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Abstract  

 This article talks about a model of fractional differential equations to describe how COVID-19 is 

spread in the world in general and Iraq in particular. The model contains five fractional differential 

equations. Moreover, we have proven the existence and uniqueness of the solution of the model, 

found the equilibrium points of the model and checked its stability. Then we solved it using a 

fractional linear multi-step method. When we compare the results with the data documented by the 

World Health Organisation (WHO), we find that the total number of active cases in the world are 

equal to 584498294 on 3/8/2022, and it is similar to what was done with the system. The number 

of those who have recovered and died  from the disease has also been calculated. For Iraq, the total 

number of active cases is 2448484 and the total number of active cases calculated by the model is 

2628000. In comparison, the calculated number is slightly  higher than what is given in the data. 

This is quite normal because not all infected patients go to the health centres and it is difficult to 

record them as active cases.  

Keywords: Caputo Fractional Derivative, Riemann-Liouville Fractional Derivative, Fractional 

COVID-19 Model, Numerical Simulations, Fractional Linear Multi-Step Method.   

 

1. Introduction 

 In 2019, a new respiratory disease emerged that caused the death of a large number of people 

around the world, starting. It started in Wuhan and spread to every country in the world [1]. This 

disease is caused by a virus called coronavirus. COVID-19 attacks the respiratory system and 

lowers oxygen levels in the blood, causing problems. These problems vary from person to person.  

WHO classified COVID-19 as an epidemic on 11 March 2020 due to its rapid spread and high 

mortality rate. COVID-19 became the focus of the world, especially researchers, including 

mathematicians [2-4]. To find solutions and strategies that can help contain the spread of this virus. 

With the help of ordinary or fractional order system differential equations, delays and stochastic 

models. Many researchers have been able to construct and develop mathematical models to 

describe the dynamics of the disease, e.g. SIR, SEIR, SIS, SEIRF…etc [5-8]. Shah and Mittal [9] 

described the basics of epidemiologic compartmental models and the necessary analyses that 

contains a large number of studies on the corona epidemic, using various models of systems of 

ordinary differential equations that describe the spread of the corona epidemic and calculate the 
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active case in different countries of the world. Higazy M, et al, [10] modified the conventional 

SEIR model and used a fractional differential equation with Caputo derivative to represent the 

dynamics of COVID-19 transmission infected individual’s ABO blood groups. Shahram 

Rezapour, et al, [11] use the Caputo fractional derivative to build an SEIR epidemic fractional 

model of the COVID-19 spread. They want an approximate solution to the system by using the 

fractional Euler method. They offer a numerical simulation based on actual data to predict COVID-

19 transmission in the world and Iran. 

   This article is based on a model of fractional equations with Caputo derivation. He chose the 

world and Iraq as the study areas and used a model that divides the community into five classes. 

The first equation is the disease susceptible class, the second equation is the exposed individuals, 

the third equation is the infected patients, the fourth is the survivors of the disease and the fifth 

equation is the dead of the disease and where is the population size. We proved the existence and 

uniqueness of the solution of the model and found the equilibrium points and checked their 

stability. Then find the solution numerically using a fractional linear multi-step method and 

compare it with the data given in [12]. 

This article consists of five sections: The first section is the introduction. The next section contains 

the basic concepts used in this article. The third section is about the mathematical model of 

COVID-19 and how to prove the existence and uniqueness of the solution of the model and 

determine the equilibrium points. In the last part, a numerical simulation was carried out in the 

world and in Iraq. Finally: conclusions. 

 

2. Background 

This section introducing the basic concepts that is needed in this article. 

 2.1 Caputo Fractional Derivatives [13,14] 

It is defined by: 

{
𝐷∗

𝛼𝑓(𝑡) =
1

𝛤(𝜂−𝛼)
∫

𝑓(𝜂)(𝜏)

(𝑡−𝜏)(𝛼−𝜂+1)

𝑡

𝑎
𝑑𝜏 ,  𝜂-1<𝛼 < 𝜂 ∈ 𝑁,

𝑑𝜂

𝑑𝑡𝜂 𝑓(𝑡)                                          𝛼 = 𝜂 ∈ 𝑁,
      (1) 

where is the order of the derivatives, 𝑡 > 𝑎, 𝛼, 𝑎, 𝑡 ∈ 𝑅, and η is the smallest integer greater than α. 

2.2 Riemann-Liouville fractional derivative [15] 

The derivative of order α is defined as: 

𝑎𝐷𝑡
𝛼𝑓(𝑡) =

𝑑𝑚

𝑑𝑥𝑚 ∫
(𝑥−𝑡)𝑚−𝑛−1𝑓(𝑡)

𝛤(𝑚−𝑛)

𝑥

𝑎
𝑑𝑡 ,        (2) 

where 𝑚 − 1 ≤ 𝑛 < 𝑚, 𝑚 ∈ 𝑁. 

2.3 Relation between Caputo and Riemann-Liouville Fractional Derivative [16,17] 

Let 𝛼 > 0 be a fractional order derivative of the function f and δ=⌈α⌉ which mean δ is smallest 

natural number greater than α. Suppose that f is such that both 𝐷∗𝑎
𝛼 𝑓 and 𝐷𝑎

𝛼 f exist, then: 

𝐷∗𝑎
𝛼 𝑓(𝑥) = 𝐷𝑎

𝛼𝑓(𝑥) − ∑
𝐷𝑘𝑓(𝑎)

𝛤(𝑘−𝛼+1)
(𝑥 − 𝑎)𝑘−𝛼𝛿−1

𝑘=0 ,                (3) 

where 𝐷∗𝑎
𝛼  is the Caputo differential operator of order α and 𝐷𝑎

𝛼 is the Riemann-Liouville 

differential operator of order α. 

2.4 Equilibrium point [18,19] 

Let  �̇�(𝑡) = 𝐹(𝑋(𝑡)) be a dynamical system. A point 𝑋0 is called an equilibrium point if 𝐹(𝑋0) = 0.  
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2.5 Fractional multi-step method [20,21] 

Let:  

{
𝐷𝑡0

𝛼 𝑔(𝑡) = 𝑓(𝑡, 𝑔(𝑡)

𝑔(𝑡0) = 𝑔0, 𝑔
′(𝑡0) = 𝑔0

(1)
, . . . , 𝑔(𝑚−1)(𝑡0) = 𝑔0

(𝑚−1) 

 

where 𝛼 is a fractional order derivative and 𝑓(𝑡, 𝑔) is assumed to be continuous and 

𝑔0, 𝑔0
(1)

, . . . , 𝑔0
(𝑚−1)

are the assigned values of the derivatives at 𝑡0.  

Therefore, fractional multi-step approaches are convolution quadrature formulas, which may be 

expressed generally as follows: 

𝑔𝑛 = 𝜙𝑛 + ∑ 𝑢𝑛−𝑗𝑓𝑗
𝑛
𝑗=0 ,            𝑓𝑗 = 𝑓(𝑡𝑗, 𝑔𝑛). 

where 𝜙𝑛 and 𝑢𝑛−𝑗 are known coefficients and 𝑡𝑛  =  𝑡0 +  𝑛ℎ is an assigned grid, with the 

constant step-size ℎ > 0. 

 

3. Mathematical Model 

    The researchers divided the society into five categories. The first category is the disease-

sensitive 𝑆(𝑡), the next one is the exposed individuals 𝐸(𝑡), the equation of the infected patients 

is given by 𝐼(𝑡), 𝑅(𝑡) presents the disease survivors and 𝐹(𝑡) gives the equation of the disease die. 

In addition, all equations respect time.  

Form this standpoint, the fractional mathematical model can be formulated as follows: 

𝐷∗
𝛼𝑆(𝑡) = − 

𝛽

𝑁
𝑆𝐼 , 

𝐷∗
𝛼𝐸(𝑡) =  

𝐵

𝑁
𝑆𝐼 − 𝜔𝐸 , 

𝐷∗
𝛼𝐼(𝑡) = 𝜔𝜗𝐸 − (𝑙 + 𝜈)𝐼,          (4) 

𝐷∗
𝛼𝑅(𝑡) = 𝑙𝐼 , 

𝐷∗
𝛼𝐹(𝑡) = 𝜈𝐼 . 

The coefficients of the model parameters are given in Table 1. 

 

Table 1: Description of the model. 

Parameters Description 

𝛼 fractional order derivative 

ℬ  Measures the coefficient of human-to-human  

transmission per unit time (days) per person. 

𝒩  Population Size. 

𝜔  Is the rate at which a person becomes infectious and leaves the 

exposed class. 

𝜗  Is the percentage of people who advance from E to I. 

 𝑙 Recovery rate. 

𝜈  Death rate. 
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3.1 Existence and Uniqueness solution of the model [22,23] 

We rewrite the system Eq.(4) in matrix form as follows: 

 Let 𝑀 =

[
 
 
 
 
𝑆
𝐸
𝐼
𝑅
𝐹]
 
 
 
 

 𝑎𝑛𝑑 𝑀∗
𝛼 =

[
 
 
 
 
 
 𝐷∗

𝛼𝑆(𝑡) = −
𝛽

𝑁
𝑆𝐼

𝐷∗
𝛼𝐸(𝑡) =

𝛽

𝑁
𝑆𝐼 − 𝜔𝐸

𝐷∗
𝛼𝐼(𝑡) = 𝜔𝜗𝐸 − (𝑙 + 𝜈)𝐼

𝐷∗
𝛼𝑅(𝑡) = 𝑙𝐼

𝐷∗
𝛼𝐹(𝑡) = 𝜈𝐼 ]

 
 
 
 
 
 

 

By using the relation between Caputo derivative and Riemann derivative to the Model: 

 𝑀∗
𝛼 = 𝑀𝛼 −

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∑

𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝑆(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐸(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐼(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝑅(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐹 (𝑘)(0 )
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑀𝛼 = 𝑀∗
𝛼 +

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∑

𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝑆(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐸(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐼(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝑅(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐹 (𝑘)(0 )
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑙𝑒𝑡  𝐿 = 𝑀∗
𝛼 +

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
∑

𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝑆(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐸(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐼(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝑅(𝑘)(0)

∑
𝜏𝑘−𝛼

𝛤(𝑘 − 𝛼 + 1)

𝑛−1

𝑘=0

𝐹 (𝑘)(0 )
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑀𝛼 = 𝐿(𝑆, 𝐸, 𝐼, 𝑅, 𝐹) and 𝑀𝛼(𝑡0) = 𝑀0 is an initial value problem. In addition, L is continues for 

all variables and t, L has bounded partial derivatives then according to the existence and 

uniqueness theorem. That means there exist unique solution to system Eq.(4). 

Proof: Let 𝑢𝑡
(𝛼)(𝑡) be the fractional derivative of 𝑢(𝑡) of order α. The substitution  

𝜉(𝑡) =
𝑡𝛼

𝛤(𝛼+1)
+ 𝜉0  

reduce 𝑢(𝛼)(𝑡)𝑡𝑜 𝑢′(𝜉) as follows: 

𝑢𝑡
(𝛼)(𝑡) = 𝑢𝑡

(𝛼)(𝜉) = 𝑢′(𝜉) 𝐷𝑡
𝛼𝜉 = 𝑢′(𝜉)

1

𝛤(𝛼+1)

𝛤(𝛼+1)

𝛤(𝛼−𝛼+1)
𝑡𝛼−𝛼 = 𝑢′(𝜉)  

Therefore the system Eq.(4)  

𝑀(𝛼)(𝑡) = 𝑀′(𝜉),  
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𝑀∗
(𝛼)

=

[
 
 
 
 
 
 𝐷∗

𝛼𝑆(𝑡) = −
𝛽

𝑁
𝑆𝐼

𝐷∗
𝛼𝐸(𝑡) =

𝛽

𝑁
𝑆𝐼 − 𝜔𝐸

𝐷∗
𝛼𝐼(𝑡) = 𝜔𝜗𝐸 − (𝑙 + 𝜈)𝐼

𝐷∗
𝛼𝑅(𝑡) = 𝑙𝐼

𝐷∗
𝛼𝐹(𝑡) = 𝜈𝐼 ]

 
 
 
 
 
 

  

𝑀5∗1
′ (𝜉) = 𝑀∗

(𝛼)
+ 𝐿 ≑ 𝑓(𝑡, 𝑆, 𝐸, 𝐼, 𝑅, 𝐹),𝑀(0) = 𝑀0 and according to the theorem 1 in [24]  

Then there exist unique solution of Eq.(4) 

3.2 The equilibrium points of the model [25] 

      To find the equilibrium points of the model Eq.(4), equalizing the equations to zero  

𝐷∗
𝛼𝑆(𝑡) = 𝐷∗

𝛼𝐸(𝑡) = 𝐷∗
𝛼𝐼(𝑡) = 𝐷∗

𝛼𝑅(𝑡) = 𝐷∗
𝛼𝐹(𝑡) = 0      (5) 

Then the equilibrium point: (𝑆, 𝐸, 𝐼, 𝑅, 𝐹) = (𝑁, 0,0,0,0)     (6) 

Now to find the stability of the equilibrium point 

𝐷∗
𝛼𝑆(𝑡) = − 

𝛽

𝑁
𝑆𝐼 = 𝑓1, 

𝐷∗
𝛼𝐸(𝑡) =  

𝛽

𝑁
𝑆𝐼 − 𝜔𝐸 = 𝑓2, 

𝐷∗
𝛼𝐼(𝑡) = 𝜔𝜗𝐸 − (𝑙 + 𝜈)𝐼 = 𝑓3,         (7) 

𝐷∗
𝛼𝑅(𝑡) = 𝑙𝐼 = 𝑓4, 

𝐷∗
𝛼𝐹(𝑡) = 𝜈𝐼 = 𝑓5. 

Expanding 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5 by Tayler series about (𝑁, 0,0,0,0).  

𝐷∗
𝛼𝑆(𝑡) =

𝜕𝑓1
𝜕𝑆

|(𝒩,0,0,0,0)(𝑆 − 𝒩) +
𝜕𝑓1
𝜕𝐸

|(𝒩,0,0,0,0)𝐸 +
𝜕𝑓1
𝜕𝐼

|(𝒩,0,0,0,0)𝐼 +
𝜕𝑓1
𝜕𝑅

|(𝒩,0,0,0,0)𝑅

+
𝜕𝑓1
𝜕𝐹

|(𝒩,0,0,0,0)𝐹 + ⋯ 

𝐷∗
𝛼𝐸(𝑡) =

𝜕𝑓2
𝜕𝑆

|(𝒩,0,0,0,0)(𝑆 − 𝒩) +
𝜕𝑓2
𝜕𝐸

|(𝒩,0,0,0,0)𝐸 +
𝜕𝑓2
𝜕𝐼

|(𝒩,0,0,0,0)𝐼 +
𝜕𝑓2
𝜕𝑅

|(𝒩,0,0,0,0)𝑅

+
𝜕𝑓2
𝜕𝐹

|(𝒩,0,0,0,0)𝐹 + ⋯ 

𝐷∗
𝛼𝐼(𝑡) =

𝜕𝑓3

𝜕𝑆
|(𝒩,0,0,0,0)(𝑆 − 𝒩) +

𝜕𝑓3

𝜕𝐸
|(𝒩,0,0,0,0)𝐸 +

𝜕𝑓3

𝜕𝐼
|(𝒩,0,0,0,0)𝐼 +

𝜕𝑓3

𝜕𝑅
|(𝒩,0,0,0,0)𝑅 +

𝜕𝑓3

𝜕𝐹
|(𝒩,0,0,0,0)𝐹 +

⋯          (8) 

𝐷∗
𝛼𝑅(𝑡) =

𝜕𝑓4
𝜕𝑆

|(𝒩,0,0,0,0)(𝑆 − 𝒩) +
𝜕𝑓4
𝜕𝐸

|(𝒩,0,0,0,0)𝐸 +
𝜕𝑓4
𝜕𝐼

|(𝒩,0,0,0,0)𝐼 +
𝜕𝑓4
𝜕𝑅

|(𝒩,0,0,0,0)𝑅

+
𝜕𝑓4
𝜕𝐹

|(𝒩,0,0,0,0)𝐹 + ⋯ 

𝐷∗
𝛼𝐹(𝑡) =

𝜕𝑓5
𝜕𝑆

|(𝒩,0,0,0,0)(𝑆 − 𝒩) +
𝜕𝑓5
𝜕𝐸

|(𝒩,0,0,0,0)𝐸 +
𝜕𝑓5
𝜕𝐼

|(𝒩,0,0,0,0)𝐼 +
𝜕𝑓5
𝜕𝑅

|(𝒩,0,0,0,0)𝑅

+
𝜕𝑓5
𝜕𝐹

|(𝒩,0,0,0,0)𝐹 + ⋯ 

Then the coefficients matrix is: 

[
 
 
 
 
0 0 −𝛽 0          0
0 −𝜔 𝛽 0           0

0 𝜔𝜗 −(𝑙 + 𝑣) 0           0
0
0

0
0

𝑙
𝑣

0          0
0          0 ]

 
 
 
 

  

And the eigenvalues of this matrix are: 

𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 0, 

𝜆4 = −
𝑙

2
−

𝜈

2
−

𝜔

2
+

√4𝜔𝜗𝛽 + 𝑙2 + 2𝑙𝜈 − 2𝜔𝑙 + 𝜈2 − 2𝜔𝜈 + 𝜔2

2
, 
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𝜆5 = −
𝑙

2
−

𝜈

2
−

𝜔

2
−

√4𝜔𝜗𝛽 + 𝑙2 + 2𝑙𝜈 − 2𝜔𝑙 + 𝜈2 − 2𝜔𝜈 + 𝜔2

2
. 

and when substituting the value of 𝛽 = 1.55, 𝜔 = 0.25, 𝜗 = 0.58, 𝑙 = 0.27, 𝜈 = 0.01 get: 

𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 0, 𝜆4 = 0.2093, 𝜆5 = −0.7393.   

hence the equilibrium point is unstable [26]. 

 

4. Simulation results 

Adopting the system equations given by Eq.(4) and the toolbox of MATLAB  [27-29] “flmm” 

allows us to resolve fractional linear multi-step method for the numerical solution of differential 

equations [30], to represent the pandemic in the world and Iraq. And the number of parameters in 

the model is equal to: 

𝛽 = 1.55,𝜔 = 0.25, 𝜗 = 0.58, 𝑙 = 0.27, 𝜈 = 0.01. 

4.1 World model 

The five classes 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) 𝑎𝑛𝑑 𝐹(𝑡) associated of the world. The population size of the 

world is 𝑁 = 7.753 ∗ 109 with an initial values [12] 𝑆(0) = 7.753 ∗ 109 − 5320948, 𝐸(0) =

0, 𝐼(0) = 5320948, 𝑅(0) = 0, 𝐹(0) = 0. 

different values of α are shown respectively in Figure1. 

 
Figure 1: World model for different values of α. 

 

Figure 1 shows the effect of the fractional derivative on spread dynamics of coronavirus in the 

world. Through it, we conclude that the beast value of the fractional derivative to describe the 

spread of the virus in the world at 𝛼 = 0.75, as shown in the figure:  
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Figure 2: The infected cases in the word at 𝛼 = 0.75 

Figure 2 shows the number of infected cases in the world. It is clear that the disease does not 

stop permanently, but gradually declines and levels off at a certain limit. This is the result of the 

discovery of vaccines, adherence to isolation policies and countries and individuals taking the 

necessary measures to control the disease. 

4.2 Iraqi Model 

Now we are going to apply the model Eq.(4) to Iraq. The population size of Iraq is 𝑁 = 40 ∗ 106 

with an initial values [12] 𝑆(0) = 40 ∗ 106 − 4520, 𝐸(0) = 0, 𝐼(0) = 4520, 𝑅(0) = 0, 𝐹(0) = 0. 

Figure 3 shows the stability of the total number of infections and the variance in convergence 

speed for various values of α. In Figure 4, we see that infected populations decline and 

eventually gravitate to zero over time. Additionally, the convergence to the steady state occurs 

more slowly the lower the level of differentiation. 

 

Figure 3: Iraqi model for different values of α 

 

For α=0.6, we represent the infected patients which are given in Figure 4. 
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Figure 4: The Iraqi infected cases I(t) of α=0.6. 

 

5. Discussions 

  The fractional COVID-19 model Eq.(4) was solved using the fractional linear multistep method 

for the numerical solution of differential equations. The figures show the effects of the fractional 

derivatives on the solution of the model in a more detailed sense (see Figures 1 and 3). 

 

6. Conclusions 

In this article, the detail was analyzed in a fractional-order COVID-19 model. The model consists 

of five differential equations of the fractional derivative of Caputo. We proved the existence and 

uniqueness of the solution for the system and then calculated the equilibrium points of the model 

and checked their stability. Finally, the model was solved in the fractional linear multistep method. 

 

Acknowledgment 

Our researcher extends his Sincere thanks to the editor and members of the preparatory committee 

of the Ibn AL-Haitham Journal of Pure and Applied Sciences. 

 

Conflict of Interest  

There are no conflicts of interest. 

 

Funding  

There is no funding for the article. 

 

References 

1. Tuan, N. H.;  Mohammadi, H. ; Rezapour, S.  A mathematical model for COVID-19 transmission by 

using the Caputo fractional derivative. Chaos, Solitons & Fractals, 2020, 140, 110107. 

https://doi.org/10.1016/j.chaos.2020.110107 

2. Al-Saedi, H. M., ; Hameed, H. H. Mathematical modeling for COVID-19 pandemic in Iraq. J Interdiscip 

Math. 2021, 24(5), 1407–1427. https://doi.org/10.1080/09720502.2021.1923943 

3. Ndaïrou, F.; Area, I.; Nieto, J. J.; Silva, C. J. ; Torres, D. F Fractional model of COVID-19 applied to 

Galicia, Spain and Portugal. Chaos, Solitons & Fractals, 2021, 144, 110652. 

https://doi.org/10.1016/j.chaos.2021.110652 

4. Kareem, A. M.; Al-Azzawi, S. N. Comparison Between Deterministic and Stochastic Model for 

Interaction (COVID-19) With Host Cells in Humans. Baghdad Science Journal, 2022, 19(5), 1140-

1140. https://doi.org/10.21123/bsj.2022.6111 

 

https://doi.org/10.1016/j.chaos.2020.110107
https://doi.org/10.1080/09720502.2021.1923943
https://doi.org/10.1016/j.chaos.2021.110652
https://doi.org/10.21123/bsj.2022.6111


IHJPAS. 37 (2) 2024 

386 
 

5. Martcheva, M..An Introduction to Mathematical Epidemiology, New York: Springer. 2015, 61, 9-31. 

https://doi.org/10.1007/978-1-4899-7612-3 

6. Yunus, A. A. B. M.; Yunus, A. A. B. M.; Ibrahim, M. S. B., ; Ismail, S. B. Future of Mathematical 

Modelling: A Review of COVID-19 Infected Cases Using S-I-R Model. Baghdad Science Journal. 

2021, 18(1), 824–9. http://dx.doi.org/10.21123/bsj.2021.18.1(Suppl.).0824 

7. Krishna, M. V. Mathematical modelling on diffusion and control of COVID–19. Infectious Disease 

Modelling. 2020, 5, 588–597 https://doi.org/10.1016/j.idm.2020.08.009 

8. Ndaïrou, F.; Area, I.; Nieto, J. J.; Torres, D. F. Mathematical modeling of COVID-19 transmission 

dynamics with a case study of Wuhan. Chaos, Solitons & Fractals, 2020, 135, 109846. 

https://doi.org/10.1016/j.chaos.2020.109846 

9. Shah, N. H.; Mittal, M. (Eds.). Mathematical Analysis for Transmission of COVID-19.Springer 

Singapore, 2021. 

10. Higazy, M.;  Allehiany, F. M.; Mahmoud, E. E. Numerical study of fractional order COVID-19 

pandemic transmission model in context of ABO blood group. Results in Physics,  2021, 22, 103852. 

https://doi.org/10.1016/j.rinp.2021.103852 

11. Rezapour, S.; Mohammadi, H. ; Samei, M. E.  SEIR epidemic model for COVID-19 transmission by 

Caputo derivative of fractional order. Advances in difference equations,  2020, 1-

19.https://doi.org/10.1186/s13662-020-02952-y 

12. Abdulla, Z. K.; Al-Azzawi, S. N.. Solving the COVID-19 Fractional Model by Using Sumudu Transform 

and ADM. In AIP Conference Proceedings, 2023, 2839(1). AIP Publishing. 

https://doi.org/10.1063/5.0167781 

13. Kai, D. The analysis of fractional differential equations: An application-oriented exposition using 

differential operators of Caputo type. In Lecture Notes in Mathematics. Springer. 2010. 

      http://dx.doi.org/10.1007/978-3-642-14574-2 

14. Ati, R. R.; Al-Azzawi, S. N. Fractional Order Modification of Tuckwell and Wan Medical Model. In 

Journal of Physics: Conference Series 2021, 1818(1), 012028. IOP Publishing. 

http://dx.doi.org/10.1088/1742-6596/1818/1/012028 

15. Mirevski, S. P.; Boyadjiev, L.; Scherer, R. On the Riemann–Liouville fractional calculus, g-Jacobi 

functions and F-Gauss functions. Applied Mathematics and Computation, 2007, 187(1), 315-325. 

https://dx.doi.org/10.1016/j.amc.2007.01.035 

16. Diethelm, K.; Ford, N. J. Analysis of fractional differential equations. Journal of Mathematical Analysis 

and Applications, 2002, 265(2), 229-248.  

      https://doi.org/10.1006/jmaa.2000.7194 

17. Tarasov, V. E. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields 

and media. Springer Science & Business Media. 2011.  

18. Zhang, W. B. Differential equations, bifurcations, and chaos in economics 2005 , 68. World Scientific.  

19. Arrowsmith, D.; Place, C. M.  Dynamical systems: differential equations, maps, and chaotic 

behavior. 1992,5. CRC Press. https://doi.org/10.1201/978131514154 

20. Garrappa, R. Numerical solution of fractional differential equations: A survey and a software 

tutorial. Mathematics, 2018, 6(2), 16.  https://doi.org/10.3390/math6020016 

21. Owolabi, K. M. Mathematical analysis and numerical simulation of patterns in fractional and classical 

reaction-diffusion systems. Chaos, Solitons & Fractals, 2016, 93, 89-98. 

https://doi.org/10.1016/j.chaos.2016.10.005. 

22. Klages, R.. Introduction to dynamical systems. Lecture Notes for MAS424/MTHM021. Queen Mary 

University of London, 2008, 24, 26. 

23. Malley Jr, R. E. The Theory of Differential Equations: Classical and Qualitative.: Classical and 

Qualitative. SIAM Review, 2005, 47(1), 185. 

24. Derrick, W. R.; Grossman, S. I. Elementary differential equations with applications. 1976. 

https://lccn.loc.gov/80022057 

https://doi.org/10.1007/978-1-4899-7612-3
http://dx.doi.org/10.21123/bsj.2021.18.1(Suppl.).0824
https://doi.org/10.1016/j.idm.2020.08.009
https://doi.org/10.1016/j.chaos.2020.109846
https://doi.org/10.1016/j.chaos.2020.109846
https://doi.org/10.1016/j.rinp.2021.103852
https://doi.org/10.1186/s13662-020-02952-y
https://doi.org/10.1186/s13662-020-02952-y
https://doi.org/10.1063/5.0167781
http://dx.doi.org/10.1007/978-3-642-14574-2
http://dx.doi.org/10.1088/1742-6596/1818/1/012028
https://dx.doi.org/10.1016/j.amc.2007.01.035
https://doi.org/10.1006/jmaa.2000.7194
https://doi.org/10.1201/978131514154
https://doi.org/10.3390/math6020016
https://doi.org/10.1016/j.chaos.2016.10.005
https://lccn.loc.gov/80022057


IHJPAS. 37 (2) 2024 

387 
 

25. Ahmad, S.; Ambrosetti, A. A textbook on ordinary differential equations. 2015, 88. Springer. 

https://doi.org/10.1007/978-3-319-16408-3 

26. Hirsch, M. W.; Smale, S.; Devaney, R. L.  Differential equations, dynamical systems, and an 

introduction to chaos. Academic press. 2012.  

27. Dukkipati, R. V. MATLAB: an introduction with applications. New Age International. 2008.  

28. Lynch, S. Dynamical systems with applications using MATLAB. Boston: Birkhäuser. 

2004 .https://doi.org/10.1007/978-3-319-06820-6. 

29. Burden, R. L. ; Faires, J. D. Numerical analysis (nineth edition). Thomson Brooks/Cole, 2010. 

 

https://doi.org/10.1007/978-3-319-16408-3
https://doi.org/10.1007/978-3-319-06820-6.

