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Abstract   

         EDIRKTO is an Implicit Type Runge-Kutta  Method of Diagonally Embedded pairs, is a 

novel approach presented in the paper that may be used to solve 4th-order ordinary differential 

equations of the form 𝑞(4)(𝑡)  =  𝑓(𝑡, 𝑞(𝑡), 𝑞′(𝑡)). There are two pairs of EDIRKTO, with three 

stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method 

indicate that the higher-order pair is more accurate, while the lower-order pair provides superior 

error estimates. Next, using these pairs as a basis, we developed variable step codes and applied 

them to a series of 4𝑡ℎ-order ODE problems. The numerical outcomes demonstrated how much 

more effective their approach is in reducing the quantity of function evaluations needed to 

resolve fourth-order ODE issues. 

 Keywords: Fourth-order ODEs; Runge-Kutta methods; diagonally implicit technique; 

embedded method. 

 

1. Introduction 

Differential equations (DEs) are important tools in mathematical modeling, particularly in 

explaining physical phenomena like heat and fluid movement, object motion, and nuclear 

reactions. ODEs of different orders are used in various applied research fields such as 

mechanics, electrical and control engineering, fluid dynamics, ship dynamics, neural networks, 

and beam theory [1-3]. Numerical and approximated methods have been developed to solve 

specific types of DEs. 
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In this study, we discuss a class of quasi-linear, fourth-order (ODEs) and their numerical 

integration in the following form: 

           𝑞(4)(𝑡) = 𝑓(𝑡, 𝑞(𝑡), 𝑞′(𝑡)),    𝑡 ≥ 𝑡0,                                                                            (1) 

with initial conditions 

𝜎𝑖(𝜏)  =  𝜁𝑖, 𝑖 = 0, 1, … , 3. 

Where 𝑓 ∶  ℛ × ℛ𝑁  ⟶ ℛ𝑁 , 𝜎(𝜏)  =  [𝜎1(𝜏), 𝜎2(𝜏), … , 𝜎𝑁(𝜏)] , 𝑡(𝜏, 𝜎) =  [𝑡1(𝜏, 𝜎), 𝑡2(𝜏, 𝜎),

… , 𝑡𝑁(𝜏, 𝜎)], and  𝜁𝑖 =  [𝜁1
i , 𝜁2

i , … , 𝜁N
i  ], where i = 0,1,2, … ,4. 

     Previously, researchers transformed Equation (1) into a system of first-order ODEs with four 

additional dimensions to solve it. However, it would be more efficient if numerical methods could 

be used to solve the problem accurately and quickly. In [4-12] contain such works. Multistep 

strategies for solving ODEs require initial values. However, according to several researchers (see 

[1, 13, 14]) this technique has a drawback as it consumes a lot of computing time and human effort. 

Consequently, several researchers have turned their attention to direct integration methods for 

solving higher-order ODEs, as these methods have demonstrated features of accuracy and speed 

[16-30]. Nevertheless, all of the methods mentioned above are above are multistep. 

     The primary objective of this paper is to introduce a new technique named EDIRKTO, which 

is a one-step implicit Runge-Kutta method created to directly solve general 4𝑡ℎ-order differential 

equations. The method involves deriving diagonally embedded implicit Runge-Kutta methods for 

the direct integration of specific 4𝑡ℎ-order differential equations. To address the IVPs problem in 

(1), the special version of the EDIRKTO method with 𝑚 stages is as follows:  

𝑞𝑛+1 = 𝑞𝑛 + ℎ 𝑞𝑛
′ +

ℎ2

2
 𝑞𝑛

′′ +
ℎ3

6
 𝑞𝑛

′′′ + ℎ4 ∑ 𝑏𝑖𝑓(𝑡𝑛 + 𝑐𝑗ℎ𝑠
𝑖=1 , 𝑄𝑖, 𝑄𝑖

′),                                  (2) 

𝑞𝑛+1
′ =  𝑞𝑛

′ + ℎ 𝑞𝑛
′′ +

ℎ2

2
 𝑞𝑛

′′′ + ℎ3 ∑ 𝑏𝑖
′ 𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑄𝑖, 𝑄𝑖

′),𝑠
𝑖=1                                               (3) 

𝑞𝑛+1
′′ =  𝑞𝑛

′′ + ℎ 𝑞𝑛
′′′ + ℎ2 ∑ 𝑏′𝑖

′ 𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑄𝑖, 𝑄𝑖
′),𝑠

𝑖=1                                                            (4) 

𝑞𝑛+1
′′′ =  𝑞𝑛

′′′ + ℎ ∑ 𝑏′′𝑖
′ 𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑄𝑖, 𝑄𝑖

′),𝑠
𝑖=1                                                                         (5) 

𝑄𝑗 = 𝑞𝑛 + ℎ 𝑐𝑖𝑞𝑛
′ +

ℎ2

2
 𝑐𝑖

2𝑞𝑛
′′ +

ℎ3

6
 𝑐𝑖

3𝑞𝑛
′′′ + ℎ4 ∑ 𝑎𝑖𝑗𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑄𝑗, 𝑄𝑗

′)𝑠
𝑗=1 ,                         (6) 

𝑄𝑗
′ = 𝑞𝑛

′ + ℎ 𝑐𝑖𝑞𝑛
′′ +

ℎ2

2
 𝑐𝑖

2𝑞𝑛
′′′ + ℎ3 ∑ �̅�𝑖𝑗𝑓(𝑡𝑛 + 𝑐𝑗ℎ, 𝑄𝑗 , 𝑄𝑗

′)𝑠
𝑗=1 .                                          (7) 

The coefficients  𝑏𝑖, 𝑏𝑖
′, 𝑏𝑖

′′, 𝑏𝑖
′′′, 𝑎𝑖,𝑗 , �̅�𝑖𝑗  and  𝑐𝑖 of diagonal implicit RK type (EDIRKTO) 

methods are real numbers. The method is diagonally implicit when  𝑎𝑖,𝑗  ≠ 0  for  𝑖 ≤  𝑗. Using 

the Butcher tableau, the EDIRKT approach is illustrated. See Table 1. 
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Table 1. The Butcher tableau EDIRKTO method 

 

3. Order Conditions of the EDIRKTO Method 

According to Ghawadri [15], the algebraic order conditions for the EDIRKTO formula up to order 

seven are as follows: 

order 1:  ∑ 𝑏𝑖
′′′ = 1, 

order 2:  ∑ 𝑏𝑖
′′′𝑐𝑖 =

1

2
,       ∑ 𝑏𝑖

′′ =
1

2
, 

order 3:  ∑ 𝑏𝑖
′′′𝑐𝑖

2 =
1

3
,     ∑ 𝑏𝑖

′′𝑐𝑖 =
1

6
,      ∑ 𝑏𝑖

′ =
1

6
, 

order 4:  ∑ 𝑏𝑖
′′′𝑐𝑖

3 =
1

4
,     ∑ 𝑏𝑖

′′′𝑎𝑖𝑗̅̅ ̅̅ =
1

24
,   ∑ 𝑏𝑖

′′𝑐𝑖
2 =

1

12
,     ∑ 𝑏𝑖

′𝑐𝑖 =
1

24
,    ∑ 𝑏𝑖 =

1

24
, 

order 5:  ∑ 𝑏𝑖
′′′𝑐𝑖

4 =
1

5
,   ∑ 𝑏𝑖

′′′𝑎𝑖𝑗 =
1

120
,    ∑ 𝑏𝑖

′′′�̅�𝑖𝑗𝑐𝑗 =
1

120
,   ∑ 𝑏𝑖

′′′𝑐𝑖�̅�𝑖𝑗 =
1

30
, 

              ∑ 𝑏𝑖
′′𝑐𝑖

3 =
1

20
,     ∑ 𝑏𝑖

′′𝑎𝑖𝑗 =
1

120
,   ∑ 𝑏𝑖

′𝑐𝑖
2 =

1

60
,    ∑ 𝑏𝑖𝑐𝑖 =

1

120
, 

order 6:  ∑ 𝑏𝑖
′′′𝑐𝑖

5 =
1

6
,   ∑ 𝑏𝑖

′′′𝑎𝑖𝑗𝑐𝑗 =
1

720
,   ∑ 𝑏𝑖

′′′�̅�𝑖𝑗𝑐𝑖
2 =

1

360
,  ∑ 𝑏𝑖

′′′𝑐𝑖
2�̅�𝑖𝑗 =

1

36
,     

              ∑ 𝑏𝑖
′′′𝑐𝑖�̅�𝑖𝑗𝑐𝑗 =

1

144
,   ∑ 𝑏𝑖

′′′𝑐𝑖𝑎𝑖𝑗 =
1

144
,  ∑ 𝑏𝑖

′′𝑐𝑖
4 =

1

30
,  ∑ 𝑏𝑖

′′�̅�𝑖𝑗𝑐𝑗 =
1

720
, 

               ∑ 𝑏𝑖
′′𝑐𝑖�̅�𝑖𝑗 =

1

180
,   ∑ 𝑏𝑖

′′�̅�𝑖𝑗 =
1

720
,   ∑ 𝑏𝑖

′𝑐𝑖
3 =

1

120
,    ∑ 𝑏𝑖𝑐𝑖

2 =
1

360
,  

               ∑ 𝑏𝑖
′�̅�𝑖𝑗 =

1

720
. 

4. Derivation Embedded EDIRKTO Methods 

To solve Equation (1) numerically, the general form of the EDIRKTO technique with 𝑚-stage is 

given. The embedded pair RK method, a current research area that is constantly enhancing existing 

programs, is then developed. The derivation of 𝑝(𝑞) pairs of implicit EDIRKTO approaches is 

used to provide minimum error estimation for step size codes. Both the order 𝑝 method 

(𝐶, 𝐴, 𝑏, 𝑏′𝑇 , 𝑏′′𝑇 , 𝑏′′′𝑇) and the order 𝑞 method (𝐶, �̅�, 𝑏1
𝑇 , 𝑏′2

𝑇 , 𝑏′′3
𝑇 , 𝑏′′′4

𝑇) constitute the foundation 

for them. The embedded pair can be launched in Butcher Tabular as follows:  

 

 

 

 

𝑐1 𝑎11             𝑎12         …         𝑎1𝑠    �̅�11      �̅�12       …        �̅�1𝑠 

𝑐2 𝑎21        𝑎22          …         𝑎2𝑠  �̅�21      �̅�22       …        �̅�2𝑠 

𝑐3 𝑎31        𝑎32          …         𝑎3𝑠 �̅�31      �̅�32       …        �̅�3𝑠 

⋮   ⋮            ⋮           ⋮           ⋮   ⋮          ⋮         ⋮           ⋮ 
𝑐𝑠 𝑎𝑠1        𝑎𝑠2          …          𝑎𝑠𝑠      �̅�𝑠1       �̅�𝑠2       …         �̅�𝑠𝑠 

  𝑏1           𝑏2        …           𝑏𝑠  

  𝑏1
′            𝑏2

′        …           𝑏𝑠
′   

  𝑏1
′′          𝑏′2

′        …          𝑏𝑠
′′  

  𝑏1
′′′        𝑏′′2

′        …         𝑏𝑠
′′′  
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Table 2. The Embedded Pair EDIRKTO Method 

𝐶 𝐴 �̅� 
 𝑏𝑇 

𝑏′𝑇 
𝑏′′𝑇 

 
 

 𝑏′′′𝑇  

   
 𝑏1

𝑇  

 𝑏2
′𝑇 

𝑏3
′′𝑇 

𝑏4
′′′𝑇 

 

 

    The main idea is to obtain single cost error estimation for usage in step size approach values 

before generating the embedded pair of implicit EDIRKTO approaches. The methods are 

illustrated by increasing the significant pairs and local error estimates using the values step size ℎ, 

as follows [8], 

ℎ𝑛+1 = 0.9ℎ𝑛 (
𝑇𝑜𝑙

𝐿𝑇𝐸
)

1

𝑞+1
 ,                                                                                                           (8) 

Where 𝑇𝑜𝑙 refers to the required level of accuracy, and local truncation error (LTE) is performed 

at each stage. Therefore, the step will be admitted if 𝐿𝑇𝐸 ≤  𝑇𝑜𝑙, uses the local extrapolation 

method, which indicates employing more precise calculations to boost the integration and ℎ can 

be improved by using Equation (8). If  𝐿𝑇𝐸 >  𝑇𝑜𝑙, the step will be denied and the step size ℎ will 

be cut in half. Fourth-order ODEs can be solved using the EDIRKTO technique, an embedded RK-

type method. The first pair has orders 3 and 4, whereas the second pair contains orders 4 and 5. 

These methods were built utilizing sections, which confirm that the lower-order methods produced 

the most accurate error estimates while the higher-order methods were extremely accurate. 

Therefore, doubling the step size ℎ has an impact on getting the correct results. The two derivations 

for the embedded EDIRKTO4(3) and embedded EDIRKTO5(4) methods used in this work are 

shown in Tables 3 and 4.   

The 𝐴 and 𝐶 values in EDIRKTO4(3) are calculated from the 4𝑡ℎ-order solution and then obtained 

from the three-stage embedded 3𝑟𝑑-order equation. The simultaneous solution of equations, 

followed by the solution of 𝑏1
𝑇 , 𝑏′2

𝑇 , and 𝑏′′3
𝑇 while 𝑏′′′4

𝑇 has the same values as the 4𝑡ℎ-order. The 

outcomes are as follows: 

𝑏1
𝑇 =

1

6
− 𝑏′

2
𝑇

− 𝑏′
3
𝑇

, 𝑏′
2
𝑇

= 𝑏′
2
𝑇

, 𝑏′
3
𝑇

= 𝑏′
3
𝑇

, 𝑏′′′
1
𝑇

= 0, 𝑏′′′
2
𝑇

=
1

2
, 𝑏′′′

3
𝑇

=
1

2
, 𝑏′′

1
𝑇

= −
1

2
+ 𝑏′′

3
𝑇

+

𝑏′′
3
𝑇

√3 +
1

3
√3 , 𝑏′′

2
𝑇

= −2𝑏′′
3
𝑇

+ 𝑏′′
3
𝑇

√3 −
√3

3
+ 1, 𝑏′′

3
𝑇

= 𝑏′′
3
𝑇

.   

According to [12], using the minimized command in Maple to minimize the LTE, we can calculate 

the free parameters as follows:  

𝑏′2
𝑇= -0.0142606637044632, 𝑏′3

𝑇=0.644727870311524 and 𝑏′′3
𝑇= 0.105662412164532. If the value 

is optimized in fractional form, then 𝑏′2
𝑇 = −

1

100
, 𝑏′

3
𝑇

=
6

10
, and  𝑏′′3

𝑇 =
1

10
 are chosen. 
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Table 3. The Embedded Pair EDIRKTO4 (3) Method. 

1 
 −

1

4
 −

2

1000
 

1

2
−

√3

6
     

3

10
               −

1

4
                       0        0              −

2

1000
 

1

2
+

√3

6
     

3

10
                   

3

10
                 −

1

4
        0                    

9

100
         −

2

1000
 

 
−

2

10
                   

7

10
                  

6

100
 

 

 
 

2

1000
                  

2

10
                  

2

100
 

 

 
     0                   

1

4
+

√3

12
          

1

4
−

√3

12
 

 

 
     0                         

1

2
                     

1

2
 

 

 
−

2

10
                       

7

10
                 

6

100
 

 

 
−

127

300
                −

1

100
                 

3

5
 

 

 
−

2

5
+

7√3

30
          

2

5
+

7√3

30
          

1

10
   

 

 
     0                          

1

2
                      

1

2
 

 

 

 

Moreover, from the 5𝑡ℎ-order method, the coefficients of 𝐴 and 𝐶 are computed, and a three-stage 

4𝑡ℎ-order embedded approach is then derived. The solution for 𝑏1
𝑇 , 𝑏′2

𝑇 and 𝑏′′3
𝑇 is obtained by 

simultaneously solving the equations up to order 5, while 𝑏′′′3
𝑇 has the same result as the fifth order. 

The answers are attained as 

𝑏′
1
𝑇

= −
1

12
+

2

5
𝑏′

3
𝑇

−
2√6

5
𝑏′

3
𝑇

+
√6

24
, 𝑏′

2
𝑇

= −
7

5
𝑏′

3
𝑇

+
2√6

5
𝑏′

3
𝑇

−
√6

24
+

1

4
, 𝑏′

3
𝑇

= 𝑏′
3
𝑇

 , 𝑏1
𝑇 =

1

24
− 𝑏2

𝑇 −

𝑏3
𝑇 , 𝑏2

𝑇 = 𝑏2
𝑇 , 𝑏3

𝑇 = 𝑏3
𝑇 , 𝑏′′′

1
𝑇

=
1

9
, 𝑏′′′

2
𝑇

=  
4

9
−

√6

36
, 𝑏′′′

3
𝑇

=  
4

9
+

√6

36
, 𝑏′′

1
𝑇

= 0, 𝑏′′
2
𝑇

=  
1

4
+

√6

36
 , 𝑏′′

3
𝑇

=

 
1

4
−

√6

36
  . 

We determine the free parameters according to [12] by minimizing the LTE using Maple's 

minimized command as follows: 

𝑏′3
𝑇= 0.0323023077253058, 𝑏2

𝑇= -0.148646585401452 and 𝑏3
𝑇= 0.447631755184810. If the value 

is optimized in fractional form, then 𝑏′3
𝑇 =

3

100
, 𝑏2

𝑇 = −
1

10
, and  𝑏3

𝑇 =
4

10
  are chosen. 
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Table 4. The Embedded Pair EDIRKTO5(4)  Method. 

1 
 −

3

10
 −

2

100
 

2

5
−

√6

10
     

4

10
               −

3

10
                          

279

25000
−

381√6

25000
        −

2

100
 

2

5
+

√6

10
  −

1

10
                  

5

10
                 −

3

10
 −

63

1000
+

39√6

1000
               

9

100
           −

2

100
 

  

9

10000
      

1223

6000
+

1331√6

180000
       

1223

6000
−

1331√6

180000
 

 

 
 0                  

1

12
+

√6

48
                        

1

12
−

√6

48
 

 

 
     0                

1

4
+

√6

36
                           

1

4
−

√6

36
 

 

 
    

1

9
                 

4

9
−

√6

36
                           

4

9
+

√6

36
 

 

  

  −
31

120
                           −  

1

10
                             

2

5
 

 

 
−

107

1500
+

89√6

3000
        

26

125
−

89√6

3000
                

3

100
 

 

 
     0                                   

1

4
+

√6

36
                  

1

4
−

√6

36
 

 

 
    

1

9
                                    

4

9
−

√6

36
                   

4

9
+

√6

36
 

 

   

 

5. Problems Test 

The methods presented in section 4 were tested with four different problems in this section. The 

following techniques were used to carry out the numerical experiments: 

Problem 1. [15] (Inhomogeneous linear problem) 

        𝑞(4)(𝑡) = 𝑞′(𝑡) − cos (𝑡), 𝑞(0) = −
1

2
, 𝑞′(0) =

1

2
, 𝑞′′(0) =

1

2
, 𝑞′′′(0) = −

1

2
,   

where t ∈ [0,2],  

       Exact solution is 𝑞(𝑡) =
1

2
sin(𝑡) −

1

2
cos(𝑡). 

Problem 2. [15] (Homogeneous linear problem) 

 𝑞(4)(𝑡) = 𝑞2(𝑡) + (𝑞′(𝑡))2 + sin(𝑡) − 1,   𝑞(0) = 0, 𝑞′(0) = 1, 𝑞′′(0) = 0 , 𝑞′′′(0) = −1, 

Where t ∈ [0,1],  

       The exact solution is 𝑞(𝑡) = sin (t). 

Problem 3. [15] (Homogeneous linear system) 

       𝑞1
(4)(𝑡) = −

𝑒3𝑡

4
 𝑞4

′ (𝑡), 𝑞1(0) = 1, 𝑞1
′ (0) = −1, 𝑞1

′′(0) = 1, 𝑞1
′′′(0) = −1,   

        𝑞2
(4)(𝑡) = −16 𝑒−𝑡 𝑞1

′ (𝑡), 𝑞2(0) = 1, 𝑞2
′ (0) = −2, 𝑞2

′′(0) = 4, 𝑞2
′′′(0) = −8,   

       𝑞3
(4)(𝑡) = −

81 𝑒−𝑡

2
 𝑞2

′ (𝑡), 𝑞3(0) = 1, 𝑞3
′ (0) = −3, 𝑞3

′′(0) = 9, 𝑞3
′′′(0) = −27,   
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      𝑞4
(4)(𝑡) = −

356 𝑒−𝑡

4
 𝑞3

′ (𝑡), 𝑞4(0) = 1, 𝑞4
′ (0) = −4, 𝑞4

′′(0) = 16, 𝑞4
′′′(0) = −64,   

where t ∈ [0,1],  

The exact solution is 𝑞1(𝑡) = 𝑒−𝑡, 𝑞2(𝑡) = 𝑒−2𝑡, 𝑞3(𝑡) = 𝑒−3𝑡, 𝑞4(𝑡) = 𝑒−4𝑡. 

Problem 4. [15] (Inhomogeneous nonlinear problem) 

 𝑞(4)(𝑡) = −
15 𝑞′(𝑡)

8 𝑞6(𝑡)
, 𝑞(0) = 1, 𝑞′(0) =

1

2
, 𝑞′′(0) = −

1

4
, 𝑞′′′(0) =

3

8
,   

Where t ∈ [0,
𝜋

4
],  

   Exact solution is 𝑞(𝑡) = √𝑡 + 1. 

 

6. Numerical Results 

The tables below show the approximation outcomes for resolving issues 1-4. In the tables, the 

following acronyms will be used: 

 Tol: Tolerance. 

 F. N: the function call's number 

 STEP: succeeded strides number 

 FSTEP: failure strides number 

 TIME: enforcement time 

 EDIRKTO4(3): the embedded 4(3) method constructed in this paper 

 EDIRKTO5(4): the embedded 5(4) method constructed in this paper 

 

Table 5. Problem 1-related numerical comparisons  

FSTEP STEP TIME F.N METHOD TOL(h) 

0 7 0.068 21 EDIRKTO4(3) 
10−2 

0 5 0.029  15 EDIRKTO5(4) 

0 19 0.081 57 EDIRKTO4(3) 
10−4 

2 14 0.036  46 EDIRKTO5(4) 

1 70 0.102 212 EDIRKTO4(3) 
10−6 

2 43 0.045 133 EDIRKTO5(4) 
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Table 6. Problem 2-related numerical comparisons  

FSTEP             STEP TIME F.N METHOD TOL(h) 

0 4 0.068 12 EDIRKTO4(3) 
10−2 

0 3 0.038 9 EDIRKTO5(4) 

1 11 0.088 35 EDIRKTO4(3) 
10−4 

0 7 0.068 21 EDIRKTO5(4) 

1 34 0.096 104 EDIRKTO4(3) 
10−6 

0 23 0.077 69 EDIRKTO5(4) 

 

Table 7. Problem 3-related numerical comparisons  

FSTEP             STEP TIME F.N METHOD TOL(h) 

2 13 0.056 43 EDIRKTO4(3) 
10−2 

2 9 0.028 31 EDIRKTO5(4) 

2 47 0.066 145 EDIRKTO4(3) 
10−4 

2 25 0.039 79 EDIRKTO5(4) 

3 205 0.105 621 EDIRKTO4(3) 
10−6 

2 76 0.087 232 EDIRKTO5(4) 

 

Table 8. Problem 4-related numerical comparisons 

FSTEP             STEP TIME F.N METHOD TOL(h) 

1 4 0.080 14 EDIRKTO4(3) 
10−2 

0 2 0.056 6 EDIRKTO5(4) 

1 10 0.089 32 EDIRKTO4(3) 
10−4 

1 6 0.057 20 EDIRKTO5(4) 

2 36 0.098 112 EDIRKTO4(3) 
10−6 

1 18 0.060 56 EDIRKTO5(4) 

 

 

 

 



IHJPAS. 37 (1) 2024 

383 
 

 

Problem 1                                                         Problem2 

  

 

Problem 3                                                       Problem 4 

Figure 1. Competence curves for methods 

7. Discussion  

     In this paper, Figure 1 illustrates the enhancements made to the Implicit Type Runge-Kutta 

Method of Diagonally Embedded Pair (EDIRKTO). This was done by plotting the decimal 

logarithm for the time curve with the highest value against the logarithm of some function call 

estimates that were taken from Tables 5-8. The current study comparison of EDIRKTO4(3) and 

EDIRKTO5(4) with the four different problems. Furthermore, Figure 1 was made using the 

corresponding numerical results from Tables 5–8, respectively. In addition, as shown in Tables 5-

8, computations of the succeeded stride number (Step) and the failure stride number (FSTEP). 

Figure 1 illustrates the numerical comparison between the EDIRKTO4(3) and EDIRKTO5(4) 

outcomes from the current study. The current study is based on the Runge-Kutta Method, which 

has been previously studied by [4, 5, 8]. However, the research at hand broadened and enhanced 

the method from explicit to implicit and from direct to diagonal.  

8. Conclusion 

   The solution of fourth ODEs using diagonally embedded implicit Runge-Kutta methods  has 

been discussed in this paper. Numerical findings demonstrate that the suggested approaches are 

much more effective in terms of the number of function evaluations while solving the general 4th-

order ODEs. 
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