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Abstract

In this paper, the Quaternary Continuous Classical Optimal Control Problem (QCCOCP) for
the Quaternary Linear Elliptic Partial Differential Equations (QLEPDEQs) is studied. The
mathematical model for the proposed problem is formulated, and it consists of the QLEPDEGQs, the
Objective Function (OF), and the set of state controls. The method of Galerkin (MG) is used to
prove the existence theorem of a unique state vector solution (QSVS) of the Weak Form (WF) for
the QLEPDEQs when the Quaternary Classical Continuous Control Vector (QCCCV) is fixed.
Furthermore, the existence of a Quaternary Classical Continuous Optimal Control Vector
(QCCOCV) ruled by the QLEPDEGQs is stated and proved. The Quaternary Adjoint Equations
(QAJEQs) associated with the QLEPDEQs are formulated and then studied. The Fréchet Derivative
(FD) for the OF is derived. Finally, the necessary condition theorem (NCTH) for the optimality of
the QCCOCP is proved.
Keywords: Quaternary Continuous Classical Optimal Control Vector, Quaternary Partial
Differential Equations, Objective Function, and Adjoint Equations.

1. Introduction

Optimal control problems have an essential role in important areas of applied mathematics that
relate to many important aspects of life. One of the important applications of life is in medicine
[1,2], aircraft [3,4], economics [5,6], robotics [7,8], weather conditions [9,10], biology [11,12],
Aerospace [13-14], Electrical Machines [15-16], and many other important applications[17-21].
Because of this importance, many researchers have been interested in studying optimal control
problems related to Nonlinear Ordinary Differential Equations (NLODES) [22], or those related to
different types of NLPDEs like parabolic, hyperbolic, and elliptic [23-25], or those related to
NLOPDEs of a couple of these three kinds [26]. In the current work, the study of the optimal
control problem is motivated to deal with the study of the QCCOCP related to the QLEPDEQs.
The mathematical model for the proposed problem is formulated; the MG is used to study and
prove the existence theorem for a unique QSVS for the Wf of the QLEPDEQqs for fixed CCOCV.
The existence theorem for a CCOCV associated with the QLEPDEGQs is stated and proved. The
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QAEQs related to the QLEPDEGQs are formulated and then studied. The FD of the OF is derived;
finally, the NCTH is stated and proved.

2. Description of the Problem

Let Q be an abounded and open connected subset in R? with a Lipschitz (LIP) boundary 0Q in
the QCCOCP, including the QLEPDEGs:

—Ay; +y1+ ¥, +y3 —ya = by (%) +uy 1)
—Ay, =yt Yy, +ys =y = by () tu, (2)
—Ay; —y1 =Y, +¥3—ya= b3 (x) tug 3)
—Ays+y1+ Y, Y3 tys = by (x) +uy 4)
With a Drichlet Boundary Condition(DBC)

y(x)=0, Vi=1234 in 90 )

F= iy ysys) € (HEQ) isthe QSVS & = (uy, up, us,us) € (L2())" is the QCCCV
and b;(x) € (L2()* Vi = 1,2,3,4, is give, Vx = (x, x,) € Q.

The set of ACV is U c (L2(Q))*, sit.

U= {(@ € (L2Q))* | (uy, up, uz, uy) € UcR*a.ein Q}.

Where U = U, x U, X Us X U, is a convex set

The OF is

Jo@ = X ally: = yialld + SXalluilly Vi e U. (6)
Where « is a positive real number, y is the QSVS of (1-5) corresponding to the QCCCV # and
Via» Y2a» Yaa» Yaq) 1S the desired data.

The QCCOCPis: J, (@) = Min Jo ().

3. The WF of the QLEPDEGQs:
To obtain the WF of problem (1-5) consider:

W =W, X W, x Wy X W, = H:(Q) x HL(Q) x H:(Q) x H:(Q) = (HE(@))"
= {W: w = (Wy,wy, w3, w,) € (H&(Q))4 withw; =0 on dQ,Vi = 1,2,3,4}.

MBS of (1-4) by w; € W; (i = 1,2,3,4) resp., then, integrating w.r.t. x . And finally using the
generalized Greens theorem for the first term in the L.H.S of the four obtained equations, to get:

(Vyg, Vwy) + (1, wy) + (v2, wi) + (Y3, wy) — (Vg wy) =

(b, wy) + (uq, wy) (7
(Vyo, Vwy) — (1, wa) + (v, wo) + (3, w2) — (s, wo) =
(by , W) + (uz, wy) (8)
(Vys, Vwsz) — (y1, w3) — (¥, w3) + (y3,w3) — (s, w3) =
(b3, w3) + (us, ws) 9)
(Vys, Vwy) + (1, wa) + (V2 wa) + (3, wa) + (Y4, W) =

(by, Ws) + (Ug, Wy) (10)
By blending to gather equations (7-10), one gets:
B(y,w) = A(W) (11)

Where B(.,.): W x W - R is a bilinear form and A(.):W—>R is a linear from, such that (s.t.)
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B(y, W) = (Vyy, Vwy) + (v, wp) + (72, wy) + (3, wi) — (e, wy) + (Vyo, V) — (v, wp) +
2, w2) + (Y3, w2) — (Yo, wy) + (Vy3, Vws) — (4, w3) — (2, w3) + (3, w3) — (4, Wy) +
(Vya, Vwy) + (1, wa) + (v2, wa) + (3, wa) + (Y4, ws) , and

AW) = (by +uy, wy) + (by +uy,wy) + (bg + us, w3) + (by + Uy, wy).

The following hypotheses (HYPs) are required in the study of the existence of a unique QSVS of
the WF (11).

3.1 HYPs

1) B(.,.) satisfies the following:

a) B(y, W) is coercive, i.e.

B _),_) - - s > > - -
2=l >0, FEW =BG =5l > aslly - oo,

b) B(¥,w) is continuous, i.e. 3 &, >0, s.t. |BH, W) < &7l 1wy, vy, w € W.

2) A(W) is a bounded on W , where % € (L2(Q))* is bounded, i.e. 3 €, > 0 s.t.

|AW)| <ellwll,vweWw.

The MG is used to find the approximation solution (app. sl.) of the WF (11) which is found
through choosing a finite subspace W, c W (where W, be the set piece wise affine functions
(PWAFs) in Q), therefore (11), will reduced to the following app. problem (app. pro.)

B, W) = AW,V Jo, W € W, (12)
Theorem 3.1 [27] Foreachw € W, there is a sequence { 1/7,1 }, with lf)n € Wn foreachn, s.t Jn -
w strongly (ST) in W .

3.2 Existence and Uniqueness Solution of the WF Theorem 3.2

For every fixed QCCCV % € (L2())*, the WF (12) has a unique app. sl. 3, € W,,.

Proof: Let {1,171,1172 z/jn } be a basis of I/I_/n for each n, with n = 4N and let
P = Py, 22) = Ty G (g, X2)
= (U1 G s Xes G2y, E Cthaj, B Cibay) (13)
Where  §; = (@i, Gt , asP aathre) -
Where a, = (1 - H%W), a, = (% (Pmod3)(Lmod3)>, a; = (1+(Lm0d3;_(PmOd3)), a, =

(—(meogd3)+P - 1), forL=0123, P=L+1=1234,K=12,....N
L(L—1)

2

j=K+N[((P—1)L)mod4]| + N[ ], and C; is an unknown constant for each j = 1,2, ...,n

By substituting ¥, from (13), with w = ; in (11), to get

B(Z;Ll le/_jj "/ji) = A(‘Zi) Vi=12,..n (14)
Equation (14) can be rewritten as the following linear system:
AC=Db (15)

Where 4 = (@;)nxn, @;j = B, ), Yi,j=12..,Nb=(by,by,..,0,)", b =AY;)
,Vi=1,2,..,N,and C = (¢;,¢p, .., ).

Now, let

AC=0=0=3",Ca;=0Vi=12..n,

= B(EL, G, ) =0, Vi=12,..n (16)
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From HYP 3.1(1-a), once get that:

- 2 - - - -
=721 Gl = B Gy E=a G)) = B(E]=1 Gbj B Cith)

= Y71 GB (X1 Gy i) = 0, by (16)

But { 1/71,1/72, ......... ﬁn } are linearly independent, thus there exists ; =0, Vj=12,..n,
which means equation (15) has a unique solution.
Now, from the WF (12) and theorem (3.2), one gets that there exists a sequence of the WF,
B(Fnbn) =AWn),  VIn,Yn €W, Y (17)
Which has a sequence of solutions {y,};r-; .
Theorem 3.3 :( Existence and Uniqueness Solution of the WF)
The sequence of solutions {y,}m-, (of the sequence of WF (17)) converges strongly to y (the

unique solution of (11)).
Proof: Sincey, is a solution of (17), then from hypo.3.1 (1-a and 2), one gets:

151 =BG 3) < [AGD| < el7nlls.

2 lylly < €3 wheree; = % >0 Vn

i.e. {,,} is bounded in W , v n then by the Alaglou theorem, there exists a subsequence of {,}

(for simplicity say again {3,}), such that 7, — ¥ weakly (WK) in W)

Now, we have the following two steps:

First, since 3, >3y WK in Wand ¢, >w ST in W then

B ¥n) =BG, W)| < [BGin, Yo = W| + |BGn — 7, W)

< erllFnlly [P = W, + 1BGn =7, W) =0

= B ¥n) = BGW).

Second, since ¥, » W WK in W ,then A(y,) - A(W).

From the above two steps, we conclude that B(y,w) = A(W) vw € w.

Thus'y is solution of (11) .

Toprove 3, -3 ST inW , from HYP 3.1 (1-a), one has

Iy = Ynllf = B = Y, 7 = ¥n) = B = ¥, ) — B, ¥n) + B(Yn, V)
=B~ ¥n,Y) +AG) —AGR) — 0

i.e. [y — y,ll = 0. Thus y,, - y.

The Uniqueness of the Solution:

Let y, v, be two solutions of (11), i.e.

B, W) =AW), VvweWw

B(J,, W) = AW), vw e W

Subtract the second above equation from the first one, and then setting W = y;, — y, , one gets

B = V0,51 —F,) =0, VWEW ,ie.

From HYP 3.1 (1-a), one obtains: y;, = y, .

4. Existence of a QCCOCV
Lemma 4.1: The operator # — y; from (L?(Q))*is LIP continuous, i.e.
I8y]l, < &l|éuf, . fore > o.
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Proof: Let 4 = (04, 0y, 03,1,) be a given QCCCV of the WF (7-10) and
¥ = (Y1, V2, V3, V) its corresponding QSVS, i.e.
(Vyli VWl) + (},’1; Wl) + (S’Z' Wl) + (S’B' Wl) - (}"4; Wl) =

(by, wy) + (41, wy) (18)
(Vy2, Vwy) = (F1, Ww2) + (Y2, w2) + (¥3, W) — (Y4, W) =
(by, wy) + (g, wy) (19)
(Vy3, Vws) — (71, w3) — (¥2,w3) + (¥3,w3) — (Y4, W3) =
(b3, w3) + (U3, w3) (20)
(VY2 VW) + (1, Wa) + (F2, wa) + (¥3, Wa) + (Y4, ws) =
(by,wy) + (T4, wy) (21)

By subtracting equations (7 -10) from (18-21) resp. then substituting
6y, =y —yi,0u; =4; —u;, Vi =1,2,3,4 inthe obtained equations, we get:

(Véy1, Vwy) + (81, wy) + (6y2, wi) + (8y3, wy) — (8ys, wy) = (Suy, wy) (22)
(V8y,, Vwy) — (8y1, wa) + (82, wy) + (8y3, wy) — (84, wy) = (Suy, wy) (23)
(V8ys, Yws) — (8y1,w3) — (6y2, w3) + (8y3, w3) — (8ya, w3) = (Susz, ws) (24)
(V6ya, Yw,) + (6y1, wa) + (8y2, wy) + (8y3,Wy) + (6ya, Wa) = (Suy, wy) (25)

Blending together these equalities, setting w; = 8y;,Vi = 1,2,3,4 in (22-25) resp., applying
HYP3.1(1-a), then using the Cauchy Schwarz inequality (C-S-1) to the R.H.S. to obtain:

2
”53’”1 < [6uqllolléysllo + I6uzlloll8y2llo + l1usllolldyslle + l6uallolldyallo (26)

since [18yilly < [|6¥]l, < cl|6Y]l, and ll6wlly < ||8ul|, vi=1,234, then (26) gives,

I8y]l, < ellsull . with &=

So the operator # — 7 is (LICS) on (L2())" .

Lemma 4.2[28]: The norm |. ||, is W L Sc.

Lemma 4.3: The OF in (6) is W L Sc.

Proof: since 1, » @ WK in (L2(Q)) then (by lemma 4.1), 3, >y WK in (L*(Q)) which
gives by lemma 4.2, ||y — y,||3 is W L Sc.

i.e Jo) is WLSc.

Lemma 4.4[11]: The norm ||.||3 is strictly convex.

Remark 4.1: From Lemma 4.4, one can conclude that J, () is strictly convex.

Theorem 4.1: If J, (&) is coercive, then there exists a QCCOCYV for the CCOCVP.

Proof: From the convexity of U , and the coercivity of J,(@), with J,(&) = 0 there exist a

minimizing sequence {&i,,} € U Vns.t.: lim J,(%,) = inf J,(@) .
n-oo uel

Hence, there exists a constant € > 0, s.t.
.l <e vn . (27)
Then by ALTH, there exists a subsequence of {ii,} s.t @, - @ WK in (L2 (Q))4.
But for each QCCCV 1, (vn) the SVEs has a unique QSVS y,,.
Now, using (27), HYPs 3. (1-a and 2) and the C-S-1, it yields:
19113 = B, ) = AG)

< b1 llolly1nllo + Nusnllollyinllo + B2 Mlolly2nllo + luznllolly2nllo +

||b3||o||)’3n”o + ||u3n||o||3’3n”o + ||b4||o||Y4n||o + ”u4n”0”y4n”0
< h1||)’1n||o + 61”)’111”0 + hz”YZn”o + 62||)’2n||o + h3||}’3n||0 +
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€sllysnllo + hallyanllo + €4llyanllo
<2 +v2 vz V)l = oyl
Where y; = max(hy,€;), v, = max(h,,€,), v3 = max(hs, €3), y, = max(hy, €,) and
@ =max(y; + Y2+ ¥s + va).
Then ||9,1l; < v, for each n, with y = % >0.

By ALTH there exists a subsequence of {3,} st %, »J WK in W
Since for eachn, ¥, satisfies the WF (11), then Y = (wy, wy, ws, w,) € W ,Vn
(VY1n, VW1) + V1, W) + V2 Wi) + V3, W) — Van, Wi) + (Vyap, Vw,) —
Vins W2) + Vans W) + (V3n, Wa) — Van, W2) + (Vyspn, VWs) — (Vin, w3) —
V2 w3) + (V30 W3) = Van, W3) + (Vyan, VW) + (Vin, Wa) + (V2n, i) +
V30 Wa) + Van, Wa) = (b1n, wi) + (Ugp, wy) + (bap, Wa) + (Ugp, W)
+(b3n, w3) + (Usp, W3) + (ban, Wa) + (Ugy, Wa) (28)

To show (28) converges to the following equations:
(Vy, V) + (v, wi) + (2, wi) + (3, wi) — (s, wi) + (Vyo, V) — (31, W)
+(y2 w2) + (3, W) — (Va, wo) + (Vys, Vws) — (y1, wi) — (72, ws) + (3, w3)
~(Va,w3) + (Vyy, Vwy) + (71, wa) + (v2, wa) + (v3, Wa) + (Va, wy)
= (by,wy) + (uy, wy) + (by, wy) + (ug, wy) + (b3, w3) + (uz, w3) + (by, wy)

+(uy,w,), weWyvn (29)
First
Since y;, = y; WK in W then from theorem 3.2, Yin = ¥; ST in W, which gives

Yin = Yi,and Din _, g—zz ST in L2(Q), and by using the C-S-1 and HYP 3.1 (1-b)

Ox;
| (VY10 VW1) + Gins Wi) + Vons W) + V3, W) — an, W) + (Vyo,, Yw,) —

Vins W2) + (Von, W2) + (V30 W2) — (Van, W2) + (Vy30, YW3) — (1, W3) —
(yZn» WS) + (YSn:WS) - (y4n,W3) + (VY4n: VW4) + (Y1n:W4) + (YZn’WAt) +
V3n Wa) + Vano Wa) — (Vy1, Vwy) — (v, wi) — (72, wi) — (3, wi) + (Va, wy)
—(Vy2, Vwy) + (1, w) — (72, w2) — (¥3, w2) + (4, W) — (Vys3, Vws) +
1, w3) + (72, w3) — (¥3,w3) + (Vg w3) — (Vyu, Vwy) — (4, wy) —
(2, wa) — (3, Wa) — (Y4, W)
< IVyin = Vyillollwyllo + lyin — yallollwello + lly2n = y2llollwy llo

Hlyan = ysllollwillo + lyan — vallollwillo + IVy2 — Vyallollwzllo

Hlyin = yillollwzllo + ly2n = y2llollwzllo + llysn — ysllollwzllo

Hyan = yallollwallo + [IVysn — Vysllollwsllo + llyin — 1 llollwsllo

Hyzn — y2llolwsllo + lysn — ¥sllollwsllo + lyan — yallollwsllo

HVyan — Vyullollwallo + lyin — yallollwallo + l1y2n — y2llollwallo

+Hlyzn = ysllolwallo + 1yan — allollwally — 0.
Second, the convergence for the R.H.S of (28) to the L.H.S of (29) is obtained through u;, —
u;  Vi=1234 WK inL*(Q).
Then from these two steps of convergences, (28) converges to (29).

Since J, (%) is WLSc (by Lemma 4.3)and 4, - & WK in (Lz(ﬂ))4, then

Jo@) < 7111_1){)10 in]i]o(ﬁn) = lim Jo (i) = inf]o (i) = Jo(W) = Tﬂilﬁjl]o(ﬂ)
U €l n-o nel ue

= 7" is QCCOCV.
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To prove the uniqueness:
Let %, 4, € U betwo QCCOCV of J,(&), then %+ '72—2 elU,and
Jo (2 +2) < 3o +3o(ii) = Jo(@), C!
Then the uniqueness is obtained from lemma 4.4.

5. The NCTh for Optimality
Theorem 5.1: Consider the OF (2.6) and the QAEQs (z,, 25, z3, z,) of the QLEPDE(q (2.1-2.5)
are given by:

—Azy + 21 — 2, — 23+ 2, = (V1 — Y1) (30)
—Azy + 21+ 2, — 23+ 2 = (V2 — Y2a) (31)
—Az3 + 7y + 2, + 23+ 24 = (Y3 — Y3a) (32)
—Azy — 2y — 2, — 23+ 24 = (V4 — Yaa) (33)
z;=0 Vi=1,2,34 onadQ (34)

Then the FD of J, is given by (J, (@), 6u) = (Z + @, 6u ).
Proof: Rewriting the QAEQgs ((30) -(34)) by their following WF

(Vzy, Vwy) + (2, wy) — (23, wy) — (23, wq) + (Zo, w1) = (V1 — Y1a» W1) (35)
(Vzy, Vwy) + (21, w3) + (23, wy) — (23, W) + (24, W) = (V2 — Y24, W2) (36)
(Vz3, Vws) + (21, w3) + (23, w3) + (23, w3) + (24, W3) = (¥3 — Y34, W3) (37)
(Vzy, Vwy) — (21, wy) — (22, Wy) — (23, Ws) + (24, Ws) = (V4 — Yaq, Wa) (38)

By blending (35-38) together, we get

(Vzy, Vwy) + (21, wy) — (23, wy) — (23, W) + (Zo, W)+ (V25, Vwy) + (2, W) + (25, W) —
(z3,wy) + (z4, wy) + (Vz3,Vws3) + (21, ws3) + (25, ws) + (23, w3) + (Z4, w3) + (Vz,,Vw,) —
(z1, wy) — (25, wy) — (23, W) + (24, W,)

= (V1 = Y1ae, W) + V2 = Y20, W2) + (V3 — Y30, W3) + (Va — Yaq, Wa) (39)
The WF (39) has a unique solution (z, z,, Z3, z4) = (Zyy1, Zous» Z3us, Zays) € W (this can be
proved by the same way used in the proof of theorem 3.2).

Now, substituting w; = 8z; in ((35) — (38)) Vi = 1,2,3,4 , then subtracting each obtained
equations from those each obtained from substituting w; = z; in ((22) — (25)), we get :

(22, 6y1) + (23, 6y1) + (8Y2,21) + (6Y3,21) — (8Y4, 21) — (24, 6y1) =

(6uq,21) — (V1 — Y1a »6Y1) (40)
—(8y1,22) — (21, 6y,) + (8Y3,22) + (23,8Y2) — (0Y4, 22) — (24,8Y,) =

(6uz, z2) — (V2 — Y2a, 6Y2) (41)
—(6y1,23) — (6y2,23) — (8Y4, 23) — (21, 6y3) — (22,0y3) — (24,8y3) =

(6us, z3) — (V3 — Y3a, 6Y3) (42)
(6y1,24) + (62, 24) + (8Y3,24) + (21, 0y4) + (22, 8Ys) + (23,0y,) =

(6us, 24) — (V4 — Yaar 6Ya) (43)

Blending together the above quaternary equations, we get:

(8uy, z1) + (8uy, z) + (Sus, z3) + (Ouy, 24) =

(V1 = Y10, 0¥1) + (V2 = Y20, 6¥2) + (V3 — Y34, 6Y3) + (V4 — Yaa, 6Y4) (44)
On the other hand, the OB becomes:

Jo(ii + 8u) = %ffg SO+ 8y — i) dx + %ffgz?=1(ui —Ug)? dx

But by using (44), we have:
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]0(7_z + E) —Jo(@) = (z; + auy, Suy) + (2, + auy, Su,) + (23 + aus, Sus)
—,2 a = 2

+(z4 + auy, Suy) + % ll6yll, +3 llsul, (45)

Using lemma 4.1, we get:
—2 —y2 e — N SN

%”63}”0 + %Hdu”0 = e(6u)||6u||0 , Where e(éu) -0 as ||<Su||0 -0.
Hence (45), becomes:
Jo (i + 8u) — Jo@h) = (Z + aid, 6u) + €(5u)||5ul],
where e(ﬁ) -0 as ||ﬁ||0 - 0.
From the FD for J,, one concludes that
(o@),8u) = (Z+ bu,bu) .
Theorem5.2: If the QCCCV of (1-5) is optimal, the J,(il) = Z+ ati = 0 withy =y and Z =
Za.
Proof: If 1 isan QCCOCYV of the problem, then
Jo@) = minJo(®),v5 € (12()", i e fo@) =0
b(x)
Then the NCOis (fo (@),6u) =0 ,= (Z+aii,éu) =0

SGE+aii) < Z+aid,d) Ve e (12@)"

—

Withdu= o — u

= Z4+au=0 > U= —

6. Conclusion

The mathematical model for the “new” proposed problem is formulated. The existence and
uniqueness theorem for a QSVS of the WF from the QLEPDEQs is stated and proved successfully
by using the GM when the QCCCV is given. Furthermore, the existence of a QCCOCYV ruled by
the QLEPDEQs is stated and proven. The mathematical formulations for the QAEQs, which are
related to the QLEPDEQgs, are formulated and then studied. The FD for the OF is derived. Finally,
the NCTH “for optimality” is proved for this problem.
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