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Abstract 

         The application of Bayesian strategies for binary logistic estimation is demonstrated in this 

article. A modified method of the Bayesian logistic model using the Metropolis-Hasting algorithm 

is derived and applied to three simulation data sets. We compared the new model with existing 

classification methods: support vector machine, artificial neural network and regular logistic 

model. The modified model was used to classify the heart disease dataset. The data came from a 

database intended for UCI Data Science (https://www.kaggle.com). The clarification accuracy and 

the time required are checked and compared with other standard methods. It has been shown that 

the presented model has the best accuracy and efficiency compared to the different classification 

methods. All calculations were performed with the program R version 4.2.2. 

Keywords: Bayesian, classification, heart disease, logistic regression, posterior distribution. 

 

1. Introduction 

The Bayesian algorithm, Markov chain Monte Carlo (MCMC), is a widely used technical 

algorithm used to estimate the parameters of the posterior distribution in the model [1, 2]. The 

standard estimation of the logistic regression model has some limitations that can be overcome 

with possible replacement methods. This paper aims to introduce a different approach using 

Bayesian analysis. 

Multinomial logistic regression can predict categorical placement based on multiple 

independent variables, such as the possibility of belonging to a category on a related variable. The 

independent variables can be either categorical or continuous. Multinomial logistic regression is 

often considered an appealing analysis because it does not require homoscedasticity, linearity, or 

normality [3]. Discriminant function analysis is an excellent substitute for multinomial logistic 

regression, which requires these assumptions. One of the most common classification methods for 

health datasets is logistic regression. The maximum likelihood or ordinary least square estimator 

can be used to estimate the regression coefficients [4, 5].  

 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2322-8991
mailto:aza.mustafa@uomosul.edu.iq


IHJPAS. 2024, 37(4 ) 

393 
 

The dependent variable in logistic regression is either binary or dichotomous, i.e. the logistic 

regression contains only data coded as “1” (true, yes, healthy, success, pregnant, etc.) or “0” (false, 

no, sick, failure, not pregnant, etc.) [6]. Many standard classifications such as Support Vector 

Machine (SVM) [2, 7], Artificial Neural Networks (ANN) [8] and regular logistic regression [9] 

can be used for classification. However, working with a large dataset leads to inefficiency and time 

consumption [10, 11]. This paper presents a new Bayesian multivariate model for classifying 

datasets. The modified model is applied to three simulation datasets and then used to classify the 

heart disease dataset. 

This article is structured as follows: In section two, a general idea for multivariate Bayesian binary 

logistic linear regression is explained. The Bayesian formulation model is discussed in section 

three. Simulation studies and experimental results are presented in section four. The real data set 

is presented in section five. Section six discusses the results. 

2. Multivariate Bayesian binary logistic regression model 

Binary logistic regression is a special form of regression in which the binary response 

variable is linked to a discrete or continuous set of explanatory variables. The key point here is 

that the predicted values of the response variable are modelled based on the mixture of values 

provided by the predictors in linear regression [12]. Let 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝) be a set of 𝑝 

explanatory variables and 𝑌 be a binary response variable; then the binary Logistic regression 

model can be written as follows, 

𝑙𝑜𝑔𝑖𝑡(𝑝) = log (
𝑝

1−𝑝
) = 𝛽0 + 𝛽𝑥𝑖 + ⋯ + 𝛽0 + 𝛽𝑋𝑘′            (1) 

Which models the log odds of the probability of “present” as a function of explanatory variables. 

Assume that 𝑌𝑖 ∼ 𝐵𝑖𝑛(𝑛𝑖, 𝑝𝑖), i.e., 𝑌𝑖 is a binary logistic model, then 

𝜋𝑖 = 𝑃𝑟𝑜(𝑌𝑖 = 1|𝑋𝑖 = 𝑥𝑖) =  
𝑒𝛽0+𝛽1𝑥𝑖

1+ 𝑒𝛽0+𝛽1𝑥𝑖
                     (2) 

The maximum likelihood estimator (MLE) for the parameters, {𝛽0, 𝛽1}, is obtained by finding 

(𝛽0̂, 𝛽1̂) that maximizes: 

𝐿(𝛽0, 𝛽1) = ∏ 𝑝𝑖
𝑦𝑖(1 − 𝑝𝑖)𝑛𝑖−𝑦𝑖 =𝑛

𝑖=1  ∏
𝑒{𝑦𝑖(𝛽0+𝛽1𝑥𝑖)}

1+𝑒𝛽0+𝛽1𝑥𝑖

𝑛
𝑖=1             (3) 

 

3. Bayesian Formulation 

         The Bayesian model can be treated like a classification problem. Researchers can infer the 

individual from the model parameters and the data. From a set of likely divergent opinions about 

a particular condition, one of two outcomes can be inferred: Does individual j actually have a 

particular disease state (y = 0 if no and y = 1 if yes) [13, 14]. The Bayesian hierarchical logistic 

regression model addresses this problem to account for the variability of outcomes stemming from 

both informants and informative priorities. Bayes' theorem and a generative model can be applied 

when we have data to calculate the posterior probability distribution of the model parameters using 

the prior distribution as a function of the predictors (X) and the response (Y). In general, the three 

critical components associated with parameter estimation in the Bayesian system are the prior 

distribution, the likelihood function, and the posterior distribution. Bayes' theorem formally 

combines these three elements: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝑃𝑟𝑖𝑜𝑟 
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Basically, the above expression means that the knowledge in the sample (reflected in the likelihood 

function) is combined with data from other sources (summarised in the prior distribution) to obtain 

the posterior distribution. All available information about the parameters of the model is 

incorporated into the posterior distribution. [15],[16] deals in detail with the principle of Bayesian 

analysis. 

The likelihood contribution from the 𝑖𝑡ℎ individual is binomial, 

𝐿𝑖 = (
𝑒𝛽0+𝛽1𝑥𝑖

1+ 𝑒𝛽0+𝛽1𝑥𝑖
)

𝑦𝑖

 ×  (1 −
𝑒𝛽0+𝛽1𝑥𝑖

1+ 𝑒𝛽0+𝛽1𝑥𝑖
)

(1−𝑦𝑖)

                        (4) 

Since individual subjects are presumed to be separate from one another, the probability function 

for a data set of 𝑛 subjects is then the probability distribution. 

𝐿 = ∏ (
𝑒𝛽0+𝛽1𝑥𝑖

1+ 𝑒𝛽0+𝛽1𝑥𝑖
)

𝑦𝑖

 ×  (1 −
𝑒𝛽0+𝛽1𝑥𝑖

1+ 𝑒𝛽0+𝛽1𝑥𝑖
)

(1−𝑦𝑖)
𝑛
𝑖=1                         (5) 

 

By assuming the multivariate normal prior on 𝛽; i.e. 𝛽𝑖 ∼ 𝑁(𝜇𝑖 , 𝜎𝑖
2), we get 

𝑓(𝛽) =  
1

√2𝜋𝜎2 𝑒
{−

1

2
(

𝛽𝑖−𝜇𝑖
𝜎𝑖

)
2

}
                       (6) 

As a result, the posterior distribution is calculated by multiplying the probability function by the 

prior: 

Posterior =  ∏ (
eβ0+β1xi

1+ eβ0+β1xi
)

yi

 ×  (1 −
eβ0+β1xi

1+ eβ0+β1xi
)

(1−yi)
n
i=1 ×

1

√2πσ2 e
{−

1

2
(

βi−μi
σi

)
2

}
                      (7) 

We can use the Metropolis-Hasting procedure to sample from the above posterior distribution. The 

following section will present the algorithm in detail. 

3.1 Markov chain Monte Carlo 

If a sequence of numbers follows the below graphical model, it is a Markov chain is 

𝑃(𝑋5|𝑋4, 𝑋3, 𝑋2, 𝑋1) =  𝑃(𝑋5|𝑋4). As a result, the probability of reaching a specific state is 

solely determined by the chain's previous state [10]. 

 
Using the full joint density function, the Metropolis-Hasting (MH) algorithm can be used. The MH 

technique is an iterative method that generates a Markov chain sequence to estimate the posterior 

distribution's parameters [17,18]. The following steps summarize the Metropolis-Hasting 

algorithm [19, 20]: 

Metropolis-Hasting algorithm 

1. Initialize 𝑥(0) 

2. For i = 0 to K−1 

 calculate 𝑢 ∼ uniform distribution[0,1] 

 calculate 𝑋⋆ ∼ 𝑞(𝑋⋆|𝑋(𝑖)) 

 If 𝑢 < 𝑅(𝑋(𝑖) , 𝑋⋆) = min{1,
𝐹(𝑋⋆)𝑞(𝑧(𝑖)|𝑍⋆)

𝐹(𝑧(𝑖))𝑞(𝑋⋆|𝑍(𝑖))
} 

 𝑋(𝑖+1) = 𝑋⋆ 

 𝑒𝑙𝑠𝑒 

 𝑋(𝑖+1) = 𝑋(𝑖) 

 

We can carefully choose the proposal distribution 𝑞. The MH algorithm assumes a symmetric 

random walk for the proposal distribution, i.e., 𝑞(𝑥|𝑦) = 𝑞(𝑦|𝑥). 𝑝(𝑥) does not even have to be 
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the full Bayesian probability but simply is required to be proportionate to it. This is clear since the 

Bayes denominators will cancel out. 

4. Simulation Studies 

The posterior distributions for the parameters are applied in this section (Eq. 1 and Eq. 2). 

Datasets of size 100, 200 and 400 are simulated. First, a set of five variables are simulated 

uniformly from a uniform distribution U(0 1), and then 𝛽0 = 2.41, 𝛽1 = −1.11 𝛽2 = 4.72, 𝛽3 =

0.31, and 𝛽4 = 4.10 are used. By applying the MH algorithm for 10000 repetitions, the parameters 

were obtained by calculating the posterior sample mean [21, 22]. In Figure 1, the posterior samples 

are plotted as histograms, and a red line remarks the true values for these parameters. Obviously, 

the histograms are approximately normal, and the true values are close to the sample's mean. In 

addition, the model is used to forecast the response for specific different values. The responses are 

plotted as histograms, Figure 1, for all the prediction samples, and the exact value are notified 

with the blue lines. 

 

 

Figure 1. Posterior mean for the parameters. 

Table 1. compares the exact parameter values with the classical logistic estimation, and posterior 

sample mean. Also, 95% credible intervals (𝐶. 𝐼.)are created for all the parameters. The exact 

values lie inside the 95% 𝐶. 𝐼. which implies that the approximation is acceptable [23]. 

 

Table 1. Estimation of parameters using classical logistic and posterior distribution. 

 True value Classical Logistic Posterior mean 𝟗𝟓% 𝑪. 𝑰. 

𝜷𝟎 2.41 2.12 2.45 (2.23 , 2.53) 

𝜷𝟏 -1.11 -1.43 -1.18 (-1.37 , -1.04) 

𝜷𝟐 4.72 4.83 4.72 (4.62 , 4.82) 

𝜷𝟑 0.31 0.21 0.25 (0.12 , 0.42) 

𝜷𝟒 4.10 4.17 4.12 (4.02 , 4.17) 

𝝈𝟐 0.18 0.16 0.17 (0.15 , 0.19) 

b0

2.2 2.3 2.4 2.5 2.6 2.7

b1

−1.5 −1.4 −1.3 −1.2 −1.1 −1.0 −0.9

b2

4.4 4.5 4.6 4.7 4.8 4.9 5.0

b3

0.0 0.1 0.2 0.3 0.4 0.5

b4

3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30

s
2

0.14 0.16 0.18 0.20 0.22 0.24
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5. Real Dataset Application 

           The proposed method has been applied to the real health dataset. We used the heart disease 

dataset as an application to our work. The dataset has been downloaded from the UCI data science 

website (https://www.kaggle.com). It contains patients’ health history and many medical 

indicators for each patient. In the following section, a brief description of the heart disease dataset 

is given. 

Heart Disease Dataset Analysis 

The description of the variables is given as shown in Table 2. The dataset consists of 303 

observations and 12 variables: age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, slop, ca, 

and thal. The aim is to forecast whether an individual has heart disease depending on the features 

or not [24]. 

 

Table 2. Descriptive table for the variables 

No. Predicters Descriptive 

1 age The age in years for patients 

2 sex Male = 1; Female = 0 

3 cp 
the chest pressure that was felt: Value 1 denotes normal angina, Value 2 denotes atypical 

angina, Value 3 denotes non-anginal discomfort, and Value 4 denotes asymptomatic 

4 trestbps 
On admission to the facility, the patient's resting blood pressure was measured in 

millimeters of mercury (mm Hg). 

5 chol cholesterol levels in milligrams per deciliter 

6 fbs fasting blood sugar is over 120 mg/dl: true = 1; false = 0 

7 restecg 
Resting electrocardiographic measurement: regular = 0, st-t wave abnormality = 1, potential 

or definite left ventricular hypertrophy according to Estes' criteria = 3. 

8 thalach Attained optimum heart rate 

9 exang Angina caused by workout: yes = 1; no = 0 

10 slop 
the slope of the most difficult workout segment: Value 1 indicates an upslope, value 2 

indicates a smooth surface, and value 3 indicates a downslope. 

11 ca total of major vessels colored by flourosopy (0 - 3) 

12 thal thalassemia is a form of blood disorder: Standard=3, fixed=6, and reversible=7. 

 

The correlation matrix for predictors in the heart disease dataset are shown in Figure 2. All the 

predictors do not have significant correlations. However, the 𝑠𝑙𝑜𝑝𝑒 has a positive correlation with 

𝑡ℎ𝑎𝑙𝑎𝑐ℎ, 𝑎𝑔𝑒 has negative correlation with 𝑡ℎ𝑎𝑙𝑎𝑐ℎ, and 𝑡ℎ𝑎𝑙𝑎𝑐ℎ has positive and negative 

correlation with both 𝑠𝑙𝑜𝑝 and 𝑒𝑥𝑎𝑛𝑔; respectively. The data set is visualized in Figure 3. where 

it is plotted as a scatter plot. The x-axis and y-axis are chosen to be chol and trestbps, respectively. 

The chest pain experienced (cp) is used to note the observations for all the individuals. 

https://medium.com/@halima23121998/heart-disease-uci-logistic-regression-in-r-b95b821088e6?sk=def7a489c8ce9b249048e903d80f8591
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Figure 2. Correlation matrix for predictors in heart disease dataset. 

 

 
Figure 3. Scatter plot ( trestbps vs. chol). 

6. Results and discussion 

The dataset was split up into training (212 observations) and testing (91 observations) parts. 

SVM, ANN, classical logistic, and Bayesian logistic classification methods are applied for testing 

and training datasets. The methods were compared according to their accuracy and consuming 

time. Table 3. compares four methods by calculating the accuracy for both training and testing 

datasets and the total time-consuming. The best accuracy exists in the Bayesian Logistic method, 

which is 91.38% in the training dataset and 90.92% in the testing dataset. This indicates the 

Bayesian Logistic method is the best. Also, Bayesian Logistic consumes less time than other 

methods. 
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Table 3. Comparison among SVM, ANN, Classical Logistic, and Bayesian Logistic methods. 

Methods 

Accuracy 

Total time 

Training dataset Testing dataset 

SVM 88.60% 84.42% 7 seconds 

ANN 86.80% 80.55% 9 seconds 

Classical Logistic 90.10% 86.39% 6 seconds 

Bayesian Logistic 91.38% 90.92% 4 seconds 

The accuracy curve for both classical and Bayesian logistic is shown in figure 4. We can see the 

value of AUC for Bayesian logistics is higher than classical logistic. In general, the best model 

exists with a higher AUC. For example, the accuracy in the testing dataset in Bayesian Logistic is 

90.92 %. The model can discriminate between individuals (patients) with heart disease and no 

heart disease with an excellent prospect. 

In general, the receiver operating characteristic (ROC) curve with a level of 0.7 appears to be very 

good, and hence the true positives are maximized. The highest quantity of patients with disease is 

not recognized as well. The higher the AUC, the more the model distinguishes between people 

who have the disease and others who do not. 

Figure 4. shows a comparison between Bayesian and classical logistic classifiers. Overall, the 

Bayesian logistic classifier performs better than classical logistic. By allowing only a few samples 

(less than 100), the steep slopes of the recall curves for the point estimate classifiers (top row, red 

lines) suggest that they better identify patients than the classical logistic classifier. A smaller slope 

indicates less progress in performance as more patients are included. These trends are also reflected 

in the overall measurement of balanced accuracy. 

 

 
Figure 4. Accuracy curve for both classical and Bayesian Logistic. 
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7. Conclusion 

The Bayesian Markov Chain Monte Carlo (MCMC) technique is presented in this article as 

an alternative method for estimating the logistic regression model. We derived a Bayesian logistic 

model by using a particular type of MCMC, the Metropolis-Hastings (MH) algorithm. The MH 

algorithm was introduced and used to obtain the estimated parameters in the new method. The 

Bayesian logistic model was used to overcome some limitations of the classical logistic model. 

The actual data of the heart dataset is used in this paper to classify healthy and non-healthy people. 

The modified method is compared with the classical logistic, SVM and ANN. It is shown that our 

method performs better than other methods and takes less time. 
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