

Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq

Quasi-Semiprime Modules

Muntaha Abdul- Razaq Hasan ≥ Department of Mathematics, College of Basic Education, Mustansiriyah University, Baghhdad-Iraq

Article history: Received 9 January 2023, Accepted 20 February 2023, Published in October 2023

doi.org/10.30526/36.4.3181

Abstract

Suppose that A is an abelain ring with identity and B is a unitary (left) A-module. In this paper, we introduce a type of module, namely quasi-semiprime. A-module, whenever $\sqrt{[N:B]}$ is a prime ideal for proper submodule N of B, then B is called quasi -semiprime module, which is a generalization of quasi-Prime A-module, whenever ann_AN is a prime ideal for proper submodule N of B, then B is quasi-prime module. A comprehensive study of these modules is given, and we study the relationship between quasi-semiprime modules and quasi-prime. We put the condition coprime over cosemiprime ring for the two cocept quasi-prime modules and quasi-semiprime modules, which are equivalent. The concepts of prime modules and quasi-semiprime A-module. Whenever B is cyclic, coprime C-module, where C is the ring, each ideal is semiprime, which implies quasi-prime, quasi-simepime, and annCB are prime ideals. If F is an epimorphism from $B_1 \rightarrow B_2$, whenever B1 is a quasi-prime module, it implies B2 is a quasi-prime A-module, and the inverse image of quasi-semiprime is a quasi-prime A-module.

Keywords: Prime module, Quasi-prime R-modules, Quasi-semiprime R-modules, Coprime R-modules, Antihopfian R-modules.

1. Introduction

Suppose that W is a left A-module, where A is a ring with unity. An A-module B is said to be prime whenever $ann_AB=ann_AN$ for each non-zero submodule Nof B, where $ann_AB=\{a \in A;bx=0 \text{ for each } b \in B\}[1,2]$. Hasan in [3] introduced the concept of qasi-prime A-modules, which is a generalization of prime A-modules, where an A-module W is called quasi-prime modulles if and only if for each non-zero submodule N of W, $ann_A N$ is a prime ideal. Annin [9] calls an A-module W a coprime (dual notion of prime modules) if $ann_AW=ann_AW/A$ for every proper submodule A of W. In this paper, we study a generalization of the quasi-prime module which we called the Quasi-semiprime A-module if $\sqrt{annB/N} = \sqrt{[N:B]}$ is a prime ideal for each submodule N of B.

This paper consists of two sections. In section one; we study the basic properties of a quasi-

377

IHJPAS. 36 (4) 2023

semiprime A-module. In section two, we study the relation between quasi-semiprime A-modules and prime A-modules.

2. Materials and Methods Definition (2.1)

B is said to be a quasi-semiprime A-module if $\sqrt{[N:W]}$ is a prime ideal for the proper submodule N of B.

Examples and Remarks (2.2)

1- It is clear that Zn is a quasi-semiprime A-module if and only if n is a prime number.2- If n can be written as a product of two prime numbers, then Zn is a quasi-semiprime A-module.Proof:

Let n=p₁p₂; p₁, p₂ be two prime numbers, so N₁= (p₁), N₂=(p₂), then $\sqrt{[(P_1: Z_n] = \sqrt{(p_1)} = (p_1)}$, N₂=(p₂), then $\sqrt{[(p_2: Z_n] = \sqrt{(p_2)} = (p_2)} = (p_2)$ is a prime ideal, henc Z_n is a quasi-semiprime A-module.

3- $Z_{p\infty}$ is not a quasi-semiprime module, since we know that every submodule of $Z_{p\infty}$ is of the

form (1/pⁿ +Z), where n is a non-negative integer, so $\sqrt{\left[\frac{1}{p^n} + Z: Zp^{\infty}\right]} = \sqrt{\left[\frac{1}{p^n} + Z\right]} =$

(pⁿ Z) is not prime ideal.

4- Suppose B is a simple A-module, then B is a Quasi-Semiprime A-Module. Proof: it is clear.

Proposition (2.3)

Every proper submodule N of quasi-semiprime module is a quasi-semiprime module.

Proof:

Suppose N is a proper submodule of quasi-semiprime A-module W. Let K be a proper submodule of N to show that $\sqrt{[K:N]}$ is a prime ideal if $ab \in \sqrt{[K:N]}$, so $a^n b^n \in [K:N]$, so that $a^n b^n N \subseteq K \subseteq W$ that is $a^n b^n \in [N:W]$, but W is a quasi-semiprime A-modul implies either $a^n \in [N:W]$ or $b^n \in [N:W]$, thus either $a^n \in [K:N]$ or $b^n \in [K:N]$ which means either $a \in \sqrt{[K:N]}$ or $b \in \sqrt{[K:N]}$, so $\sqrt{[K:N]}$ is a prime ideal.

Recall that whenever $B \cong B/N$ for all proper submodule Nof modules B, then we said that anonsimple A-module B anti-hopfian module [4, 5].

Proposition (2.4)

Suppose that B is an anti-hopfian quasi-prime A-module, then B is quasi-semiprime.

Proof:

Since B is an anti-hopfian module, then $B \cong B/N$ for N be a proper submodule of B, so there exists an isomorphism function f: $B \rightarrow B/N$; f(b)=b+N for each $b \in B$, so it is easy to check that

IHJPAS. 36 (4) 2023

ann_AB=ann_AB/N, then by [6], every anti-hopfian A-module is a coprime E-module, where E=End(W) and by [5] every $f \in E$, either f=0 or f is subjective, thus f(b)=0 or f(b)=B for every w \in W If f(w)=0 implies W=N which is a contradiction, so f(W)=W, which means ann_AB=[N:B], implies $\sqrt{ann_A}B = \sqrt{ann_N^B}$ if aⁿbⁿ \in [N:B], then aⁿbⁿ \in ann_AB but B is a quasi-prime A-module, so by [3] implies ann_AW is a prime ideal, so either aⁿ \in ann_AW or bⁿ \in ann_AB. Thus, either a $\in \sqrt{[N:B]}$ or b $\in \sqrt{[N:B]}$, which means B is a quasi-semiprime A-module.

The condition anti-hopfian we cannot drop for example: Z_6 is quasi-semiprime A-module by (2.2), while it is not quasi-prime by [3], and Z_6 is not anti-hopfain by [6].

Prorosition (2.5)

Suppose B is a coprime A-module of quasi-prime, then B is quasi-semiprime A-module.

Proof

Let B be a quasi-prime A-module, then by [3], $\operatorname{ann}_A B$ is a prime ideal, but W is a coprime A-module, so $\operatorname{ann}_A B/N$ is a prime ideal for each non-zero submodule N of B, which means $\sqrt{[N:B]}$ is a prime ideal. Thus, W is a quasi-semiprime A-module.

Recall that an ideal K of the ring A is called nil radical and denoted by \sqrt{K} , and is defined by: $\sqrt{K} = \{a \in A; a^n \in K \text{, for some n } Z + \}[8].$

Not (2.6)

Suppose C is a ring where every ideal is nil radical, which we call cosemiprime ring.

Theorem M (2.7)

Suppose that B is a coprime C-module. The following statements are equivalent:

1) B is a Quasi-Prime Module.

2) B is a Quasi-Semiprime Module.

Proof:

1) \rightarrow (2) (by Theorem (2-5))

 $(2) \rightarrow (1)$ for each $a, b \in C$ if $ab ann_C N$, then abN=0 implies $ab \in [(0):N]$, which means $ab \in \sqrt{[(0):N]}$, but W is quasi-semiprime module so either $a \in \sqrt{[(0):N]}$ or $b \in \sqrt{[(0):N]}$ implies either $a \in ann_C N$ or $b \in ann_C N$. Thus, B is a quasi-prime C-module.

Theorem (2.8)

Let B be a cyclic coprime C-module, then the following statements are equivalent:

- 1- B is a Quasi-Prime C-Module.
- 2- B is a quasi-semiprime C-module.
- 3- ann_CB is a prime ideal.

Proof:

 $1 \rightarrow 2$ (by Theorem (2.5))

2 → 3 if ab ∈ ann_CB, then ab∈ \sqrt{annB} . Thus, ab∈ $\sqrt{[N:B]}$ for every submodule N of B which means aⁿbⁿ ∈ [N:B], but B is a quasi-semiprime C-module, so either aⁿ∈ [N:B] or bⁿ ∈ [N:B], but B is coprime by [9] implies either aⁿB=0 or bⁿB=0, which means either a∈ \sqrt{annB} or b∈ \sqrt{annB} . Thus, either a∈ ann_CW or b∈ ann_cB.

 $3 \rightarrow 1$ by [3] implies the result.

Proposition (2.9)

Suppose that B is an A-Module and J is an Ideal Of A which that is contained in ann_AB/N where N is a submodule of B. Then, B is a quasi-semiprime A-module \leftrightarrow B is a quasi-semiprime A/J-Module.

Proof

To show B is quasi-semiprime A\J-module if $(a_1+J)(a_2+J) \in \sqrt{[N:_{A/J}B]}$, where $a_1+J,a_2+J \in B/J$, then $(a_1a_2+J)^n \in [N:_{A/I}B]$. Thus, $(a_1^n a_2^n + J)x=0$ for all $x \in ann_{A/J}B/N$. Hence, $a_1^n a_2^n x=0$ for all $x \in ann_A B/N$ which means $a_1^n a_2^n \in [N:B]$, so $a_1a_2 \in \sqrt{[N:_A B]}$, but B is quasi-semiprime A-module, which implies either $a_1 \in \sqrt{[N:_A B]}$ or $a_2 \in \sqrt{[N:_A B]}$. Thus, either $a_1^n \in [N:_A B]$ or $a_2^n \in [N:_A B]$. However, $a_1^n+I \in ann_A B/N$ or $a_2^n+J \in ann B/N$. Thus, either $(a_1+I) \in \sqrt{[N:_{A/J} B]}$ or $(a_2+I) \in \sqrt{[N:_{A/J} B]}$, which means B is a quasi-semiprime B/I module.

Conversely, if B is quasi-semiprime A/J-module , let N be a nonzero A-submodule of B, let $a_1, a_2 \in \sqrt{[N:_A B]}$, then $a_1^n a_2^n x=0$ for all $x \in ann_A B/N$. Hence $(a_1^n+J)(a_2^n+J)x=0$ for all $x \in ann_{A/J}W/N$, $so(a_1+J)(a_2+J) \in \sqrt{[N:_{A/J} B]}$, whille is a prime ideal, so either $(a_1+I) \in \sqrt{[N:_{A/J} B]}$ or $(a_2+I) \in \sqrt{[N:_{A/J} B]}$. Then we get either $a_1^n x=0$ or $a_2^n x=0$ for each $x \in ann_A B/N$, so either $a_1 \in \sqrt{[N:_A B]}$ or $a_2 \in \sqrt{[N:_A B]}$.

Theorem (2.10)

Suppose B_1 , and B_2 are two A-modules, if $f: B_1 \rightarrow B_2$, is an epimorphism function, then if B_1 is a quasi-semiprime module, then B_2 is a quasi-semiprime A-module.

Proof:

Since B₁ is a quasi-semiprime A-module, so if $a^nb^nB_1 \subseteq N_1$ for each $a,b \in A$, then either $a^nB_1 \subseteq N$ or $b^nB_1 \subseteq N$. Thus, $f(a^nb^nB_1) \subseteq f(N_1)$ since f is a homomorphism implies $f(a^n).f(b^n) \in [f(N):f(W_1)]$. Suppose f(a)=x,f(b)=y. Thus, either $f(a^nB_1) \subseteq f(N_1)$ or $f(b^nB_1) \subseteq f(N)$, so either $f(a^n)f(W_1) \subseteq f(N)$ or $f(b^n)f(B_1) \subseteq f(N)$ implies either $x^nf(B_1) \subseteq f(N)$ or $y^nf(B_1) \subseteq f(N_1)$, but f is onto, so $f(B_1)=B_2,f(N)=N_2$, which means either $x \in \sqrt{[N_2:B_2]}$ or $y \in \sqrt{N_2:B_2}$, whenever $xy \in \sqrt{N_2:B_2}$. Thus, $\sqrt{N_2:B_2}$ is a prime ideal, which means B₂ is a quasi-semiprime module.

Corollary (2.11)

The inverse image of the quasi-semiprime module is a quasi -semiprime module.

Theorem (2.12)

Let B₁ and B₂ be two quasi-semiprime A-modules such that for each proper submodule K,T of B₁,B₂, respectively, if $[K \oplus T:W] = [K:W] \cap [T:W]$, then B=B₁ \oplus B₂ is a quasi-semiprime A-module, where $\sqrt{[K:B]} \subseteq \sqrt{[T:B]}$ or $\sqrt{[T:B]} \subseteq \sqrt{[K:B]}$.

Proof

We must prove $\sqrt{[K \oplus T:B]}$ is a prime ideal for the proper submodules K, T of B₁ and B₂ in the order. Since $\sqrt{[K \oplus T:B]} = \sqrt{[K:B]} \cap \sqrt{[T:B]}$ where either $\sqrt{[K:B]} \subseteq \sqrt{[T:B]}$.

 $\operatorname{Or}\sqrt{[T:B]} \subseteq \sqrt{[K:B]}$. Thus, either $\sqrt{[K \oplus T:B]} = \sqrt{[K:B]}$ or $\sqrt{[K \oplus T:B]} = \sqrt{[T:B]}$, but W₁, and W₂ are quasi-semi-prime modules. Therefore, $\sqrt{[K:W]}$, and $\sqrt{[T:W]}$ are prime ideals in A. Implies $\sqrt{[K \oplus T:B]}$ is a prime ideal in A. Thus, B₁ \oplus B₂ is quasi-semiprime A-modules.

The condition $\sqrt{[K:B]} \subseteq \sqrt{T:B}$ or $\sqrt{[T:B]} \subseteq \sqrt{[K:B]}$ we cannot be dropped, for example, let $B_1=Z_6$, and $B_2=Z_3$ are two quasi-semiprime A-modules by (Examples and Remark (2.2), $\sqrt{[(2):Z_{18}]} \not\subseteq \sqrt{[(3):Z_{18}]}$ and $\sqrt{[(3):Z_{18}]} \not\subseteq \sqrt{[(2):Z_{18}]}$

Since $\sqrt{(3)} \not\subseteq \sqrt{(2)}$ and $\sqrt{(2)} \not\subseteq \sqrt{(3)}$ so $\sqrt{[Z_2 \bigoplus Z_3: Z_{18}]} \neq \sqrt{Z_2: Z_{18}} \cap \sqrt{Z_3: Z_{18}}$

 $=\sqrt{9Z} \cap \sqrt{6Z} = (3) \cap (6) = (6)$ is not a prime ideal, implying $W = W_1 \bigoplus W_2$ is not a quasi-semiprime module.

3. Quasi-Semi-Prime A-Module and Prime Module

Now, we turn our attention to the relationship between quasi-semiprime modules and prime modules.

Proposition (3.1)

Suppose B is a coprime A-module, then every prime A-module is a quasi-semiprime A-module.

Proof

It follows directly by from [3] and Propositions (2.5).

The next example shows that the converse of Proposition (3.1) is not valid in general.

Let Z_6 as a Z –module is quasi-semiprime module by Examples and Remarks (2.2), while it is not a prime module [1].

Theorem (3.2)

Suppose B is a coprime C-module, then the following statements are equivalent:

1-B is a prime C-module.

2-B is a quasi-semiprime C-module.

Proof:

 $1 \rightarrow 2$ by (Proposition (3-1)), $2 \rightarrow 1$ because B is a quasi-semiprime C-module, so $\sqrt{[N:B]}$ is a prime ideal for each N submodule of M, so [N:B] is a prime ideal, but B is a coprime C-module, so [6] implies ann_CB is a prime ideal, which means if rb=0 for b \in B and c \in C suppose that b $\neq 0$ and Cb \neq o, so cB=N $\neq 0$, thus there exists that b \in B and n \in N such that cb=n, this means N=0, which is a contradiction. So B is a Prime.

Proposition (3.3)

Let B be a coprime C-module, then the following statements are equivalent:

- 1- Bis a quasi-prime module.
- 2- B is a quasi-semiprime modul.
- 3- B is a prime module.

Proof

 $1 \rightarrow 2$ by Theorem(2.7).

 $2 \rightarrow 3$ by Theorem (3.2).

 $3 \rightarrow 1$ by [3].

Corollary (3.4)

If B is a coprime C-module, then B is a quasi-semiprime C-Module \leftrightarrow (0) is a prime C-submodule.

Proof

It is clear.

Conclusion

From this research, we introduced a new definition of quasi-semiprime modules and studied the relationship between quasi-semiprime modules and other modules, such as quasi-prime modules and prime modules. If we put the condition coprime, the cocept quasi-prime module, quasi-semiprime module, and prime module are equivalent.

References

- 1. AL-Bahraany, B. Anote on Prime Modules and Pure Submodules, J. science 1996, 37, 2, 1431-1441.
- 2. Desale, G.;, Nicholson, W. K., Endoprimitive Ring , J. Algebra 1981, 70, 3, 548-560.

IHJPAS. 36 (4) 2023

- **3.** Hasan,M.A.Quasi-prime module and Quasi prime submodule,M.SC..Thesis **1999**, Univ.of Babhdad.
- **4.** Hirano,Y. ;Mogani,I.On Restricted Anti-Hopfinan Modules,Math.J., Kayama**1986** ,Univ., 28,119-131.
- **5.** AL-Awadi, H.K.Anti-Hopfian Modules and Restricted Anti-Hopfian, M.SC. thesis **200**, Univ. of Baghdad.
- 6. Hadi.M. A.I,; Kassm, I. R.,Coprime Modules And Other Related Topics,, Journal of physics 2018 1003,1,1-15.
- 7. Hadi M. A. I ;Kasam, I.R. Dual Notations of Prime Modules, Ibn AL. Haitham J. for pure and ppl.sci., **2010**, 23, .3.
- 8. Szasz F.A,Radicals of Rings, Budapest, Hungary, chichester and Akademiai Kiado,1981,PP.139.
- 9. Annin, S., Associated and Attached primes over Non commutative Rings, Ph.D Thesis 2002, Univ.of Berkeley.