1}{ }^{\mathrm{n}}+\mathrm{J}\right)\left(\mathrm{a}_{2}{ }^{\mathrm{n}}+\mathrm{J}\right) \mathrm{x}=0$ for all $\mathrm{x} \in$ ann $_{\mathrm{A} / J} \mathrm{~W} / \mathrm{N}$, $\operatorname{so}\left(\mathrm{a}_{1}+\mathrm{J}\right)\left(\mathrm{a}_{2}+\mathrm{J}\right) \in \sqrt{\left[N:_{A / J} B\right]}$, whille is a prime ideal,so either $\left(\mathrm{a}_{1}+\mathrm{I}\right) \in \sqrt{\left[N:_{A / J} B\right]}$ or $\left(\mathrm{a}_{2}+\mathrm{I}\right) \in$ $\sqrt{\left[N:_{A / J} B\right]}$.Then we get either $\mathrm{a}_{1}{ }^{\mathrm{n}} \mathrm{x}=0$ or $\mathrm{a}_{2}{ }^{\mathrm{n}} \mathrm{x}=0$ for each $\mathrm{x} \in$ ann $_{\mathrm{A}} \mathrm{B} / \mathrm{N}$, so either $\mathrm{a}_{1} \in \sqrt{\left[N:_{A} B\right]}$ or $\mathrm{a}_{2} \in \sqrt{\left[N:_{A} B\right]}$.

Theorem (2.10)

Suppose B_{1}, and B_{2} are two A-modules, if $f: B_{1} \rightarrow B_{2}$, is an epimorphism function, then if B_{1} is a quasi-semiprime module, then B_{2} is a quasi-semiprime A-module.

Proof:

Since B_{1} is a quasi-semiprime A -module, so if $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{B}_{1} \subseteq \mathrm{~N}_{1}$ for each $\mathrm{a}, \mathrm{b} \in \mathrm{A}$, then either $\mathrm{a}^{\mathrm{n}} \mathrm{B}_{1} \subseteq \mathrm{~N}$ or $b^{n} B_{1} \subseteq N$. Thus, $f\left(a^{n} b^{n} B_{1}\right) \subseteq f\left(N_{1}\right)$ since f is a homomorphism implies $f\left(a^{n}\right) . f\left(b^{n}\right) \in\left[f(N): f\left(W_{1}\right)\right]$. Suppose $f(a)=x, f(b)=y$. Thus, either $f\left(a^{n} B_{1}\right) \subseteq f\left(N_{1}\right)$ or $f\left(b^{n} B_{1}\right) \subseteq f(N)$, so either $f\left(a^{n}\right) f\left(W_{1}\right) \subseteq f(N)$ or $f\left(b^{n}\right) f\left(B_{1}\right) \subseteq f(N)$ implies either $x^{n} f\left(B_{1}\right) \subseteq f(N)$ or $y^{n} f\left(B_{1}\right) \subseteq f\left(N_{1}\right)$, but f is onto, so $\mathrm{f}\left(\mathrm{B}_{1}\right)=\mathrm{B}_{2}, \mathrm{f}(\mathrm{N})=\mathrm{N}_{2}$, which means either $\mathrm{x} \in \sqrt{\left[N_{2}\right.}: B_{2}$ or $\mathrm{y} \in \sqrt{N_{2}}: B_{2}$, whenever $\mathrm{xy} \in \sqrt{N_{2}: B_{2}}$. Thus, $\sqrt{N_{2}: B_{2}}$ is a prime ideal, which means B_{2} is a quasi-semiprime module.

Corollary (2.11)

The inverse image of the quasi-semiprime module is a quasi -semiprime module.

Theorem (2.12)

Let B_{1} and B_{2} be two quasi-semiprime A-modules such that for each proper submodule K, T of $\mathrm{B}_{1}, \mathrm{~B}_{2}$, respectively, if $[\mathrm{K} \oplus \mathrm{T}: \mathrm{W}]=[\mathrm{K}: \mathrm{W}] \cap[\mathrm{T}: \mathrm{W}]$, then $\mathrm{B}=\mathrm{B}_{1} \oplus \mathrm{~B}_{2}$ is a quasi-semiprime Amodule, where $\sqrt{[K: B]} \subseteq \sqrt{[T: B]}$ or $\sqrt{[T: B]} \subseteq \sqrt{[K: B]}$.

Proof

We must prove $\sqrt{[K \oplus T: B]}$ is a prime ideal for the proper submodules K, T of B_{1} and B_{2} in the order. Since $\sqrt{[K \oplus T: B]}=\sqrt{[K: B]} \cap \sqrt{[T: B]}$ where either $\sqrt{[K: B]} \subseteq \sqrt{[T: B]}$.
$\operatorname{Or} \sqrt{[T: B]} \subseteq \sqrt{[K: B]}$. Thus, either $\sqrt{[K \oplus T: B]}=\sqrt{[K: B]}$ or $\sqrt{[K \oplus T: B]}=\sqrt{[T: B]}$, but W_{1}, and W_{2} are quasi-semi-prime modules. Therefore, $\sqrt{[K: W]}$, and $\sqrt{[T: W]}$ are prime ideals in A. Implies $\sqrt{[K \oplus T: B]}$ is a prime ideal in A . Thus, $\mathrm{B}_{1} \oplus \mathrm{~B}_{2}$ is quasi-semiprime A-modules.

The condition $\sqrt{[K: B]} \subseteq \sqrt{T: B]}$ or $\sqrt{[T: B]} \subseteq \sqrt{[K: B]}$ we cannot be dropped, for example, let $\mathrm{B}_{1}=\mathrm{Z}_{6}$, and $\mathrm{B}_{2}=\mathrm{Z}_{3}$ are two quasi-semiprime A-modules by (Examples and Remark (2.2), $\sqrt{\left[(2): Z_{18}\right]} \nsubseteq \sqrt{[(3):} Z_{18}$ and $\sqrt{\left[(3): Z_{18}\right.} \nsubseteq \sqrt{\left[(2): Z_{18}\right.}$

Since $\sqrt{(3)} \nsubseteq \sqrt{(2)}$ and $\sqrt{(2)} \nsubseteq \sqrt{(3)}$ so $\sqrt{\left[Z_{2} \oplus\right.} Z_{3}: Z_{18} \neq \sqrt{Z_{2}: Z_{18}} \cap \sqrt{Z_{3}: Z_{18}}$
$=\sqrt{9 Z} \cap \sqrt{6 Z}=(3) \cap(6)=(6)$ is not a prime ideal, implying $\mathrm{W}=\mathrm{W}_{1} \oplus \mathrm{~W}_{2}$ is not a quasi-semiprime module.

3. Quasi-Semi-Prime A-Module and Prime Module

Now, we turn our attention to the relationship between quasi-semiprime modules and prime modules.

Proposition (3.1)

Suppose B is a coprime A-module, then every prime A-module is a quasi-semiprime A-module.

Proof

It follows directly by from [3] and Propositions (2.5).
The next example shows that the converse of Proposition (3.1) is not valid in general.
Let Z_{6} as a Z -module is quasi-semiprime module by Examples and Remarks (2.2), while it is not a prime module [1].

Theorem (3.2)

Suppose B is a coprime C-module, then the following statements are equivalent:
1-B is a prime C-module.
2-B is a quasi-semiprime C-module.

Proof:

$1 \rightarrow 2$ by (Proposition (3-1)), $2 \rightarrow 1$ because B is a quasi-semiprime C -module, so $\sqrt{[N: B]}$ is a prime ideal for each N submodule of M , so $[\mathrm{N}: \mathrm{B}]$ is a prime ideal, but B is a coprime C -module, so [6] implies annc B is a prime ideal, which means if $r b=0$ for $b \in B$ and $c \in C$. suppose that $b \neq 0$ and $\mathrm{Cb} \neq \mathrm{o}$, so $\mathrm{cB}=\mathrm{N} \neq 0$, thus there exists that $\mathrm{b} \in \mathrm{B}$ and $\mathrm{n} \in \mathrm{N}$ such that $\mathrm{cb}=\mathrm{n}$, this means $\mathrm{N}=0$, which is a contradiction. So B is a Prime.

Proposition (3.3)

Let B be a coprime C -module, then the following statements are equivalent:
1- Bis a quasi-prime module.
2- B is a quasi-semiprime modul.
3- B is a prime module.

Proof

$1 \rightarrow 2$ by Theorem(2.7).
$2 \rightarrow 3$ by Theorem (3.2).
$3 \rightarrow 1$ by [3].
Corollary (3.4)
If B is a coprime C-module, then B is a quasi-semiprime C-Module $\leftrightarrow(0)$ is a prime Csubmodule.

Proof

It is clear.

Conclusion

From this research, we introduced a new definition of quasi-semiprime modules and studied the relationship between quasi-semiprime modules and other modules, such as quasi-prime modules and prime modules. If we put the condition coprime, the cocept quasi-prime module, quasisemiprime module, and prime module are equivalent.

References

1. AL-Bahraany, B. Anote on Prime Modules and Pure Submodules, J. sclence 1996, 37, 2, 1431-1441.
2. Desale, G.;, Nicholson,W. K., Endoprimitive Ring , J. Algebra 1981,70,3,548-560.
3. Hasan,M.A.Quasi-prime module and Quasi prime submodule,M.SC..Thesis 1999, Univ.of Babhdad.
4. Hirano,Y. ;Mogani,I.On Restricted Anti-Hopfinan Modules,Math.J., Kayama1986 ,Univ.,.28,119-131.
5. AL-Awadi, H.K.Anti-Hopfian Modules and Restricted Anti-Hopfian, M.SC. thesis 200,Univ. of Baghdad.
6. Hadi.M. A.I,; Kassm, I. R.,Coprime Modules And Other Related Topics,, Journal of physics 2018 1003, 1, 1-15.
7. Hadi M. A. I ;Kasam,.I.R. Dual Notations of Prime Modules, Ibn AL.Haitham J. for pure and ppl.sci.,2010, 23,.3.
8. Szasz F.A,Radicals of Rings, Budapest, Hungary, chichester and Akademiai Kiado,1981,PP. 139.
9. Annin, S., Associated and Attached primes over Non commutative Rings, Ph.D Thesis 2002,Univ.of Berkeley.
