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Abstract

In this paper we have presented a comparison between two novel integral transformations that are
of great importance in the solution of differential equations. These two transformations are the
complex Sadik transform and the KAJ transform. An uncompressed forced oscillator, which is an
important application, served as the basis for comparison. The application was solved and exact
solutions were obtained. Therefore, in this paper, the exact solution was found based on two
different integral transforms: the first integral transform complex Sadik and the second integral
transform KAJ. And these exact solutions obtained from these two integral transforms were new
methods with simple algebraic calculations and applied to different problems. The main purpose
of this comparison is the exact solutions, and until we show the importance of the diversity and
difference of the kernel of the integral transform by keeping the period t between 0 and infinity.

Keywords : Complex Sadik Transform, (KAJ) Kuffi Abbass Jawad Transform, Response of An
Undamped uncompressed forced oscillator, Ordinary Differential Equations.

1. Introduction

First, one should know the importance of integral transforms in solving differential equations of
all kinds, both ordinary and partial, where these differential equations are transformed into
algebraic equations that are easier to compute by relying on the integral transform and then taking
the inverse of the transform [2, 15, 27 and 29].

Integral transforms are currently also of great importance in applied mathematics, as they are used
in the coding of images, among other things. They are of great importance for modern technical
applications, such as in genetic engineering, and facilitate the solution of complex differential
systems, such as colon cancer and drug concentration, regardless of whether they are partial or
ordinary systems [13,14,27,30].
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Due to the importance of integral transformations in many vital applications, many papers have
appeared on this topic and in various fields [1,3-11,16-26,28]

Definition 1.1. [29] The Complex Sadik Transform (CST) is denoted by the operator
S5{.}, thetransform form is as follows:

1 r*® a
S2lg(0)] = F*(s% ) = —; fo gD~ "t

Where s is a complex variable, a is any nonzero real number, and £ is any real number.

Definition 1.2. [2] The "Kuffi-Abbas-Jawad"(KAJ) Transform denoted by the operator
S.»{.}, the transform form is as follows:

1 (® /ty _
Sulg®) = K@) =5 [ g (5)e e
Where n is any integer number, and 0 < [; < v < [,, where [; and [, are either finite or infinite.

1.1. The KAJ and Complex Sadik Integral Transforms for Some Basic Functions
In this part, we present the KAJ integral transform and the novel complex integral transform for
some important basic functions in the following table:

Table 1: KAJ transform and the complex Sadik integral transform for some basic functions

Functions Sa{g(®)} =K®w) Si{g(®)} =F°(s)
g "Kuffi Abbass Jawad (KAJ) Transform" "Complex Sadik Transform"
1 —i
1 pntl S(a+[3)
rl 7!
T . 1
t",r €N e 0™ @
e®, aconstant S _t e +i s
) v (v —a) sB [(s22 + a?) (s2% + a?)
a —a
sin(at) I N N T IETT)
v 1(v2 + a?) sP(s2a — q?)
1 —is®
cos(at) T2 1 a?) (2 —g2)
v2(v? + a?) sP(s22 — q2)
a —a
sinh(at) TR = ) SP (5% + a?)
1 —is”®
cosh(at) —— _
v=2(v2 — a?) sP(s%® 4 a?)
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2. Complex Sadik Integral and KAJ Transforms of Derivatives:
Theorem 2.1. [29] Let F€¢(s) be the complex Sadik integral transform of f(¢t)(F¢(s) = SS[f ()],
then

n
1
Self™©®)] = (s)"F(s) - 7[2 (ts“)k-lfm-k)m)].
§ k=1
In this paper, we want to generalize KAJ transform of m‘"-derivative and prove that by

mathematical induction.

Theorem 2.2. Let K(v) be the Kuffi-Abbas-Jawad (KAJ) transform of f(t)(K(v) = S,.[f ()],
then

h
Sulf® (O] = v*Kw) - [Z ka<“-k><0)].
k=1

Proof. by Mathematical Induction

1 Forh=1,
vf(0)

pn

Smlf' (O] =vK() —
Thus true for h = 1.

2 Assume that, true for h = r that means:

S.ulF O] = v K@) - [Z ka“"‘)(o)]-

k=1

3 Wewanttoproveforh=r+1
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’ @) 0
S 0O] =5 |10 =vsalroo] - L2
: _ )
VR ‘%[2 vef “"%0)] AL vn(o),
k=1 |
< ' ")
— UT+1K(U) _ vin Z vk+1f(r—k) (0) _ van(o) ’

— 17r+1k(v) _ vin 2 vk+1f(r—k)(0) + vf(’”)(O)],

1 -
— UT+1K(17) _ v_n vk+1f(r—k)(0) )

Lk=0
1 rr+1
— 177‘+1K(v) -= v(k—1)+1f(r—(k—1))(0)] ,
v L k=1
1 rr+1
= UT+1K(U) - U_n ka(r+1—k)(0)] )
Lk=1

= Sp[f T O]
So theorem is true for n € N.
3. Main Results:

In this part, we present two real life problems, response of an undamped forced mechanical
oscillator and response of an undamped forced electrical oscillator.

Example 3.1. (Response of an Undamped Forced Mechanical Oscillator)

Consider the differential equation of the forced mechanical oscillator:

. F
X(@) + wigXx(t) = Ecos(wt).

Where w, = \/g,represents the natural frequency of the oscillator with initial boundary conditions,

as follows:

X(0) =0,
X(0) = 0.

Complex Sadik Transform
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Sg {X(t) +wEX(t) = Ecos(wt)}

X(0) is*X(0) F —is?
FLa\2yC _ _ 2ycC -
(is®)“Xc(s) 5P 7 + wiXe(s) ] T —
F —is®
a2y C 2yc -
(is®)“X(s) + woX(s) = m PG — WD)’
—iFs®
2o ZXC Zxc — )
l (S ) (S) + WO (S) msﬁ(sz(x _ Wz)
—s2%X°(s) + wgX°(s) = — s
0 msP(s2a —w2)’
—iFs®
2 _ o2 _
(WO -S a)xc(s) - msﬁ(SZa _ WZ) )
X (s) —iFs“
s) = ,
msP (2% — w2)(w§ — s29)
X(s) [ -1
s) = ,
msh | (s2% —w?2)(w¢ — s29)
xé(s) = IFS 1
s) =
msB | (s2* —w2)(w? — WO) wé — 52"‘)(W2

iFs*
msﬁ(wz 2) [(520( — WZ) (W — Sm)l

Xe(s) =

X¢ = il : 1
(s) = mw? — wg) {Sﬁ (s2a —w?2) * (wg — s29)| }’

orer o F 1 1
() = mw? —w¢) sﬁ (s2@ —w?) (s?2e—wd)|)’
F is% is“ ]

XC S) = - )
(s mw? —wg) |sP(s2® —w?) sPB(s2@ —wd))

inverse , then

X(t) = ———< [—cos(wt) + cos(wyt)],
m(w? — wg)
X(t) = ﬁ [cos(wyt) — cos(wt)],
O e e i ey |
_ (wo +w)t\  ((wo—w)t
X(t) = m(WO W) sm( > >51n< > ),

or because sin(—x) = —sin(x)

B F [ (we +w)t\ | [(wyg—w)t
0 = ey 2 (e (o)
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Kuffi Abbass Jawad (AKJ) Transform

F
{X(t) +wiX(t) = —cos(wt)}
1
v2(v2 +w2)l’

viK(v) + % [—v2X(0) — vX(0)] + w2K(v) = E[
1
v2(v? + w?)]

" :
v2(v2 +w?)(v? + WO)
1
mv™=2 | (v2 + w?)(v? + wé
1 1
my"-? l(vz +w§(w? — Wo) W2+ w2)(w2 —wd)|’
F 1
mv"2(w? —wg) [(v? + WOZ) 2+ Wz)l'

1 1
SmlX(O] = K() = mw? — wg) Iv”‘z(vz + wd) T vn2(p2 + w2)|’

W% +wdK@w) = [

-

K(v) =—l

-

K(w) =

-

K() =

K(w) =

inverse , then

X(t) = % [cos(wyt) — cos(wt)],
X(6) = 2) [ <(W° ! W)t) sin <—(W° . W”)l
_ (wo +w)t\  ((wo—w)t
X() = m(WO w2 sin ( > ) sin <T>'
or because sin(—x) = —sin(x)

F (wog +w)t\ = [(wyg —w)t
X(t) = Tn(WZ——\/Vg) [-2511’1 <OT> Sin <OT>I )

X)) = Zli >=sin <(W il WO)t) sin <w>

Example 3.2. (Response of an Undamped Forced Electrical Oscillator)

Consider the differential equation of the forced electrical oscillator:

LO(t) + RQ(t) + %Q(t) =V cos(wt),
o) + %Q(t) +wgQ() = %cos(wt) .

For an undamped forced electrical oscillator, resistance R = 0
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0(t) +wiQ(t) = %cos(wt).

Where w, = \/g and Q(t) is the instantaneous charge.

With the initial boundary conditions are:

Q(0) = 0,
0(0) = 0.

. %4
S¢S {Q(t) +wéQ(t) = —cos(wt)}

e - L0 B0 ey =Y
(is%)2Q°(s) G W) = L g ey
—is®

(is®)?Q°(s) + wiQ(s) = 1 m'

2(ay20¢ . B —iVs®

(9)?Q°(s) + w5 Q°(s) = LsB(s2x —w2)’

—iVs®

—s22Q°(s) + wZQ°(s) = LsP(52% — w2)’

, er —iVs®
(wW§ —s*)Q°(s) = LsP(s2% —w?)’

o —iVs®
Q(s) = LsP(s2@ —w2)(w¢ — s2%)’

c _ iVs -1
Q (S) - Lsﬁ I(Sza — WZ)(Wg - 5.20()]'

o Vs 1
O [ e
Q°(s) = iVs@ —, [ l

LsB(w? —wd) |(s2a —WZ) (wé —SZ“)

c —_ V 1 1
Q°(s) = m{sﬁ l(SZa —w?) + (W _ 52“) }:

c —_ V 1 1 |
) = m{s_ﬁ l(sz"‘ —w?)  (s2— Wg).}’

o is® is® -
Q°(s) = L(w? — Wg) sB(s2a — w2) B sB(s2a — WOZ) >

inverse , then
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%4
Q(t) = m [—cos(wt) + cos(wyt)]

Q(t) = L(+O) [cos(wyt) — cos(wt)]

(W0+W)t ) (Wo_W)t
0O = Tz 2)[ ( 2 )( Z )l

2V C((we +w)t\ | [(wg —w)t
Q(t):L(WOZ—WZ)Sln< 02 >sm< 02 ),

or because sin(—x) = —sin(x)

o0 (=52 (5]
w+wot)  [(w—wyt
00 = [y < 2 )( 2 )

Kuffi Abbass Jawad (KAJ) Transform

. %
S {Q (t) + w2Q(t) = zcos(wt)}

2K +i[— 20(0) — ) O]+ ZK _K[ .
veK(v) 2 v=Q(0) —vQ(0)] + wp (v)_Lvn—Z(v2+W2)

1
v2(v2 + w2):
K(w)= _l nZ(pZ \;2)(172 Fw))
L2 l(vz n WZ)l(v2 T WZ)
Lvn=2|(v2 + w0 )1(w2 wd) (v + WZ)(W2 - Wo)l

vV
W2 +wdK[) = Z[

K() =

K() =

vn- 2(W2 wg) I(v2 +wd) (v2 + wz)l
_x _ vV 1 1
Sm [Q(t)] - (U) - L(WZ _ WOZ) lvn_z (‘UZ + WOZ) - pn—2 (UZ + WZ)

K(w) =

inverse , then

[cos(wyt) — cos(wt)]

4
Q(t):L( 2 0)

_ (wo +w)t\  ((wo—w)t
0= g2 () ()

2V (o +w)t\ = ((wo—w)t
Q(t)=L(Wg_W2)sm<W ZW )sm(w 2W >

or because sin(—x) = —sin(x)

449



IHIPAS. 37 (1) 2024
B % osi wo +w)t\ = [(wyg—w)t
Q) = —L(w2 — Wg) l— sin (—2 > sin (—2 )l

2V (W wo)t) (W —wo)t
0O = [y sin (M5 Jsn (512

Example 3.3. [12]

Let a body A of mass 1 gram move on the x-axis. It is attracted towards the origin O with a force
equals to 4x. Also, assume that initially it is at rest when x = 5; then, determine its position by
considering:

1 No other forces acting on it.

2 damping: force, or, in other words, resistance to the particle, is equal to 8 times the velocity
at any instant.

Solution: From Figure 1, for x > 0, the net force towards the left is given by 4x, while for

X

A

>
&
O A

Figure 1.Body Aof mass 1

x < 0, the net force towards the right is given by 4x. Thus, for both cases, the net force equals
4x.

By Newton's second law of motion, mass X acceleration = net force,

X(t) = —4X(t)
X)) +4X() =0

The initial conditions are

X(0) =5,
X(0) = 0.

Complex Sadik Transform
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SC{X(t) +4X(t) = 0}
X(0) _ is“X(0)

P a2y C _ c _
(is*®)“Xc(s) 57 7 +4X°(s) =0
5is®
—s2%X°(s) — 7 +4X°(s) =0

5is%
_ o2a c —
(4= 520X°(s) = =
XC(s) = 5is®
() = sP(4 — s2a)
X€(s) = —5is®
() = sP(s?* — 4)

inverse
X(t) = 5cos(2t).

Kuffi Abbass Jawad (KAJ) Transform

Sm{X(t) +4X(t) = 0},

v2K(v) + % [-v2X(0) — vQ(0)] + 4K (v) = 0,
5 5v?
v°K(v) —v—n+4K(v) =0,

5
k) =—=,
5

SnlX(@®)] =KW) = T W)

inverse
X(t) = 5cos(2t).

4. Conclusions
We conclude that the complex Sadik transformation and the KAJ transform each other to an

exact solution, and both are effective solutions. The two new integral transformations, the
complex Sadik transformation and the Kuffi-Abbas-Jawad transformation, provide an exact
solution for some mechanical and electrical theorems.
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