Ibn Al-Haitham Journal for Pure and Applied Sciences Journal homepage: jih.uobaghdad.edu.iq PISSN: 1609-4042, EISSN: 2521-3407 ## IHJPAS. 2024, 37(4) # Spin Characters' Decomposition Matrices of S_{27} , S_{28} modulo, p = 13 ^{1,2} Department of Mathematics, College of Science, Basrah University, Basrah, Iraq. *Corresponding Author. Received: 23 March 2023 Accepted: 12 June 2023 Published: 20 October 2024 doi.org/10.30526/37.4.3360 ## **Abstract** In this study, when the field characteristic is 13, we calculate decomposition matrices for the spin characters S_{27} and S_{28} which are broken down into blocks, where the decomposition matrices are connected between irreducible spin characters and irreducible modular spin characters. The technique used in this study is (r, \bar{r}) -inducing, which produces projective characters for symmetric group S_{27} by projecting S_{26} 's character, and symmetric group S_{28} by projecting S_{27} 's character. We can find it by fixing all bar divisions, finding all irreducible spin characters for S_{27} (S_{28}), p = 13, and all irreducible modular spin characters for S_{27} (S_{28}), p = 13. In order to explore irreducible modular spin characteristics, general correlations and theorems will be discovered as a result of this research. **Keywords:** Decomposition Matrix, Irreducible Modular Spin Character, projective character. #### 1. Introduction Symmetric group S_n has a representation group \overline{S}_n with a central $Z=\{-1,1\}$ such that $\overline{S}_n/Z\cong S_n$. The representations which do not have Z in their kernel are called the spin representations of S_n for more information, see [1-3]. The spin characters of the spin representations of S_n are labelled by the distinct parts of the partitions of n and denoted by $\langle \alpha \rangle$. In fact, if $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_m)$ is partition of n and n-m is even, then there is one irreducible spin character denoted by $\langle \alpha \rangle^*$ which is self-associate(double), and if n-m is odd, then there are two associate spin characters denoted by $\langle \alpha \rangle$ and $\langle \alpha \rangle'$ see [4-6]. The number of rows and columns of decomposition matrix corresponds to the number of projective characters and (p,α) -regular classes, respectively [3]. In this study we found the decomposition matrices of spin characters for S_{27} and S_{28} modulo p=13. The distribution of the spin characters into p-blocks is accomplished using the (r,\bar{r}) -inducing (restricting) approach [7,8]. Numerous people conduct research on this subject, have contributed to this field of study [9-22]. Before we declare any results, let's define certain notations and terminologies. "p.s." is the principal spin character ("p.i.s." indecomposable), "m.s." is means modular spin character ("i.m.s." irreducible), " d_i " is p.i.s. of S_n , " D_i " is p.i.s. of S_{n-1} , and " $\langle \vdots \vdots \rangle$ " or is the number of i.m.s. #### 1. Preliminaries For the study, some important conclusions were needed. **Theorem 2.1.** Degree of the spin character $\langle \alpha_1, \dots, \alpha_m \rangle = 2^{[(n-m)/2]} \frac{n!}{\prod_{i=1}^m \alpha_i!} \prod_{1 \le i < j \le m} \frac{(\alpha_i - \alpha_j)}{(\alpha_i + \alpha_j)} [1].$ **Theorem 2.2.** Given that b is the number of p-conjugate characters to the irreducible ordinary character χ of G and that B is an ablock of defect one, then: - a. $\exists N \in \mathbb{Z}^+$ such that the irreducible ordinary characters lying in the block B can be partitioned into two disjoint classes: $B_1 = \{\chi \in B \mid b \deg x \equiv N m o d p^a\}$, $B_2 = \{\chi \in B \mid b \deg x \equiv -N m o d p^a\}$ - b. The block *B*'s decomposition matrix has coefficients that are either 1 or 0 [23]. **Theorem 2.3.** Let G be a group of order $|G| = m_o p^a$, where $(p, m_o) = 0$. If c is a principal character of sub group H of G, then deg $c \equiv 0 \mod p^a$ [24,25]. ## **Theorem 2.4.** Let p be odd then - 1. If n be even, $p \nmid n$, then $\langle n \rangle = \varphi \langle n \rangle$ and $\langle n \rangle' = \varphi \langle n \rangle'$ are distinct irreducible modular spin characters. - 2. If n is odd, $p \nmid n$ or $p \nmid (n-1)$, then (n-1,1) and (n-1,1)' are distinct irreducible modular spin characters of degree $2^{\lceil (n-3)/2 \rceil} \times (n-2)$ which are denoted by $\varphi(n-1,1)$ and $\varphi(n-1,1)'$ respectively [2]. ## 2. Decomposition matrix for \overline{S}_{27} The decomposition matrix for \bar{S}_{27} of degree (288,253), and it is decomposed in to blocks of character it consists of 69 blocks which B_1 of defect two, B_2 , B_3 ,..., B_{16} are defect one, and the remaining blocks are defect zero, decomposition matrix is equal to $B_1 \oplus B_2 \oplus ... \oplus B_{69}$. **Lemma 3.1.** Decomposition matrix for the block B_1 of type double as shown in the **Table 1**. **Table 1.** Block B_1 | Spin characters | Т |)ecc | mno | sition | ı mai | triv | |--------------------|-------|------|--------|--------|------| | (27)* | 1 | ,,,,, | лпро | 311101 | 1 1114 | .11/ | | (26,1) | 1 | 1 | (24,2,1)* | 1 | 1 | 1 | (23,3,1)* | | 1 | 1 | 1 | (22,4,1)* | | | 1 | 1 | 1 | (21,5,1)* | | | | 1 | 1 | 1 | (20,6,1)* | | | | | 1 | 1 | 1 | 1 | (19,7,1)* | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | (18,8,1)* | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | (17,9,1)* | | | 1 | 1 | 1 | | | 1 | 1 | | | | | | | | | | | | | | | | | | (16,10,1)* | | | 1 | 1 | | | | | 1 | 1 | | | | | | | | | | | | | | | | | (15,11,1)* | | 1 | 1 | | | | | | | 1 | 1 | | | | | | | | | | | | | | | | (14,13) | 1 | 1 | | | | | | | | | | 1 | _ | | | | | | | | | | | | | | (14,12,1)* | 2 | 1 | | | | | | | | | 1 | 2 | 2 | | | | | | | | | | | | | | (14,11,2)* | | | | | | | | | | 1 | 1 | 1 | 2 | 1 | | | | | | | | | | | | | (14,10,3) * | | | | | | | | | 1 | 1 | | | | 1 | 1 | | | | | | | | | | | | (14,9,4)* | | | | | | | | 1 | 1 | | | | | | 1 | 1 | | | | | | | | | | | (14,8,5)* | | | | | | | 1 | 1 | | | | | | | | 1 | 1 | | | | | | | | | | (14,7,6)* | | | | | | | 1 | | | | | | | | | | 1 | | | | | | | | | | (13,11,2,1) | | | | | | | | | | | | 1 | 1 | 1 | | | | 1 | | | | | | | | | (13,10,3,1) | | | | | | | | | | | | | 1 | 1 | 1 | | | 1 | 1 | | | | | | | | (13,9,4,1) | | | | | | | | | | | | | | | 1 | 1 | | | 1 | 1 | | | | | | | (13,8,5,1) | | | | | | | | | | | | | | | | 1 | 1 | | | 1 | 1 | | | | | | (13,7,6,1) | | | | | | | | | | | | | | | | | 1 | | | | 1 | | | | | | ⟨11,10,3,2,1⟩* | | | | | | | | | | | | | 1 | | | | | | 1 | | | 1 | | | | **Proof:** By using (0,1)-inducing of p.i.s. method on D_1 in S_{27} we have $$\begin{array}{l} D_1 \uparrow^{(0,1)} S_{27} = \langle 26 \rangle + \langle 26 \rangle' + \langle 25,1 \rangle^* + 2\langle 14,12 \rangle^* + \langle 13,1,2,1 \rangle + \langle 13,12,1 \rangle' \uparrow^{(0,1)} S_{27} \\ = 2\langle 27 \rangle^* + 2\langle 26,1 \rangle + 2\langle 26,1 \rangle' + 2\langle 14,13 \rangle + 2\langle 14,13 \rangle' + 4\langle 14,12,1 \rangle^* \\ = 2d_1 \end{array}$$ similarly, using (r, \bar{r}) -inducing of p.i.s. D_2 , D_3 , D_4 , D_5 , D_6 , D_{46} , D_{40} , D_{34} , D_{28} , D_{52} , D_{12} , D_{13} , D_{29} , D_{35} , D_{41} , D_{47} , D_{18} , D_{19} , ..., D_{26} of S_{26} to S_{27} we get on d_2 , d_3 , ..., d_{26} respectively, and on $(13, \alpha)$ -regular classes we have - 1. (26,1) = (26,1)' - 2. $\langle 14,13 \rangle = \langle 14,13 \rangle'$ - 3. $\langle 13,11,2,1 \rangle = \langle 13,11,2,1 \rangle'$ - 4. $\langle 13,10,3,1 \rangle = \langle 13,10,3,1 \rangle'$ - 5. $\langle 13,9,4,1 \rangle = \langle 13,9,4,1 \rangle'$ - 6. $\langle 13,8,5,1 \rangle = \langle 13,8,5,1 \rangle'$ - 7. $\langle 13,7,6,1 \rangle = \langle 13,7,6,1 \rangle'$ - 8. $(21,5,1)^* = (20,6,1)^* + (22,4,1)^* (23,3,1)^* + (24,2,1)^* (26,1)^* + (27)^*$ - 9. $\langle 14,8,5 \rangle^* = \langle 14,7,6 \rangle^* + \langle 14,9,4 \rangle^* \langle 14,10,3 \rangle^* + \langle 14,11,2 \rangle^* \langle 14,12,1 \rangle^* + \langle 14,13 \rangle + \langle 27 \rangle^*$ - 10. $\langle 13,8,5,1 \rangle = \langle 13,7,6,1 \rangle + \langle 13,9,4,1 \rangle \langle 13,10,3,1 \rangle + \langle 13,11,2,1 \rangle \langle 14,13 \rangle + \langle 26,1 \rangle$ - 11. $\langle 11,8,5,2,1 \rangle^* = \langle 11,7,6,2,1 \rangle^* + \langle 11,9,4,2,1 \rangle^* \langle 11,10,3,2,1 \rangle^* \langle 13,11,2,1 \rangle + \langle 14,11,2 \rangle^* \langle 15,11,1 \rangle^* + \langle 24,2,1 \rangle^*$ **Table 2.** Block B_2 , B_3 | Block | Spin characters | | | | | | | | | | | | | | | | | | I | Dec | omp | osit | ion n | atrix | |-------|-----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|-----|------|-------|-------| | | (25,2) | 1 | (25,2)′ | | 1 | (15,12) | 1 | | 1 | (15,12)' | | 1 | | 1 | (13,12,2)* | | | 1 | 1 | 1 | 1 | (12,10,3,2) | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | | B_2 | (12,10,3,2)' | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | | (12,9,4,2) | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | (12,9,4,2)' | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | |
(12,8,5,2) | | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | (12,8,5,2)' | | | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | (12,7,6,2) | | | | | | | | | | | 1 | | | | | | | | | | | | | | | (12,7,6,2)' | | | | | | | | | | | | 1 | | | | | | | | | | | | | | (24,3) | | | | | | | | | | | | | 1 | | | | | | | | | | | | | (24,3)′ | | | | | | | | | | | | | | 1 | | | | | | | | | | | | (16,11) | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | B_3 | (16,11)′ | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | D_3 | (13,11,3)* | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | | | | | | | | (12,11,3,1) | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | (12,11,3,1)′ | | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | (11,9,4,3) | | | | | | | | | | | | | | | | | | | 1 | | 1 | (11,9,4,3)' | | 1 | | 1 | | | |-------------|--|---|------|------|---|------------| | (11,8,5,3) | | | 1 | | 1 | | | (11,8,5,3)' | | | | 1 | | 1 | | (11,7,6,3) | | | | | 1 | | | (11,7,6,3)' | | | | | | 1 | | | $d_{27}d_{20}d_{20}d_{20}d_{21}d_{22}d_{22}d_{23}d_{24}d_{25}d_{26}d_{27}d_{20}d_{20}d_{40}d_{41}d_{42}d_{42}d_{44}d_{45}d_{45}$ | d | 17 d | 10 d | d | - 0 | 12. $\langle 10,8,5,3,1 \rangle^* = \langle 10,7,6,3,1 \rangle^* + \langle 10,9,4,3,1 \rangle^* + \langle 11,10,3,2,1 \rangle^* - \langle 13,10,3,1 \rangle + \langle 14,10,3 \rangle^* - \langle 16,10,1 \rangle^* + \langle 23,3,1 \rangle^*$ 13. $$\langle 9,8,5,4,1 \rangle^* = \langle 10,8,5,3,1 \rangle^* - \langle 8,7,6,5,1 \rangle^* - \langle 11,8,5,2,1 \rangle^* + \langle 13,8,5,1 \rangle - \langle 14,8,5 \rangle^* + \langle 18,8,1 \rangle^* - \langle 21,5,1 \rangle^*$$ 14. $$\langle 10,9,4,3,1 \rangle^* = \langle 8,7,6,5,1 \rangle^* + \langle 11,9,4,2,1 \rangle^* - \langle 11,10,3,2,1 \rangle^* - \langle 13,9,4,1 \rangle + \langle 13,10,3,1 \rangle + \langle 14,9,4 \rangle^* - \langle 14,10,3 \rangle^* + \langle 16,10,1 \rangle^* - \langle 17,9,1 \rangle^* + \langle 22,4,1 \rangle^* - \langle 23,3,1 \rangle^*$$ 15. $$\langle 10,7,6,3,1 \rangle^* = \langle 9,7,6,4,1 \rangle^* - \langle 8,7,6,5,1 \rangle^* + \langle 11,7,6,2,1 \rangle^* - \langle 13,7,6,1 \rangle - \langle 14,9,4 \rangle^* + \langle 19,7,1 \rangle^* - \langle 20,6,1 \rangle^*$$ then the matrix contains at most 41 columns since the number of the i.m.s. is equal or less than the number of the spin characters, but **Table 1** contains at most 26 columns since there are 15 equations corresponding the spin characters of S_{27} in B_1 , and because $d_i - d_j$ is not p.s. to $S_{27} \forall 1 \le i < j \le 26$, and d_1, d_2, \dots, d_{26} are linearly independent, then we get **Table 1**. **Lemma 3.2.** The blocks B_2 , B_3 of type associate as shown in the **Table 2**. **Proof:** By using (r, \bar{r}) -inducing of p.i.s. D_3 , D_{10} , D_{14} , D_{15} , D_{16} , D_{17} , D_2 , D_9 , D_{12} , D_{168} , D_{169} , D_{20} , D_{21} of S_{26} to S_{27} we get on $k_1, k_2, \ldots, k_9, d_{45}, d_{46}, k_{10}, k_{11}$ respectively. Since $\langle 25, 2 \rangle \neq \langle 25, 2 \rangle'$ are distinct irreducible modular spin characters then k_1 must split to d_{27} , d_{28} , also since $\boldsymbol{B_2}$ of defect one then from (**theorem 2.2**) k_2 , k_3 must splits to d_{30} , d_{31} and d_{32} , d_{33} , respectively. Since $\langle 12,9,4,2 \rangle \neq \langle 12,9,4,2 \rangle'$ so k_4 or k_5 is split. If k_4 is split to d_{35} , d_{36} , but $\langle 12,8,5 \rangle \neq \langle 12,8,5 \rangle'$ then k_5 split to, d_{37} , d_{38} . If k_5 is split and from (13, α)-regular classes, $$\langle 12,9,4,2 \rangle + \langle 12,7,6,2 \rangle - \langle 12,8,5,2 \rangle \neq \langle 12,9,4,2 \rangle' + \langle 12,7,6,2 \rangle' - \langle 12,8,5,2 \rangle'$$ (1) then k_4 must split, so in both cases we get k_4 and k_5 are splits. Since $\langle 12,7,6,2 \rangle \neq \langle 12,7,6,2 \rangle'$ then k_6 must split to d_{37} , d_{38} . For \boldsymbol{B}_3 since $\langle 24,3 \rangle \neq \langle 24,3 \rangle'$ then k_7 must split to d_{39} , d_{40} , also since \boldsymbol{B}_3 of defect one then k_8, k_9 must splits to d_{41} , d_{42} and d_{43} , d_{44} , respectively. Since $\langle 11,8,5,3 \rangle \neq \langle 11,8,5,3 \rangle'$ so k_{10} or k_{11} is split. If k_9 is split to d_{47} , d_{48} , but $\langle 11,7,6,3 \rangle \neq \langle 11,7,6,3 \rangle'$ then k_{10} split to, d_{49} , d_{50} . If k_{10} is split, from $(13,\alpha)$ -regular classes, $$\langle 11,8,5,3 \rangle - \langle 11,7,6,3 \rangle \neq \langle 11,8,5,3 \rangle' - \langle 11,7,6,3 \rangle'$$ (2) then k_9 must split, so in both cases we get k_9 and k_{10} are splits, then we get **Table 2**. **Lemma 3.3.** The blocks B_4 , B_5 of type associate as shown in the **Table 3**. **Table 3.** Blocks B_4 , B_5 | Table 3 | . Blocks B_4 , B_5 | | | |---------|-----------------------------|--|--| | Block | Spin characters | | Decomposition matrix | | | (23,4) | 1 | | | | (23,4)′ | 1 | | | | (17,10) | 1 1 | | | | $\langle 17,10 \rangle'$ | 1 1 | | | | $(13,10,4)^*$ | 1 1 1 1 | | | | (12,10,4,1) | 1 1 | | | B_4 | (12,10,4,1)' | 1 1 | | | | (11,10,4,2) | 1 1 | | | | (11,10,4,2)' | 1 1 | | | | (10,8,5,4,) | 1 1 | | | | (10,8,5,4)' | 1 1 | | | | (10,7,6,4) | 1 | | | | $\langle 10,7,6,4 \rangle'$ | 1 | | | | (22,5) | 1 | | | | (22,5)′ | 1 | | | | (18,9) | 1 1 | | | | (18,9)′ | 1 1 | | | | (13,9,5)* | 1 1 1 | 1 | | | (12,9,5,1) | 1 | 1 | | B_5 | (12,9,5,1)' | | 1 1 | | | (11,9,5,2) | | 1 1 | | | (11,9,5,2)′ | | 1 1 | | | (10,9,5,3) | | 1 1 | | | (10,9,5,3)' | | 1 1 | | | (9,7,6,5) | | 1 | | | (9,7,6,5)' | | 1 | | | |
$d_{51}d_{52}d_{53}d_{54}d_{55}d_{56}d_{57}d_{58}d_{59}d_{60}d_{61}d_{62}d_{63}d_{64}d_{65}d_{66}d_{67}d_{69}d_{6$ | $d_{69}d_{70}d_{71}d_{72}d_{73}d_{74}$ | **Proof:** By using (r, \bar{r}) -inducing of p.i.s. D_3 , D_8 , D_{170} , D_{171} , D_{13} , D_{23} , D_{24} , D_4 , D_7 , D_{172} , D_{173} , D_{19} , D_{22} , D_{26} of S_{26} to S_{27} we get on k_1 , k_2 , d_{55} , d_{56} , k_3 , k_4 , k_5 , k_6 , k_7 , d_{67} , d_{68} , k_8 , k_9 , k_{10} respectively. Since $\langle 23,4 \rangle \neq \langle 23,4 \rangle'$ then k_1 must split to d_{51} , d_{52} , also since $\textbf{\textit{B}}_4$ of defect one then k_2 must split to d_{53} , d_{54} . $\langle 11,10,4,2 \rangle \neq \langle 11,10,4,2 \rangle'$ so k_3 or k_4 is split. If k_3 is split to d_{57} , d_{58} , but $\langle 10,8,5,4 \rangle \neq \langle 10,8,5,4 \rangle'$ then k_4 split to, d_{59} , d_{60} . If k_4 is split and from $(13,\alpha)$ -regular classes, $$\langle 11,10,4,2\rangle + \langle 10,7,6,4\rangle - \langle 10,8,5,4\rangle \neq \langle 11,10,4,2\rangle' + \langle 10,7,6,4\rangle' - \langle 10,8,5,4\rangle' \tag{3}$$ then k_3 must split, so in both cases we get k_3 , k_4 are splits. Since $\langle 10,7,6,4 \rangle \neq \langle 10,7,6,4 \rangle'$ then k_5 split to d_{61} , d_{62} . In $\textbf{\textit{B}}_{\textbf{5}}$ $\langle 22,5 \rangle \neq \langle 22,5 \rangle'$ then k_6 must split to d_{63} , d_{64} , also $\textbf{\textit{B}}_{\textbf{5}}$ of defect one then k_7 must split to d_{65} , d_{66} . Since $\langle 11,9,5,2 \rangle \neq \langle 11,9,5,2 \rangle'$ so k_8 or k_9 is split. If k_8 is split to d_{69} , d_{70} , but $\langle 10,9,5,3 \rangle \neq \langle 10,9,5,3 \rangle'$ then k_9 split to, d_{71} , d_{72} . If k_9 is split and $$\langle 11,9,5,2 \rangle + \langle 9,7,6,5 \rangle - \langle 10,9,5,3 \rangle \neq \langle 11,9,5,2 \rangle' + \langle 9,7,6,5 \rangle' - \langle 10,9,5,3 \rangle'$$ (4) then k_8 must split, so in both cases we get k_8 and k_9 are splits. Finally. Since $\langle 9,7,6,5 \rangle \neq \langle 9,7,6,5 \rangle'$ then k_{10} must split to d_{73} , d_{74} , so we get **Table 3**. **Lemma 3.4.** Blocks B_6 , B_8 of type double and block B_7 of type associate as given in **Table 4**. **Table 4.** Blocks B_6 , B_7 , B_8 | | 4. Blocks B_6, B_7, E_6 | | |-------|----------------------------------|--| | Block | Spin characters | Decomposition matrix | | | (22,3,2)* | 1 | | | (16,9,2)* | 1 1 | | | (15,9,3)* | 1 1 | | B_6 | (13,9,3,2) | 1 1 | | | (12,9,3,2,1)* | 1 1 | | | (9,8,5,3,2)* | 1 1 | | | (9,7,6,3,2)* | 1 | | | (21,6) | 1 | | | (21,6)′ | 1 | | | (19,8) | 1 1 | | | (19,8)′ | 1 1 | | | (13,8,6)* | 1 1 1 1 | | | (12,8,6,1) | 1 1 | | B_7 | (12,8,6,1)' | 1 1 | | | (11,8,6,2) | 1 1 | | | (11,8,6,2)' | 1 1 | | | (10,8,6,3) | 1 1 | | | (10,8,6,3)' | 1 1 | | | (9,8,6,4) | 1 | | | (9,8,6,4)' | 1 | | | (21,4,2)* | 1 | | | (17,8,2)* | 1 1 | | | (15,8,4) * | 1 1 | | B_8 | (13,8,4,2) | 1 1 | | | (12,8,4,2,1)* | 1 1 | | | (10,8,4,3,2)* | 1 1 | | | (8,7,6,4,2)* | 1 | | | | $d_{75}d_{76}d_{77}d_{78}d_{79}d_{80}d_{81}d_{82}d_{83}d_{84}d_{85}d_{86}d_{87}d_{88}d_{89}d_{90}d_{91}d_{92}d_{93}d_{94}d_{95}d_{96}d_{97}d_{98}$ | # **Proof:** Since - degree $\{(16,9,2)^*, (13,9,3,2) + (13,9,3,2)', (9,8,5,3,2)^*\} \equiv 156 \mod 13^2$ - degree $\{(22,3,2)^*, (15,9,3)^*, (12,9,3,2,1)^*, (9,7,6,3,2)^*\} \equiv -156 \mod 13^2$, - degree $\{(21,4,2)^*, (15,8,5)^*, (12,8,4,2,1)^*, (8,7,6,4,2)^*\} \equiv 91 \mod 13^2$ - degree $\{(17,8,2)^*, (13,8,4,2) + (13,8,4,2)', (10,8,4,3,2)^*\} \equiv -91 \mod 13^2$, and by (2,12)-inducing of p.i.s. D_{39} , D_{41} , D_{43} , D_{45} , D_{47} , D_{49} , D_{51} , D_{53} , D_{55} , D_{57} , D_{59} , D_{61} of S_{26} to S_{27} , and on (13, α)-regular classes we have: - 1. $\langle 13,9,3,2 \rangle = \langle 13,9,3,2 \rangle'$ - 2. $\langle 12,9,3,2,1 \rangle^* = \langle 9,8,5,3,2 \rangle^* \langle 9,7,6,3,2 \rangle^* + \langle 13,9,3,2 \rangle \langle 15,9,3 \rangle^* + \langle 16,9,2 \rangle^* \langle 22,3,2 \rangle^*$ - 3. $\langle 13,8,4,2 \rangle = \langle 13,8,4,2 \rangle'$ - 4. $(12,8,4,2,1)^* = (10,8,4,3,2)^* (8,7,6,4,2)^* + (13,8,4,2) (15,8,4)^* + (17,8,2)^* (21,4,2)^*$ then each blocks B_6 , B_8 contains at most 6 columns, so we get B_6 , B_8 . To find block B_7 by using (r, \bar{r}) -inducing of p.i.s. D_5 , D_8 , D_{175} , D_{176} , D_{20} , D_{23} , D_{22} of S_{26} to S_{27} get on k_1 , k_2 , d_{85} , d_{86} , k_3 , k_4 , k_5 . Since $\langle 21,6 \rangle \neq \langle 21,6 \rangle'$ then k_1 split to d_{81} , d_{82} , also since B_7 of defect one then k_2 split to d_{83} , d_{84} . Since $\langle 11,8,6,2 \rangle \neq \langle 11,8,6,2 \rangle'$ so k_3 or k_4 is split. If k_3 is split to d_{87} , d_{88} , but $\langle 10,8,6,3 \rangle \neq \langle 10,8,6,3 \rangle'$ then k_4 split to, d_{89} , d_{90} . If k_4 is split and $$\langle 11,8,6,2 \rangle + \langle 9,8,6,4 \rangle - \langle 10,8,6,3 \rangle \neq \langle 11,8,6,2 \rangle' + \langle 9,8,6,4 \rangle' - \langle 10,8,6,3 \rangle'$$ (5) then k_3 split, so in both cases we get k_3 and k_4 are splits. Finally. Since $(9,8,6,4) \neq (9,8,6,4)'$ then k_5 must split to d_{91} , d_{92} , then we get **Table 4**. **Lemma 3.5.** Block B_9 of type associate, and B_{10} , B_{11} of type double as shown in the **Table 5**. **Table 5.** Blocks B_9 , B_{10} , B_{11} | Table 5. | Blocks B_9, B_{10}, B_{10} | B ₁₁ | | |----------|------------------------------|---|---| | Block | Spin characters | S | Decomposition matrix | | | (21,3,2,1) | 1 | | | | (21,3,2,1)' | 1 | | | | (16,8,2,1) | 1 1 | | | | (16,8,2,1)' | 1 1 | | | | (15,8,3,1) | 1 1 | | | | (15,8,3,1)' | 1 1 | | | B_9 | (14,8,3,2) | 1 1 | | | | (14,8,3,2)' | 1 1 | | | | (13,8,3,2,1)* | 1 1 1 1 | | | | (9,8,4,3,2,1) | 1 1 | | | | (9,8,4,3,2,1)' | 1 1 | | | | (8,7,6,3,2,1) | 1 | | | | (8,7,6,3,2,1)' | 1 | | | | (20,5,2)* | 1 | | | | (18,7,2)* | 1 1 | | | | (15,7,5)* | 1 1 | | | B_{10} | (13,7,5,2) | 1 1 | | | | (12,7,5,2,1)* | 1 1 | | | | (10,7,5,3,2)* | 1 | 1 | | | (9,7,5,4,2)* | | 1 | | | (20,4,3)* | | 1 | | | (17,7,3)* | | 1 1 | | | (16,7,4)* | | 1 1 | | B_{11} | (13,7,4,3) | | 1 1 | | | (12,7,4,3,1)* | | 1 1 | | | (11,7,4,3,2)* | | 1 1 | | | (8,7,5,4,3)* | | 1 | | | | d ₉₉ d ₁₀₀ d ₁₀₁ d ₁₀₂ d ₁₀₃ d ₁₀₃ d ₁₀₄ d ₁₀₅ d ₁₀₆ d ₁₀₆ d ₁₀₇ d ₁₀₈ d ₁₁₀ d ₁₁₁ d ₁₁₁ d ₁₁₁ d ₁₁₁ | d_{116} d_{118} d_{119} d_{120} d_{121} | | | | <u>, , , , , , , , , , , , , , , , , , , </u> | | **Proof:** To find B_9 using (r, \bar{r}) -inducing of p.i.s. D_{63} , D_{64} , D_{65} , D_{66} , D_{101} , D_{69} , D_{71} , D_{72} , D_{73} , D_{74} of S_{26} to S_{27} we get on d_{99} , d_{100} , d_{101} , d_{102} , k_1 , k_2 , d_{107} , d_{108} , d_{109} , d_{110} respectively. Since $\langle 14,8,3,2 \rangle \neq \langle 14,8,3,2 \rangle'$ then k_1 must split to d_{103} , d_{104} , also since B_9 of defect one then k_2 must split to d_{105} , d_{106} , then we get block B_9 . To find B_{10} and B_{11} since - degree $\{(20,5,2)^*, (15,7,5)^*, (12,7,5,2,1)^*, (9,7,5,4,2)^*\} \equiv 143 \mod 13^2$ - degree $\{(18,7,2)^*, (13,7,5,2) + (13,7,5,2)', (10,7,5,3,2)^*\} \equiv -143 \mod 13^2$, - degree $\{(17,7,3)^*, (13,7,4,3) + (13,7,4,3)', (11,7,4,3,2)^*\} \equiv 143
\mod 13^2$ - degree $\{(20,4,3)^*, (16,7,4)^*, (12,7,4,3,1)^*, (8,7,5,4,3)^*\} \equiv -143 \mod 13^2$, by inducing of p.i.s. D_{75} , D_{77} , ..., D_{97} of S_{26} to S_{27} , and - 1. $\langle 13,7,5,2 \rangle = \langle 13,7,5,2 \rangle'$ - 2. $\langle 12,7,5,2,1 \rangle^* = \langle 10,7,5,3,2 \rangle^* \langle 9,7,5,4,2 \rangle^* + \langle 13,7,5,2 \rangle \langle 15,7,5 \rangle^* + \langle 18,7,2 \rangle^* \langle 20,5,2 \rangle^*$ - 3. $\langle 13,7,4,3 \rangle = \langle 13,7,4,3 \rangle'$ - 4. $\langle 12,7,4,3,1 \rangle^* = \langle 11,7,4,3,2 \rangle^* \langle 8,7,5,4,3 \rangle^* + \langle 13,7,4,3 \rangle \langle 16,7,4 \rangle^* + \langle 17,7,3 \rangle^* \langle 20,4,3 \rangle^*$ then ech blocks $\boldsymbol{B_{10}}, \boldsymbol{B_{11}}$ contains at most 6 columns, so we get **Table 5**. **Lemma 3.6.** Block B_{12} of type associate and and B_{13} of type double as given in the **Table 6.** **Table 6.** Blocks B_{12} , B_{13} | Block | Spin characters | | | | | | | | | | | | | | Dec | ompo | ositio | n ma | trix | |----------|-----------------------------|-------------|-------------|-------------|-------------|--------------|-------------|--------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|------| | | (20,4,2,1) | 1 | (20,4,2,1)' | | 1 | | | | | | | | | | | | | | | | | | | (17,7,2,1) | 1 | | 1 | | | | | | | | | | | | | | | | | | $\langle 17,7,2,1 \rangle'$ | | 1 | | 1 | | | | | | | | | | | | | | | | | (15,7,4,1) | | | 1 | | 1 | | | | | | | | | | | | | | | | (15,7,4,1)′ | | | | 1 | | 1 | | | | | | | | | | | | | | B_{12} | (14,7,4,2) | | | | | 1 | | 1 | | | | | | | | | | | | | | (14,7,4,2)′ | | | | | | 1 | | 1 | | | | | | | | | | | | | (13,7,4,2,1)* | | | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | (10,7,4,3,2,1) | | | | | | | | | 1 | | 1 | | | | | | | | | | (10,7,4,3,2,1)' | | | | | | | | | | 1 | | 1 | | | | | | | | | (8,7,5,4,2,1) | | | | | | | | | | | 1 | | | | | | | | | | (8,7,5,4,2,1)' | | | | | | | | | | | | 1 | | | | | | | | | (19,5,3)* | | | | | | | | | | | | | 1 | | | | | | | | (18,6,3)* | | | | | | | | | | | | | 1 | 1 | | | | | | | (16,6,5)* | | | | | | | | | | | | | | 1 | 1 | | | | | B_{13} | (13,6,5,3) | | | | | | | | | | | | | | | 1 | 1 | | | | | (12,6,5,3,1)* | | | | | | | | | | | | | | | | 1 | 1 | | | | (11,6,5,3,2)* | | | | | | | | | | | | | | | | | 1 | 1 | | | (9,6,5,4,3)* | | | | | | | | | | | | | | | | | | 1 | | | C | $l_{123} d$ | $l_{124} d$ | $d_{125} d$ | $l_{126} d$ | $l_{127} a$ | $l_{128} a$ | $l_{129} a$ | $l_{130} d$ | 131 0 | $l_{132} c$ | $l_{133} a$ | $l_{134} d$ | $l_{135} d$ | $d_{136} d$ | $_{137} d$ | $l_{138} d$ | $l_{139} d$ | 140 | **Proof:** By using inducing of p.i.s. D_{87} , D_{88} , D_{89} , D_{90} , D_{101} , D_{93} , D_{95} , D_{96} , D_{97} , D_{98} of S_{26} to S_{27} we get on d_{123} , d_{124} , d_{125} , d_{126} , k_1 , k_2 , d_{131} , d_{132} , d_{133} , d_{134} respectively. Since $\langle 14,7,4,2 \rangle \neq \langle 14,7,4,2 \rangle' k_1$ must split to d_{127} , d_{128} , also since B_{12} of defect one then k_2 must split to d_{129} , d_{130} . To find block B_{13} , Since - degree $\{(18,6,3)^*, (13,6,5,3) + (13,6,5,3)', (11,6,5,3,2)^*\} \equiv 156 \mod 13^2$ - degree $\{(19,5,3)^*, (16,6,5)^*, (12,6,5,3,1)^*, (9,6,5,4,3)^*\} \equiv -156 \mod 13^2$, by inducing of p.i.s. D_{105} , D_{107} , D_{109} , D_{111} , D_{113} , D_{115} of S_{26} to S_{27} , and - 1. $\langle 13,6,5,3 \rangle = \langle 13,6,5,3 \rangle'$ - 2. $\langle 12,6,5,3,1 \rangle^* = \langle 11,6,5,3,2 \rangle^* \langle 9,6,5,4,3 \rangle^* + \langle 13,6,5,3 \rangle \langle 16,6,5 \rangle^* + \langle 18,6,3 \rangle^* \langle 19,5,3 \rangle^*$ then the block $\boldsymbol{B_{13}}$ contains at most 6 columns, then we get **Table 6.** **Lemma 3.7.** Blocks B_{14} , B_{15} of type associate as shown in the **Table 7.** **Table 7.** Blocks B_{14} , B_{15} | Block | Spin Character | Block | |----------|-----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|--|---|-------| | | (19,5,2,1) | 1 | | | | | | | | | | | | | | | | | | • | • | | | (19,5,2,1)' | | 1 | (18,6,2,1) | 1 | | 1 | (18,6,2,1)' | | 1 | | 1 | | | | | | | | | | | | | | | | | | | (15,6,5,1) | | | 1 | | 1 | | | | | | | | | | | | | | | | | | (15,6,5,1)' | | | | 1 | | 1 | | | | | | | | | | | | | | | | B_{14} | (14,6,5,2) | | | | | 1 | | 1 | | | | | | | | | | | | | | | | (14,6,5,2)' | | | | | | 1 | | 1 | | | | | | | | | | | | | | | (13,6,5,2,1)* | | | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | (10,6,5,3,2,1) | | | | | | | | | 1 | | 1 | | | | | | | | | | | | (10,6,5,3,2,1)' | | | | | | | | | | 1 | | 1 | | | | | | | | | | | (9,6,5,4,2,1) | | | | | | | | | | | 1 | | | | | | | | | | | | (9,6,5,4,2,1)' | | | | | | | | | | | | 1 | | | | | | | | | | | (19,4,3,1) | | | | | | | | | | | | | 1 | | | | | | | | | B_{15} | (19,4,3,1)' | | | | | | | | | | | | | | 1 | | | | | | | | D_{15} | (17,6,3,1) | | | | | | | | | | | | | 1 | | 1 | | | | | | | | (17,6,3,1)' | | | | | | | | | | | | | | 1 | | 1 | (16,6,4,1) | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | |-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | (16,6,4,1)' | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | (14,6,4,3) | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | (14,6,4,3)' | | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | (13,6,4,3,1)* | | | | | | | | | | | | | | | | | | | 1 | 1 | 1 | . 1 | | | | (11,6,4,3,2,1) | 1 | | 1 | | | (11,6,4,3,2,1)' | 1 | | 1 | | (8,6,5,4,3,1) | 1 | | | (8,6,5,4,3,1)' | 1 | | | d_{141} | d_{142} | d_{143} | d_{144} | d_{145} | d_{146} | d_{147} | d_{148} | d_{149} | d_{150} | d_{151} | d_{152} | d_{153} | d_{154} | d_{155} | d_{156} | d_{157} | d_{158} | d_{159} | d_{160} | d_{161} | d_{162} | d_{163} | d_{164} | | | d_{j} $d_{\vec{j}}$ | q | q_{j} | d_{j} | d_{j} | q_{j} | q | d_1 | q_{j} | q_{j} | q_{j} | q | d_{j} | a | $ a_j $ | q_{j} | $ a_j $ | **Proof:** Using inducing of p.i.s. D_{105} , D_{106} , D_{107} , D_{108} , D_{131} , D_{111} , D_{113} , D_{114} , D_{115} , D_{116} , D_{117} , D_{118} , D_{119} , D_{120} , D_{131} , D_{123} , D_{125} , D_{126} , D_{127} , D_{128} of S_{26} to S_{27} we get on d_{141} , d_{142} , d_{143} , d_{144} , k_1 , k_2 , d_{149} , d_{150} , d_{151} , d_{152} , d_{153} , d_{154} , d_{155} , d_{156} , d_{3} , d_{4} , d_{161} , d_{162} , d_{163} , d_{164} . Since $\langle 14,6,5,2 \rangle \neq \langle 14,6,5,2 \rangle'$ then k_1 split to d_{145} , d_{146} , also B_{14} of defect one k_2 must split to d_{147} , d_{148} . For the block B_{15} , $\langle 14,6,4,3 \rangle \neq \langle 14,6,4,3 \rangle'$ then k_3 must split to d_{155} , d_{156} , also since B_{15} of defect one then k_4 must split to d_{157} , d_{158} , then we get **Table 7**. **Lemma 3.8.** The block B_{16} of type associate as shown in the **Table 8.** | Table 8. Block B_{16} | | | | | | | | | | | | | |--------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | spin characte | rs | | | | | | | | | decom | position | matrix | | (18,4,3,2) | 1 | | | | | | | | | | | | | (18,4,3,2)' | | 1 | | | | | | | | | | | | (17,5, 3,2) | 1 | | 1 | l | | | | | | | | | | (17 ,5,3,2)' | | 1 | - | | 1 | | | | | | | | | (16,5,4,2) | | | 1 | l | 1 | 1 | | | | | | | | (16,5,4,2)' | | | | | 1 | | 1 | | | | | | | (15,5,4,3) | | | | | 1 | l | 1 | | | | | | | (15,5,4,3)' | | | | | | | 1 | 1 | | | | | | (13,5,4,3,2)* | | | | | | | 1 | . 1 | 1 | 1 | | | | (12,5,4,3,2,1) | | | | | | | | | 1 | | 1 | | | (12,5,4,3,2,1)' | | | | | | | | | | 1 | | 1 | | (7,6,5,4,3,2) | | | | | | | | | | | 1 | | | (7,6,5,4,3,2)' | | | | | | | | | | | | 1 | | | d_{165} | d_{166} | d_{167} | d_{168} | d_{169} | d_{170} | d_{171} | d_{172} | d_{173} | d_{174} | d_{175} | d_{176} | **Proof:**We find the required matrix by using inducing of p.i.s. D_{135} , D_{136} , D_{137} , D_{138} , D_{180} , D_{181} , D_{139} , D_{140} get on k_1 , k_2 , k_3 , k_4 , d_{173} , d_{174} , k_5 . Since $\langle 18,4,3,2 \rangle \neq \langle 18,4,3,2 \rangle'$ then k_1 split to d_{165} , d_{166} . Since $\langle 16,5,4,2 \rangle \neq \langle 16,5,4,2 \rangle'$ so k_2 or k_3 is split. If k_2 is split to d_{167} , d_{168} , but $\langle 15,5,4,3 \rangle \neq \langle 15,5,4,3 \rangle'$ then k_3 split to, d_{169} , d_{170} . If k_3 is split, and $\langle 16,5,4 \rangle + \langle 13,5,4,3,2 \rangle^* - \langle 15,5,4,3 \rangle \neq \langle 16,5,4 \rangle' + \langle 13,5,4,3,2 \rangle^* - \langle 15,5,4,3 \rangle'$ (6) then k_2 split, so in both cases we get k_2 and k_3 are splits, also $\boldsymbol{B_{16}}$ of defect one then k_4 split to d_{171} , d_{172} . Finally, $\langle 7,6,5,4,3,2 \rangle \neq \langle 7,6,5,4,3,2 \rangle'$ then k_5 split to d_{175} , d_{176} , we get **Table 8.** 3.Decomposition matrix for
\overline{S}_{28} Decomposition matrix for \bar{S}_{28} of degree (334,295), and it is decomposed in to blocks of character it consists of 69 blocks which B_1 of defect two, B_2 , B_3 ,..., B_{21} are defect one, and the remaining blocks are defects zero, decomposition matrix is equal to $B_1 \oplus B_2 \oplus ... \oplus B_{69}$ **Lemma 4.1.** The blocks B_2 , B_3 , B_4 of type double as shown in **Table 9.** **Table 9.** Blocks B_2 , B_3 , B_4 | | 9. Blocks B_2, B_3, B_4 | | |-------|----------------------------------|---| | Block | spin characters | decomposition matrix | | | ⟨27,1⟩ * | 1 | | | (14,13,1) | 1 1 | | | (14,11,2,1)* | 1 1 | | B_2 | (14,10,3,1)* | 1 1 | | | (14,9,4,1)* | 1 1 | | | (14,8,5,1)* | 1 1 | | | (14,7,6,1)* | 1 | | | (25,3) * | 1 | | | ⟨16,12⟩* | 1 1 | | | (13,12,3) | 1 1 | | B_3 | (12,11,3,2)* | 1 1 | | | (12,9,4,3)* | 1 1 | | | (12,8,5,3)* | 1 1 | | | (12,7,6,3)* | 1 | | | (24,4) * | 1 | | | ⟨17,11⟩* | 1 1 | | | (13,11,4) | 1 1 | | B_4 | (12,11,4,1)* | 1 1 | | | (11,10,4,3)* | 1 1 | | | (11,8,5,4)* | 1 1 | | | (11,7,6,4)* | 1 | | | | $d_{55} \ d_{56} \ d_{57} \ d_{58} \ d_{59} \ d_{60} \ d_{61} \ d_{62} \ d_{63} \ d_{64} \ d_{65} \ d_{66} \ d_{67} \ d_{68} \ d_{69} \ d_{70} \ d_{71} \ d_{72}$ | #### **Proof:** Since - degree $\{(14,13,1) + (14,13,1)', (14,10,3,1)^*, (14,8,5,1)^*\} \equiv 117 \mod 13^2$, - degree $\{(27,1)^*, (14,11,2,1)^*, (14,9,4,1)^*, (14,7,6,1)^*\} \equiv -117 \mod 13^2$, - degree $\{(16,12)^*, (12,11,3,2)^*, (12,8,5,3)^*\} \equiv 91 \mod 13^2$, - degree $\{(25,3)^*, (13,12,3) + (13,12,3)', (12,9,4,3)^*, (12,7,6,3)^*\} \equiv -91 \mod 13^2$, - degree $\{(17,11)^*, (12,11,4,1)^*, (11,8,5,4)^*\} \equiv 156 \mod 13^2$, - degree $\{(24,4)^*, (13,11,4) + (13,11,4)', (11,10,4,3)^*, (11,7,6,4)^*\} \equiv -156 \mod 13^2$, used inducing of p.i.s. D_2 , D_{11} , D_{10} , D_9 , D_8 , D_7 , D_{27} , D_{29} , D_{31} , D_{33} , D_{35} , D_{37} , D_{39} , D_{41} , D_{43} , D_{45} , D_{47} , D_{49} of S_{27} to S_{28} , and - 1. $\langle 14,13,1 \rangle = \langle 14,13,1 \rangle'$ - 2. $\langle 14,11,2,1 \rangle^* = \langle 14,10,3,1 \rangle^* \langle 14,9,4,1 \rangle^* + \langle 14,13,1 \rangle \langle 27,1 \rangle^* + \langle 14,8,5,1 \rangle^* \langle 14,7,6,1 \rangle^*$ - 3. $\langle 13,12,3 \rangle = \langle 13,12,3 \rangle'$ - 4. $\langle 12,11,3,2 \rangle^* = \langle 12,9,4,3 \rangle^* \langle 12,8,5,3 \rangle^* + \langle 13,12,3 \rangle \langle 16,12 \rangle^* + \langle 25,3 \rangle^* + \langle 12,7,6,3 \rangle^*$ - 5. $\langle 13,11,4 \rangle = \langle 13,11,4 \rangle'$ - 6. $\langle 12,11,4,1 \rangle^* = \langle 11,10,4,3 \rangle^* \langle 11,8,5,4 \rangle^* + \langle 13,11,4 \rangle \langle 17,11 \rangle^* + \langle 24,4 \rangle^* + \langle 11,7,6,4 \rangle^*$ so each of these blocks contains 6 columns, so we get **Table 9** **Lemma 4.2.** The block B_5 of type associate and B_6 of type doubleas shown in the **Tables 10**. **Table 10.** Blocks B_5 , B_6 | I dole I o. | D100K5 D5, D6 | | | | | | | | | | | | | | | |-------------|-----------------|---|---|---|---|---|---|---|---|--|---|--------|---------|------|----| | Block | Spin characters | | | | | | | | | |] | Decomp | osition | matr | ix | | | (24,3,1) | 1 | | | | | | | | | | | | | | | | (24,3,1)' | | 1 | | | | | | | | | | | | | | | (16,11,1) | 1 | | 1 | | | | | | | | | | | | | B_5 | (16,11,1)' | | 1 | | 1 | | | | | | | | | | | | Ü | (14,11,3) | | | 1 | | 1 | | | | | | | | | | | | (14,11,3)' | | | | 1 | | 1 | | | | | | | | | | | (13,11,3,1)* | | | | | 1 | 1 | 1 | 1 | (11,9,4,3,1) | | | | | | | 1 | l | | 1 | | | | | | | | | | | | |-------|------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|-----------------|------------|----------|----------|----------|----------|---|------|----------|----------|---| | | (11,9,4,3,1)' | | | | | | | | | 1 | | 1 | | | | | | | | | | | | | (11,8,5,3,1) | | | | | | | | | | 1 | | 1 | | | | | | | | | | | | (11,8,5,3,1)' | | | | | | | | | | | 1 | | 1 | | | | | | | | | | | (11,7,6,3,1) | | | | | | | | | | | | 1 | | | | | | | | | | | | (11,7,6,3,1)' | | | | | | | | | | | | | 1 | | | | | | | | _ | | | (23,5)* | | | | | | | | | | | | | | 1 | | | | | | | | | | (18,10) * | | | | | | | | | | | | | | 1 | . 1 | l | | | | | | | | (13,10,5) | | | | | | | | | | | | | | | 1 | l | 1 | | | | | | B_6 | (12,10,5,1)* | | | | | | | | | | | | | | | | | 1 | 1 | | | | | | (11,10,5,2)* | | | | | | | | | | | | | | | | | | 1 | 1 | | | | | (10,9,5,4)* | | | | | | | | | | | | | | | | | | | 1 | | 1 | | | (10,7,6,5)* | 1 | | | | d_{73} | d_{74} | d_{75} | d_{76} | d_{77} | d_{78} | d_{79} | d_{80} | d_{82} | d_{1} | ₈₂ a | l_{83} (| d_{84} | d_{85} | d_{86} | d_{87} | d | 88 (| l_{89} | d_{90} | , | **Proof:** By using inducing ofp.i.s. D_{39} , D_{40} , D_{11} , D_{12} , D_{45} , D_{46} , ..., D_{51} , D_{53} , D_{55} , D_{57} , D_{59} , D_{61} of S_{27} to S_{28} we get on d_{73} , d_{74} , k_1 , k_2 , d_{79} , d_{80} , ..., d_{90} . Since $\langle 14,11,3 \rangle \neq \langle 14,11,3 \rangle'$ then k_1 split to d_{75} , d_{76} , also since $\textbf{\textit{B}}_{\bf 5}$ of defect one then k_2 split to d_{77} , d_{78} . To find block $\textbf{\textit{B}}_{\bf 6}$, since - degree $\{(23,5)^*, (13,10,5) + (13,10,5)', (11,10,5,2)^*, (10,7,6,5)^*\} \equiv 117 \mod 13^2$ - degree $\{(18,10)^*, (12,10,5,1)^*, (10,9,5,4)^*\} \equiv -117 \mod 13^2$, and on $(13, \alpha)$ -regular classes we have: - 1. $\langle 13,10,5 \rangle = \langle 13,10,5 \rangle'$ - 2. $\langle 12,10,5,1\rangle^* = \langle 11,10,5,2\rangle^* + \langle 13,10,5\rangle \langle 18,10\rangle^* + \langle 23,5\rangle^* \langle 10,9,5,4\rangle^* + \langle 10,7,6,5\rangle^*$ then the block contains at most 6 columns, so we get **Table 10** **Lemma 4.3.** The block B_7 of type associate and B_8 of type double as shown in the **Table 11**. **Table 11.** Blocks B_7 , B_8 | 1 able 1 | 1. DIOCKS D_7 , D_8 |----------|----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|---------------|----------------|------------|------------------|----------------|------------|-------| | Block | Spin characters | 3 | | | | | | | | | | | | | | Dec | omp | ositio | n ma | ıtrix | | | (23,4,1) | 1 | | | | | | | | | | | - | | | | | | | | | | (23,4,1)' | | 1 | (17,10,1) | 1 | | 1 | l | | | | | | | | | | | | | | | | | | $\langle 17,10,1 \rangle'$ | | 1 | | | 1 | | | | | | | | | | | | | | | | | (14,10,4) | | | 1 | l | | 1 | | | | | | | | | | | | | | | | $\langle 14,10,4 \rangle'$ | | | | 1 | 1 | | 1 | | | | | | | | | | | | | | B_7 | (13,10,4,1)* | | | | | | 1 : | 1 1 | 1 1 | l | | | | | | | | | | | | | (11,10,4,2,1) | | | | | | | 1 | 1 | | 1 | | | | | | | | | | | | (11,10,4,2,1)' | | | | | | | | 1 | l | 1 | 1 | | | | | | | | | | | (10,8,5,4,1) | | | | | | | | | | 1 | | 1 | | | | | | | | | | (10,8,5,4,1)' | | | | | | | | | | 1 | [| | 1 | | | | | | | | | (10,7,6,4,1) | | | | | | | | | | | | 1 | | | | | | | | | | (10,7,6,4,1)' | | | | | | | | | | | | | 1 | | | | | | | | | (22,6) * | | | | | | | | | | | | | | 1 | | | | | | | | (19,9)* | | | | | | | | | | | | | | 1 | 1 | | | | | | | (13,9,6) | | | | | | | | | | | | | | | 1 | 1 | | | | | B_8 | (12,9,6,1)* | | | | | | | | | | | | | | | | 1 | 1 | | | | | (11,9,6,2)* | | | | | | | | | | | | | | | | | 1 | 1 | | | | (10,9,6,3)* | | | | | | | | | | | | | | | | | | 1 | 1 | | | (9,8,6,5)* | | | | | | | | | | | | | | | | | | | 1 | | | | d_{91} | d_{92} | d_{93} | d_{94} | d_{95} | d_{96} | d_{97} | d_{98} | d_{99} | d_{100} | d_{101} | d_{10} | $_{2} d_{10}$ | $d_{03} d_{1}$ | $l_{04} d$ | ₁₀₅ d | $_{106} d_{1}$ | $_{107} d$ | 108 | **Proof:** By inducing of p.i.s. D_{51} , D_{52} , D_{8} , D_{14} , D_{57} , D_{58} , ..., D_{62} , D_{63} , D_{65} , D_{67} , D_{69} , D_{71} , D_{73} of S_{27} to S_{28} we get on d_{91} , d_{92} , k_1 , k_2 , d_{97} , d_{98} , ..., d_{108} . Since $\langle 14, 10, 4 \rangle \neq \langle 14, 10, 4 \rangle'$ then k_1 split to d_{93} , d_{94} , also $\boldsymbol{B_7}$ of defect one then k_2 split to d_{95} , d_{96} . To find the $\boldsymbol{B_8}$ since - degree $\{(22,6)^*, (13,9,6) + (13,9,6)^*, (11,9,6,2)^*, (9,8,6,5)^*\} \equiv 117 \mod 13^2$, - degree $\{(19,9)^*, (12,9,6,1)^*, (10,9,6,3)^*\} \equiv -117 \mod 13^2$, and on $(13, \alpha)$ -regular classes we have: - 1. $\langle 13,9,6 \rangle = \langle 13,9,6 \rangle'$ - 2. $\langle 12,9,6,1 \rangle^* = \langle 11,9,6,2 \rangle^* + \langle 13,9,6 \rangle \langle 19,9 \rangle^* + \langle 22,6 \rangle^* \langle 10,9,6,3 \rangle^* + \langle 9,8,6,5 \rangle^*$ then the block $\boldsymbol{B_8}$ contains at most 6 columns, so we get **Table 11** **Lemma 4.4.** Block B_9 is associate and B_{10} , B_{11} are double as shown in the **Table 12**. **Table 12.** Blocks B_9 , B_{10} , B_{11} | | 2. Blocks B_9 , B_{10} | 11 | | | |----------|-----------------------------------|--|---|--| | Block | Spin characters | - | Decomp | osition matrix | | | (22,5,1) | 1 | | | | | (22,5,1)' | 1 | | | | |
(18,9,1) | 1 1 | | | | | (18,9,1)' | 1 1 | | | | | (14,9,5) | 1 1 | | | | | (14,9,5)' | 1 1 | | | | B_9 | (13,9,5,1)* | 1 1 1 1 | | | | | (11,9,5,2,1) | 1 | 1 | | | | (11,9,5,2,1)' | 1 | 1 | | | | (10,9,5,3,1) | | 1 1 | | | | (10,9,5,3,1)' | | 1 1 | | | | (9,7,6,5,1) | | 1 | | | | (9,7,6,5,1)' | | 1 | | | | (22,3,2,1)* | | 1 | | | | (16,9,2,1)* | | 1 1 | | | | (15,9,3,1)* | | 1 1 | | | B_{10} | (14,9,3,2)* | | 1 1 | | | | (13,9,3,2,1) | | 1 1 | | | | (9,8,5,3,2,1)* | | 1 1 | | | | (9,7,6,3,2,1)* | | 1 | | | | 〈21,7〉 * | | 1 | | | | (20,8)* | | 1 1 | | | | (13,8,7) | | 1 | 1 | | B_{11} | $(12,8,7,1)^*$ | | | 1 1 | | | (11,8,7,2)* | | | 1 1 | | | (10,8,7,3)* | | | 1 1 | | | (9,8,7,4)* | | | 1 | | | | $d_{110} \\ d_{111} \\ d_{112} \\ d_{113} \\ d_{114} \\ d_{115} \\ d_{116} \\ d_{116}$ | d 117 d 118 d 119 d 120 d 121 d 122 d 122 d 123 d 125 d 125 d 125 | $d_{130} \ d_{131} \ d_{132} \ d_{132}$ | | | | | | $\begin{vmatrix} a_1 \\ a_2 \end{vmatrix}$ | **Proof:** Using inducing of p.i.s. D_{63} , D_{64} , D_{7} , D_{15} , D_{69} , D_{70} , ..., D_{74} , D_{99} , D_{101} , D_{103} , D_{105} , D_{107} , D_{109} , D_{81} , D_{83} , D_{85} , D_{87} , D_{89} , D_{91} of S_{27} to S_{28} we get on d_{109} , d_{110} , k_1 , k_2 , d_{115} , d_{116} , ..., d_{132} . Since $\langle 14,9,5 \rangle \neq \langle 14,9,5 \rangle'$ then k_1 split to d_{111} , d_{112} , also $\textbf{\textit{B}}_{9}$ of defect k_2 split to d_{113} , d_{114} . To find blocks $\textbf{\textit{B}}_{10}$, $\textbf{\textit{B}}_{11}$, since - degree $\{(16,9,2,1)^*, (14,9,3,2)^*, (9,8,5,3,2,1)^*\} \equiv 143 \mod 13^2$, - degree{ $\langle 22,3,2,1\rangle^*$, $\langle 15,9,3,1\rangle^*$, $\langle 13,9,3,2,1\rangle$ + $\langle 13,9,3,2,1\rangle'$, $\langle 9,7,6,3,2,1\rangle^*$ } $\equiv -143 \mod 13^2$, - degree $\{(20,8)^*, (12,8,7,1)^*, (10,8,7,3)^*\} \equiv 143 \mod 13^2$, - degree $\{(21,7)^*, (13,8,7) + (13,8,7)', (11,8,7,2)^*, (9,8,7,4)^*\} \equiv -143 \mod 13^2$, and on $(13, \alpha)$ -regular classes we have: 1. $\langle 13,9,3,2,1 \rangle = \langle 13,9,3,2,1 \rangle'$ - 2. $\langle 9,8,5,3,2,1 \rangle^* = \langle 9,7,6,3,2,1 \rangle^* + \langle 13,9,3,2,1 \rangle \langle 14,9,3,2 \rangle^* + \langle 15,9,3,1 \rangle^* \langle 16,9,2,1 \rangle^* + \langle 22,3,2,1 \rangle^*$ - 3. $\langle 13,8,7 \rangle = \langle 13,8,7 \rangle'$ - 4. $\langle 12,8,7,1 \rangle^* = \langle 11,8,7,2 \rangle^* + \langle 13,8,7 \rangle \langle 20,8 \rangle^* + \langle 21,7 \rangle^* \langle 10,8,7,3 \rangle^* + \langle 9,8,7,4 \rangle^*$ so each of these blocks contains 6 columns, thenwe get **Table 12** **Lemma 4.5.** The blocks B_{12} , B_{13} are associate as shown in the **Table 13**. **Table 13.** Blocks B_{12} , B_{13} | | 6. Blocks B_{12}, B_{13} |----------|-----------------------------------| | Block | Spin characters | | | | | | | | | | | | | | | | | | | De | com | pos | ition | ma | trix | | | (21,6,1) | 1 | (21,6,1)' | | 1 | (19,8,1) | 1 | | 1 | (19,8,1)' | | 1 | | 1 | (14,8,6) | | | 1 | | 1 | (14,8,6)' | | | | 1 | | 1 | B_{12} | (13,8,6,1)* | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | 12 | (11,8,6,2,1) | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | | (11,8,6,2,1)' | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | (10,8,6,3,1) | | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | (10,8,6,3,1)' | | | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | (9,8,6,4,1) | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | (9,8,6,4,1)' | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | (21,4,3) | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | (21,4,3)' | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | (17,8,3) | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | | | (17,8,3)' | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | | (16,8,4) | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | | | (16,8,4)' | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | B_{13} | (13,8,4,3)* | | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | | | | | | 15 | (12,8,4,3,1) | | | | | | | | | | | | | | | | | | | 1 | | 1 | | | | | | (12,8,4,3,1)' | 1 | | 1 | | | | | (11,8,4,3,2) | 1 | | 1 | | | | (11,8,4,3,2)′ | 1 | | 1 | | | (8,7,6,4,3) | 1 | | | | (8,7,6,4,3)' | 1 | | | | d_{133} | d_{134} | d_{135} | d_{136} | d_{137} | d_{138} | d_{139} | d_{140} | d_{141} | d_{142} | d_{143} | 44 | d_{145} | d_{146} | d_{147} | d_{148} | d_{149} | d_{150} | d_{151} | d_{152} | d_{153} | d_{154} | d_{155} | d_{156} | | | | d_1 | $ d_1 $ | d_1 | $ d_1 $ | $ d_1 $ | d_1 | d_1 | d_1 | d_1 | d_1 | d_1 | d_{144} | d_1 $ d_1 $ | $ d_1 $ | **Proof:** By inducing of p.i.s. D_{81} , D_{82} , D_{8} , D_{16} , D_{87} , D_{88} , ..., D_{92} , D_{117} , D_{118} , D_{119} , D_{217} , D_{218} , D_{221} , D_{222} of S_{27} to S_{28} we get on d_{133} , d_{134} , k_1 , k_2 , d_{139} , d_{140} , ..., d_{144} , k_3 , k_4 , k_5 , d_{151} , d_{152} , k_6 , k_7 . Since $\langle 14,8,6 \rangle \neq \langle 14,8,6 \rangle'$ then k_1 split to d_{135} , d_{136} , also $\boldsymbol{B_{12}}$ of defect one then k_2 split to d_{137} , d_{138} . To find block $\boldsymbol{B_{12}}$, $\langle 17,8,3 \rangle \neq \langle 17,8,3 \rangle'$ so k_3 or k_4 is split. If k_3 is split to d_{145} , d_{146} , but $\langle 16,8,4 \rangle \neq \langle 16,8,4 \rangle'$ then k_4 split to, d_{147} , d_{148} . If k_4 is split and $$\langle 16,8,4 \rangle + \langle 17,8,3 \rangle - \langle 21,4,3 \rangle \neq \langle 16,8,4 \rangle' + \langle 17,8,3 \rangle' - \langle 21,4,3 \rangle'$$ (7) then k_3 split, so, in both cases we get k_3 and k_4 are splits, also $\boldsymbol{B_{13}}$ of defect one then k_5 split to d_{149}, d_{150} . Since $\langle 11, 8, 4, 3, 2 \rangle \neq \langle 11, 8, 4, 3, 2 \rangle'$ so k_6 or k_7 is split. If k_6 is split to d_{153}, d_{154} , but $\langle 8, 7, 6, 4, 3 \rangle \neq \langle 8, 7, 6, 4, 3 \rangle'$ then k_7 split to, d_{155}, d_{156} . If k_7 is split, and $$\langle 11,8,4,3,2 \rangle - \langle 8,7,6,4,3 \rangle \neq \langle 11,8,4,3,2 \rangle' - \langle 8,7,6,4,3 \rangle'$$ (8) then k_6 split, so in both cases we get k_6 and k_7 are splits, then we get Table 13. **Lemma 4.6.** Blocks B_{14} , B_{16} of type double and B_{15} is associate as shown in Table 14. **Table 14.** Blocks B_{14} , B_{15} , B_{16} | | 14. Blocks <i>B</i> ₁₄ , <i>B</i> ₂ | | |----------|--|---| | Block | Spin characters | Decomposition matrix | | | $(21,4,2,1)^*$ | 1 | | | (17,8,2,1)* | 1 1 | | | (15,8,4,1)* | 1 1 | | B_{14} | (14,8,4,2)* | 1 1 | | | (13,8,4,2,1) | 1 1 | | | (10,8,4,3,2,1)* | 1 1 | | | (8,7,6,4,2,1)* | 1 | | | (20,5,3) | 1 | | | (20,5,3)′ | 1 | | | (18,7,3) | 1 1 | | | (18,7,3)′ | 1 1 | | | (16,7,5) | 1 1 | | | (16,7,5)′ | 1 1 | | B_{15} | (13,7,5,3)* | 1 1 1 1 | | | (12,7,5,3,1) | 1 1 | | | (12,7,5,3,1)' | 1 1 | | | (11,7,5,3,2) | 1 1 | | | (11,7,5,3,2)′ | 1 1 | | | (9,7,5,4,3) | 1 | | | (9,7,5,4,3)' | 1 | | | (20,5,2,1)* | 1 | | | (18,7,2,1)* | 1 1 | | | (15,7,5,1)* | 1 1 | | B_{16} | (14,7,5,2)* | 1 1 | | | (13,7,5,2,1) | 1 1 | | | (10,7,5,3,2,1)* | 1 1 | | | (9,7,5,4,2,1)* | 1 | | | | d157 d158 d159 d160 d161 d162 d163 d164 d165 d166 d167 d170 d171 d173 d175 d176 d177 d177 d177 d177 d178 d179 d179 d179 d179 d180 | | | | <u> </u> | **Proof:** By inducing of p.i.s. D_{99} , D_{101} , D_{103} , D_{105} , D_{107} , D_{109} , D_{111} , D_{112} , D_{113} , D_{219} , D_{220} , D_{115} , D_{116} , D_{123} , D_{125} , D_{127} , D_{129} , D_{131} , D_{133} of S_{27} to S_{28} we get on d_{157} , d_{158} ,..., d_{162} , k_1 , k_2 , k_3 , d_{169} , d_{170} , k_4 , k_5 , d_{175} , d_{176} ,..., d_{180} . To find blocks $\boldsymbol{B_{14}}$, $\boldsymbol{B_{16}}$, since - degree $\{(21,4,2,1)^*, (15,8,4,1)^*, (13,8,4,2,1) + (13,8,4,2,1)^*, (8,7,6,4,2,1)^*\} \equiv 156 \mod 13^2$, - degree $\{(17,8,2,1)^*, (14,8,4,2)^*, (10,8,4,3,2,1)^*\} \equiv -156 \mod 13^2$, - degree $\{(20,5,2,1)^*, (15,7,5,1)^*, (13,7,5,2,1) + (13,7,5,2,1)', (9,7,5,4,2,1)^*\} \equiv 104 \mod 13^2$, - degree $\{(18,7,2,1)^*, (14,7,5,2)^*, (10,7,5,3,2,1)^*\} \equiv -104 \mod 13^2$, and on $(13, \alpha)$ -regular classes: - 1. $\langle 13,8,4,2,1 \rangle = \langle 13,8,4,2,1 \rangle'$ - 2. $\langle 14,8,4,2 \rangle^* = \langle 15,8,4,1 \rangle^* + \langle 13,8,4,2,1 \rangle \langle 17,8,2,1 \rangle^* + \langle 21,4,2,1 \rangle^* \langle 10,8,4,3,2,1 \rangle^* + \langle 8,7,6,4,2,1 \rangle^*$ - 3. $\langle 13,7,5,2,1
\rangle = \langle 13,7,5,2,1 \rangle'$ - 4. $\langle 14,7,5,2 \rangle^* = \langle 15,7,5,1 \rangle^* + \langle 13,7,5,2,1 \rangle \langle 10,7,5,3,2,1 \rangle^* + \langle 9,7,5,4,2,1 \rangle^* \langle 18,7,2,1 \rangle^* + \langle 20,5,2,1 \rangle^*$ so each blocks contains 6 columns. In B_{15} , $\langle 18,7,3 \rangle \neq \langle 18,7,3 \rangle'$ so k_1 or k_2 is split. If k_1 is split to d_{163} , d_{164} , but $\langle 16,7,5 \rangle \neq \langle 16,7,5 \rangle'$ then k_2 split to, d_{165} , d_{166} . If k_2 is split and $$\langle 16,7,5 \rangle - \langle 18,7,3 \rangle + \langle 20,5,3 \rangle \neq \langle 16,7,5 \rangle' - \langle 18,7,3 \rangle' + \langle 20,5,3 \rangle'$$ (9) then k_1 split, so, in both cases we get k_1 and k_2 are splits, also $\boldsymbol{B_{15}}$ of defect one then k_3 split to d_{167}, d_{168} . Since $\langle 11, 8, 4, 3, 2 \rangle \neq \langle 11, 8, 4, 3, 2 \rangle'$ so k_4 or k_5 is split. If k_4 is split to d_{171}, d_{172} , but $\langle 9, 7, 5, 4, 3 \rangle \neq \langle 9, 7, 5, 4, 3 \rangle'$ then k_5 split to, d_{173}, d_{174} . If k_5 is split, and $$\langle 11,7,5,3,2 \rangle - \langle 9,7,5,4,3 \rangle \neq \langle 11,7,5,3,2 \rangle' - \langle 9,7,5,4,3 \rangle' \tag{10}$$ then k_4 split to d_{171} , d_{172} , so, in both cases we get k_4 , k_5 are splits, then we get Table 14. **Lemma 4.7** Blocks B_{17} , B_{19} are double and B_{18} of type associate as shown in Table 15. **Table 15.** Blocks B_{17} , B_{18} , B_{19} | | 15. DIOCKS D ₁₇ , D | | | |----------|--------------------------------|---|--| | Block | | S Decomposition matrix | | | | (20,4,3,1)* | 1 | | | | (17,7,3,1)* | 1 1 | | | | (16,7,4,1)* | 1 1 | | | B_{17} | (14,7,4,3)* | 1 1 | | | | (13,7,4,3,1) | 1 1 | | | | (11,7,4,3,2,1)* | | | | | (8,7,5,4,3,1)* | 1 | | | | (19,5,4) | 1 | | | | (19,5,4)' | 1 | | | | (18,6,4) | 1 1 | | | | (18,6,4)' | 1 1 | | | | (17,6,5) | 1 1 | | | | (17,6,5)' | 1 1 | | | B_{18} | (13,6,5,4)* | 1 1 1 1 | | | | (12,6,5,4,1) | 1 1 | | | | (12,6,5,4,1)' | 1 1 | | | | (11,6,5,4,2) | 1 1 | | | | (11,6,5,4,2)' | 1 1 | | | | (10,6,5,4,3) | 1 | | | | (10,6,5,4,3)' | 1 | | | | (19,5,3,1)* | 1 | | | | (18,6,3,1)* | 1 1 | | | | (16,6,5,1)* | 1 1 | | | B_{19} | (14,6,5,3)* | 1 1 | | | | (13,6,5,3,1) | 1 1 | | | | (11,6,5,3,2,1)* | * 1 | 1 | | | (9,6,5,4,3,1)* | | 1 | | | | d_{181} d_{182} d_{183} d_{183} d_{185} d_{186} d_{190} d_{190} d_{191} d_{192} d_{193} d_{195} d_{195} d_{195} d_{196} d_{196} d_{196} d_{196} d_{196} d_{196} d_{196} d_{196} | d_{204} | | | | d181
d183
d183
d184
d185
d190
d190
d199
d199
d199
d199
d199
d199 | $\begin{vmatrix} u_2 \\ d_2 \end{vmatrix}$ | **Proof:** By inducing of p.i.s. D_{153} , D_{155} , D_{157} , D_{159} , D_{161} , D_{163} , D_{135} , D_{136} , D_{137} , D_{221} , D_{222} , D_{139} , D_{140} , D_{141} , D_{143} , D_{145} , D_{147} , D_{149} , D_{151} of S_{27} to S_{28} we get on d_{181} , d_{182} ,..., d_{186} , k_1 , k_2 , k_3 , d_{193} , d_{194} , k_4 , k_5 , d_{199} , d_{200} ,..., d_{204} . To find blocks $\boldsymbol{B_{17}}$, $\boldsymbol{B_{19}}$ since - degree $\{(20,4,3,1)^*, (16,7,4,1)^*, (13,7,4,3,1) + (13,7,4,3,1)^*, (8,7,5,4,3,1)^*\} \equiv 130 \mod 13^2$, - degree $\{(17,7,3,1)^*, (14,7,4,3)^*, (11,7,4,3,2,1)^*\} \equiv -130 \mod 13^2$, - degree $\{(19,5,3,1)^*, (16,6,5,1)^*, (13,6,5,3,1) + (13,6,5,3,1)', (9,6,5,4,3,1)^*\} \equiv 143 \mod 13^2$, - degree $\{(18,6,3,1)^*, (14,6,5,3)^*, (11,6,5,3,2,1)^*\} \equiv -143 \mod 13^2$, and on $(13, \alpha)$ -regular classes: - 1. $\langle 13,7,4,3,1 \rangle = \langle 13,7,4,3,1 \rangle'$ - 2. $\langle 14,7,4,3 \rangle^* = \langle 16,7,4,1 \rangle^* + \langle 13,7,4,3,1 \rangle \langle 11,7,4,3,2,1 \rangle^* + \langle 8,7,5,4,3,1 \rangle^* \langle 17,7,3,1 \rangle^* + \langle 20,4,3,1 \rangle^*$ - 3. $\langle 13,6,5,3,1 \rangle = \langle 13,6,5,3,1 \rangle'$ - 4. $\langle 14,6,5,3 \rangle^* = \langle 16,6,5,1 \rangle^* + \langle 13,6,5,3,1 \rangle \langle 11,6,5,3,2,1 \rangle^* + \langle 9,6,5,4,3,1 \rangle^* \langle 18,6,3,1 \rangle^* + \langle 19,5,3,1 \rangle^*$ so each blocks contains 6 columns. To find blocks B_{18} , $\langle 18,6,4 \rangle \neq \langle 18,6,4 \rangle'$ so k_1 or k_2 is split. If k_1 is split to d_{187} , d_{188} , but $\langle 17,6,5 \rangle \neq \langle 1,6,5 \rangle'$ then k_2 split to, d_{189} , d_{190} . If k_2 is split, and $$\langle 17,6,5 \rangle - \langle 18,6,4 \rangle + \langle 19,5,4 \rangle \neq \langle 17,6,5 \rangle' - \langle 18,6,4 \rangle' + \langle 19,5,4 \rangle'$$ (11) then k_1 split, so, in both cases we get k_1 and k_2 are splits, also $\boldsymbol{B_{18}}$ of defect one then k_3 split to d_{191}, d_{192} . Since $\langle 11,6,5,4,2 \rangle \neq \langle 11,6,5,4,2 \rangle'$ so k_4 or k_5 is split. If k_4 is split to d_{195}, d_{196} , but $\langle 10,6,5,4,3 \rangle \neq \langle 10,6,5,4,3 \rangle'$ then k_5 split to, d_{197}, d_{198} . If k_5 is split and $$\langle 11,6,5,4,2 \rangle - \langle 10,6,5,4,3 \rangle \neq \langle 11,6,5,4,2 \rangle' - \langle 10,6,5,4,3 \rangle' \tag{12}$$ then k_4 split, so, in both cases we get k_4 and k_5 are splits, then we get Table 15. **Lemma 4.8.** Block B_{20} is a double and B_{21} is associate as given in Table 16. | Table | 16. Blocks B_{20} , B_{21} |----------|---------------------------------------|-------|-------------|--------------|----------------|--------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|----------------|--------------|-------------|----------------| | Block | Spin characters | De | ecom | positi | on m | atrix | | | | | | | | | | | | | | | | (19,4,3,2)* | 1 | (17,6,3,2)* | 1 | 1 | | | | | | | | | | | | | | | | | | | (16,6,4,2)* | | 1 | 1 | | | | | | | | | | | | | | | | | B_{20} | (15,6,4,3)* | | | 1 | 1 | | | | | | | | | | | | | | | | | (13,6,4,3,2) | | | | 1 | 1 | | | | | | | | | | | | | | | | (12,6,4,3,2,1)* | | | | | 1 | 1 | | | | | | | | | | | | | | | (8,6,5,4,3,2)* | | | | | | 1 | | | | | | | | | | | | | | | (18,4,3,2,1) | | | | | | | 1 | | | | | | | | | | | | | | (18,4,3,2,1)' | | | | | | | | 1 | | | | | | | | | | | | | (17,5,3,2,1) | | | | | | | 1 | | 1 | | | | | | | | | | | | (17,5,3,2,1)' | | | | | | | | 1 | | 1 | | | | | | | | | | | (16,5,4,2,1) | | | | | | | | | 1 | | 1 | | | | | | | | | | (16,5,4,2,1)' | | | | | | | | | | 1 | | 1 | | | | | | | | B_{21} | (15,5,4,3,1) | | | | | | | | | | | 1 | | 1 | | | | | | | | (15,5,4,3,1)' | | | | | | | | | | | | 1 | | 1 | | | | | | | (14,5,4,3,2) | | | | | | | | | | | | | 1 | | 1 | | | | | | (14,5,4,3,2)' | | | | | | | | | | | | | | 1 | | 1 | | | | | (13,5,4,3,2,1)* | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | | | (7,6,5,4,3,2,1) | | | | | | | | | | | | | | | | | 1 | | | | (7,6,5,4,3,2,1)' | | | | | | | | | | | | | | | | | | 1 | | | | d_2 | $_{05} d_2$ | $_{06}d_{2}$ | $_{07} d_{20}$ | $_{08}d_{2}$ | $_{09} d_2$ | $_{10} d_2$ | $_{11}d_{2}$ | $_{12}d_{2}$ | $_{13}d_{2}$ | $_{14}d_{2}$ | $_{15}d_{2}$ | $_{16}d_{2}$ | $_{17} d_2$ | $d_{18} d_{2}$ | $_{19}d_{2}$ | $_{20} d_2$ | $_{21}d_{222}$ | **Proof:** By inducing of p.i.s. D_{153} , D_{155} , D_{157} , D_{159} , D_{161} , D_{163} , D_{165} , D_{166} , ..., D_{170} , D_{212} , D_{173} , D_{175} , D_{176} , we get on d_{211} , d_{212} , d_{213} , d_{214} , d_{215} , d_{216} , k_1 , k_2 , d_{221} , d_{222} . Since - degree $\{(19,4,3,2)^*, (16,6,4,2)^*, (13,6,4,3,2) + (13,6,4,3,2)^*, (8,6,5,4,3,2)^*\} \equiv 117 \mod 13^2$ - degree $\{(17,6,3,2)^*, (15,6,4,3)^*, (12,6,4,3,2,1)^*\} \equiv -117 \mod 13^2$, and on $(13, \alpha)$ -regular classes we: - 1. $\langle 13,6,4,3,2 \rangle = \langle 13,6,4,3,2 \rangle'$ - 2. $\langle 15,6,4,3 \rangle^* = \langle 16,6,4,2 \rangle^* + \langle 13,6,4,3,2 \rangle \langle 12,6,4,3,2,1 \rangle^* + \langle 8,6,5,4,3,2 \rangle^* \langle 17,6,3,2 \rangle^* + \langle 19,4,3,2 \rangle^*$ then the block B_{20} contains at most 6 columns. To find the B_{21} , $\langle 14,5,4,3,2 \rangle \neq \langle 14,5,4,3,2 \rangle'$, so k_1 divided to d_{217} , d_{218} or there are two columns: $$\varphi_1 = a_1 \langle 15, 5, 4, 3, 1 \rangle + a_2 \langle 14, 5, 4, 3, 2 \rangle + a_3 \langle 13, 5, 4, 3, 2, 1 \rangle^* + a_4 \langle 7, 6, 5, 4, 3, 2, 1 \rangle,$$ $$\alpha = a_1 \langle 15, 5, 4, 3, 1 \rangle + a_2 \langle 14, 5, 4, 3, 2 \rangle + a_3 \langle 13, 5, 4, 3, 2, 1 \rangle^* + a_4 \langle 7, 6, 5, 4, 3, 2, 1 \rangle,$$ $\varphi_2 = a_1 \langle 15,5,4,3,1 \rangle' + a_2 \langle 14,5,4,3,2 \rangle' + a_3 \langle 13,5,4,3,2,1 \rangle^* + a_4 \langle 7,6,5,4,3,2,1 \rangle',$ to describe columns, since \mathbf{B}_{21} of defect one then $a_1, a_2, a_3, a_4 \in \{0,1\}$, but $\langle 7,6,5,4,3,2,1 \rangle'$ to describe columns, since B_{21} of defect one then $a_1, a_2, a_3, a_4 \in \{0,1\}$, but $\langle 7,6,5,4,3,2,1 \rangle \downarrow S_{27}$ has only one of i.m.s. and from table has only one of i.m.s. then $a_4 = 0$, so that degree $\varphi_1, \varphi_2 \equiv 0 \mod 7^3$ (**theorem 2.3**) only when $\varphi_1 + \varphi_2 = d_{217} + d_{218}$, then $k_1 = d_{217} + d_{218}$, also B_{21} of defect one then k_2 split to d_{219}, d_{220} , from abve we get Table 16. **Lemma 4.9.** Decomposition matrix for the block B_1 of type double as shown in the Tables 17. **Table 17.** Block
B_1 | Table 17. E | Block B_1 | |--------------------|-----------------| | spin | | | character | spin characters | | S | • | | (28) 1 | | | (28)′ | 1 | | | 111 | | (25,2,1) | 1 1 | | | | | (25,2,1)' | 1 1 | | (23,3,2) | 1 1 | | (23,3,2)' | 1 1 | | (22,4,2) | 1 1 | | (22,4,2)' | 1 1 | | (21,5,2) | 1 1 | | (21,5,2)' | 1 1 | | (20,6,2) | 1 1 | | (20,6,2)' | 1 1 | | (19,7,2) | 1 1 1 | | (19,7,2)' | 1 1 1 | | (18,8,2) | 1 1 1 1 | | (18,8,2)' | 1 1 1 1 | | (17,9,2) | 1 1 1 1 | | (17,9,2)' | 1 1 1 1 | | (16,10,2) | 1 1 1 1 1 | | (16,10,2) | 1 1 1 1 | | (15,13)* 1 | | | (15,12,1) 1 | | | | 1 1 1 1 1 1 | | (15,12,1) | 1 1 1 1 | | (15,11,2) | 1 1 1 1 | | | 1 1 1 1 | | (15,10,3) | 1 1 1 1 | | (15,10,3) | 1 1 1 1 | | (15,9,4) | | | (15,9,4)' | | | (15,8,5) | 1 1 1 1 1 | | (15,8,5)' | 1 1 1 1 1 | | (15,7,6) | 1 | | (15,7,6)' | 1 1 | | (14,12,2) 1 | 1 111 1 11 | | (14,12,2) 1 | | | (13,12,2, | 11 11 1111 | | (13,10,3, | 1111 111111 | | (13,9,4,2 | 1111 1111 | | (13,8,5,2 | 1111 1111 | | (13,7,6,2) | 11 11 | | (12,10,3, | 1 1 1 | | (12,10,3, | 1 1 1 | | (12,9,4,2 | 1 1 1 1 1 | | (12,9,4,2 | 1 1 1 1 | | (12,8,5,2 | 1 1 1 1 | | (12,8,5,2, | 1 1 1 1 | | (12,7,6,2 | 1 1 | | (12,7,6,2 | 1 1 | | (10,9,4,3 | 1 1 1 | | (10,9,4,3, | 1 1 1 | | (10,8,5,3, | 1 1 1 1 | | (10,8,5,3, | 1 1 1 1 1 | | (10,7,6,3 | 1 1 | | (10,7,6,3 | 1 1 | | (9,8,5,4,2 | 1 1 | | | | | (9,8,5,4,2 | 1 | 1 | |------------|---|-----| | (9,7,6,4,2 | | 1 1 | | (9,7,6,4,2 | | 1 1 | | (8,7,6,5,2 | | 1 | | (8,7,6,5,2 | | 1 | **Proof:** By inducing of p.i.s. $D_1, D_{27}, D_{28}, D_3, D_4, D_5, D_6, D_{179}, D_7, D_8, D_9, D_{193}, D_{29}, D_{30}, D_{11}, D_{14}, D_{15}, D_{16}, D_{17}, D_{31}, D_{32}, D_{18}, D_{33}, D_{34}, \dots, D_{38}, D_{22}, D_{23}, \dots, D_{26} \text{ of } S_{27} \text{ to } S_{28}.$ All i.m.s. are associated in block B_1 , since $\langle 28 \rangle \neq \langle 28 \rangle'$, according to (**theorem 2.4**) $\langle 28 \rangle, \langle 28 \rangle'$ have the same multiplicity, hence $k_1 = d_1 + d_2$. Since $\langle 23, 3, 2 \rangle \neq \langle 23, 3, 2 \rangle'$ so k_2 or k_3 is split. If k_2 is split to d_5, d_6 , but $\langle 22, 4, 2 \rangle \neq \langle 22, 4, 2 \rangle'$ then k_3 split to, d_7, d_8 . If k_3 is split, and $$\langle 23,3,2 \rangle + \langle 21,5,2 \rangle - \langle 22,4,2 \rangle \neq \langle 23,3,2 \rangle' + \langle 21,5,2 \rangle' - \langle 22,4,2 \rangle'$$ (13) then k_2 , so in both cases we get k_2 , k_3 splits. Since $\langle 21,5,2 \rangle \neq \langle 21,5,2 \rangle'$ so k_4 or k_5 is split. If k_4 is split to d_9 , d_{10} , but $\langle 20,6,2 \rangle \neq \langle 20,6,2 \rangle'$ then k_5 split to, d_{11} , d_{12} . If k_5 is split, and $$21,5,2+19,7,2-\langle 20,6,2\rangle \neq \langle 21,5,2\rangle' + \langle 19,7,2\rangle' - \langle 20,6,2\rangle' \tag{14}$$ then k_4 is split, so we get k_4 , k_5 splits. Since $\langle 19,7,2 \rangle \neq \langle 19,7,2 \rangle'$ so k_6 or k_7 is split. If k_7 is split to d_{15} , d_{16} , but $\langle 20,6,2 \rangle \neq \langle 20,6,2 \rangle'$ then k_6 split to, d_{13} , d_{14} . If k_6 is split, and $$\langle 19,7,2 \rangle - \langle 20,6,2 \rangle \neq \langle 19,7,2 \rangle' - \langle 20,6,2 \rangle' \tag{15}$$ then k_7 is split, so we get k_6 and k_7 are splits. Since $\langle 17,9,2 \rangle \neq \langle 17,9,2 \rangle'$ so k_8 or k_9 is split. If k_8 is split to d_{17} , d_{18} , but $\langle 16,10,2 \rangle \neq \langle 16,10,2 \rangle'$ then k_9 split to, d_{19} , d_{20} . If k_9 is split, and $$\langle 17,9,2 \rangle - \langle 16,10,2 \rangle \neq \langle 17,9,2 \rangle' - \langle 16,10,2 \rangle'$$ (16) then k_8 is split, then k_8 , k_9 splits. Since $\langle 16,10,2 \rangle \neq \langle 16,10,2 \rangle'$. then $k_{10} = d_{21} + d_{22}$ has been divided or has two columns φ_1 , φ_2 , to explain these columns, since $\langle 16,10,2 \rangle \downarrow S_{27} = \langle 15,10,2 \rangle^{*1} + \langle 16,9,2 \rangle^{*2} + \langle 16,10,1 \rangle^{*4}$ has 7 of i.m.s. we have $a_1 \in \{0,1,2,3\}$. In the same way we $a_{24} \in \{0,1\}, a_2, a_5, a_8, a_{10}, a_{19} \in \{0,1,2\}, a_{14}, a_{18}, a_{21}, a_{22}, a_{23} \in \{0,1,2,3\}, a_6, a_7, a_{11}, a_{15} \in \{0,1,\dots,4\} \ a_{12}, a_{13}, a_{16}, a_{17}, a_{20} \in \{0,1,\dots,6\}, a_4 \in \{0,1,\dots,7\}, a_3 \in \{0,1,\dots,8\}, a_9 \in \{0,1,\dots,10\}$. Let $a_1 \in \{1,2,3\}$ (if $a_1 = 0$ contradiction). Since $\langle 16,10,2 \rangle \downarrow S_{27} \cap \langle 15,13 \rangle^* \downarrow S_{23}$ has no i.m.s so $a_2 = 0$, the same way we get $a_7, a_8, a_{10}, a_{11}, \dots, a_{24}$ are equal to zero, and since inducing m.s. is m.s. then we get: $$(\langle 17,8,2\rangle^* - \langle 15,8,4\rangle^* + \langle 13,8,4,2\rangle) \uparrow^{(5,9)} S_{28} \text{ hence } a_6 = 0$$ (17) $$(\langle 13,12,2\rangle^* - \langle 15,12\rangle + \langle 25,2\rangle) \uparrow^{(0,1)} S_{28} \text{ hence } a_3 = 0$$ (18) Therefore, we only obtain degree $\varphi_1, \varphi_2 \equiv 0 \ mod 13^2$ when $\varphi_1 + \varphi_2 = m(d_{21} + d_{22}), m \in \{1,2\}$, which is basically the partition of k_{10} into d_{21}, d_{22} . $\langle 15,10,3 \rangle \neq \langle 15,10,3 \rangle'$ so k_{12} or k_{13} is split. If k_{12} split to d_{27}, d_{28} , but $\langle 15,9,4 \rangle \neq \langle 15,9,4 \rangle'$ then k_{13} split to, d_{29}, d_{30} . If k_{13} split, and $$\langle 15,8,5\rangle + \langle 15,10,3\rangle + \langle 17,9,2\rangle + \langle 21,5,2\rangle + \langle 23,3,2\rangle - \langle 15,9,4\rangle - \langle 16,10,2\rangle - \langle 18,8,2\rangle - \langle 22,4,2\rangle \neq \langle 15,8,5\rangle' + \langle 15,10,3\rangle' + \langle 17,9,2\rangle' + \langle 21,5,2\rangle' + \langle 23,3,2\rangle' - \langle 15,9,4\rangle' - \langle 16,10,2\rangle' - \langle 18,8,2\rangle' - \langle 22,4,2\rangle'$$ (19) so that k_{12} is split, then k_{12} , k_{13} splits. Since $\langle 15,8,5 \rangle \neq \langle 15,8,5 \rangle'$ so k_{14} or k_{15} is split. If k_{14} is split to d_{31} , d_{32} , but $\langle 15,7,6 \rangle \neq \langle 15,7,6 \rangle'$ then k_{15} split to, d_{33} , d_{34} . If k_{15} is split, and $$\langle 15,8,5 \rangle - \langle 18,8,2 \rangle - \langle 20,6,2 \rangle - \langle 15,7,6 \rangle + \langle 19,7,2 \rangle + \langle 21,5,2 \rangle \neq \langle 15,8,5 \rangle' - \langle 18,8,2 \rangle' - \langle 20,6,2 \rangle' - \langle 15,7,6 \rangle' + \langle 19,7,2 \rangle' + \langle 21,5,2 \rangle'$$ (20) then k_{14} split, so k_{14}, k_{15} splits. Since $\langle 10, 9, 4, 3, 2 \rangle \neq \langle 10, 9, 4, 3, 2 \rangle'$ so k_{18} or k_{20} is split. If k_{18} is split to d_{47} , d_{48} , but $\langle 8, 7, 6, 5, 2 \rangle \neq \langle 8, 7, 6, 5, 2 \rangle'$ then k_{20} split to, d_{51} , d_{52} . If k_{20} is split, and $$\langle 10,9,4,3,2 \rangle - \langle 8,7,6,5,2 \rangle \neq \langle 10,9,4,3,2 \rangle' - \langle 8,7,6,5,2 \rangle'$$ (21) then k_{18} is split, so k_{18} , k_{20} splits. Since $\langle 10,7,6,3,2 \rangle \neq \langle 10,7,6,3,2 \rangle'$ so k_{19} or k_{21} is split. If k_{19} is split d_{49} , d_{50} , but $\langle 9,8,5,4,2 \rangle \neq \langle 9,8,5,4,2 \rangle'$ then k_{21} split, d_{53} , d_{54} . If k_{21} , is split and $$\langle 10,8,5,3,2 \rangle - \langle 10,7,6,3,2 \rangle \neq \langle 10,8,5,3,2 \rangle' - \langle 8,7,6,5,2 \rangle'$$ (22) then k_{19} is split, so k_{19} , k_{21} splits. Since $\langle 12,9,4,2,1 \rangle \neq \langle 12,9,4,2,1 \rangle'$ so k_{16} or k_{17} is split. If k_{16} split d_{37} , d_{38} , but $\langle 10,8,5,3 \rangle \neq \langle 10,8,5,3 \rangle'$ then k_{17} split d_{45} , d_{46} . If k_{17} split, and $$\langle 10,9,4,3,2 \rangle + \langle 10,7,6,3,2 \rangle - \langle 9,7,6,4,2 \rangle - \langle 10,8,5,3,2 \rangle + \langle 9,8,5,4,2 \rangle + \langle 8,7,6,5,2 \rangle \neq \langle 10,9,4,3,2 \rangle' + \langle 10,7,6,3,2 \rangle' - \langle 9,7,6,4,2 \rangle' - \langle 10,8,5,3,2 \rangle' - \langle 9,8,5,4,2 \rangle' + \langle 8,7,6,5,2 \rangle'$$ (23) then k_{19} is split, so k_{19} , k_{21} splits. Since $\langle 15,11,2 \rangle \neq \langle 15,11,2 \rangle'$ on $\langle 13,\alpha \rangle$ -regular classes and we have **294** columns in the decomposition matrix, then k_{11} must be split to d_{25} , d_{26} . #### **Conclusions** There is no prescribed method to find irreducible modular spin properties when the field property is primary, especially when the investigation concerns the same field with a group change. As a result, we had to conduct a series of studies to collect enough information to find new properties and theorems, including decomposition matrices that establish a connection between irreducible spin characteristics and irreducible modular spin characteristics. This opens the way for a comprehensive investigation that first examines the properties of irreducible modular spins before classifying entities. ## Acknowledgment The authors are very grateful to the executive manager and editorial board members of the Ibn AL-Haitham Journal of Pure and Applied Sciences. # **Conflict of Interest** The authors declare that they have no conflicts of interest. #### **Funding** There is no funding for the article. #### References - 1. Schur, J. Uber die Darstellung der symmetrischen und der alternierenden gruppe durch gebrochene lineare subtituttionen. *J. Reine ang.Math.* **2009**, 155-250. https://doi.org/10.1515/crll.1911.139.155 - 2. Bessenrodt, C., Morris, A. O., and Olsson, J. B. Decomposition matrices for spin characters of symmetric groups at characteristic 3. *Journal of Algebra*. **1994**, *164*(1), 146–172. https://doi.org/10.1006/jabr.1994.1058 - 3. Issacs, I. M. Character theory of finite groups. Academic press,
INC, 1976. - 4. Morris, O. A. and Yaseen, A. K. Decomposition matrices for spin characters of symmetric group. *Proceedings of the Royal Society of Edinburgh Section A: Mathematics* **1988**, *108*, 145-164. https://doi.org/10.1017/S0308210500026597. - 5. Morris, A. O. The spin representation of the symmetric group. Proc. *Canadian Journal of Mathematics*. **1962**, *12*, 55–76. https://doi.org/10.1112/plms/s3-12.1.55 - 6. Morris, A. O. The spin representation of the symmetric group. *Canadian Journal of Mathematics* **1965**, *17*, 543–549. https://doi.org/10.4153/CJM-1965-055-0. - 7. Yaseen, A. K. Modular spin representations of the symmetric groups. Doctoral dissertation, The University of Wales: United Kingdom, **1987**. - 8. Humphreys, F.J. Blocks of the Projective representations of symmetric groups. *London Mathematical Societ*, **1986**, 441-452. https://doi.org/10.1112/jlms/s2-33.3.441 - 9. Yaseen, A. K. The Brauer trees of the symmetric group S₂₁ modulo p = 13. *Basrah Journal of Scienc*, **2019**, *I*, 126-140. https://doi.org/10.29072/basjs.20190110. - 10. Sharqi, S.M. Modular Spin Characters for Some Symmetric Groups. Master's thesis. Basrah University:Iraq, **2019**. - 11. Jassim, A. H, and Taban, S. A. Spin Characters' Decomposition Matrix, S₂₄ modulo, p=7. *Journal of Basrah Researches (Sciences)* **2023**, *49*(1), 66–83. https://doi.org/10.56714/bjrs.49.1.7 - 12. Jassim, A. H, and Taban, S. A. Decomposition Matrix for the projective Characters S₂₈, p=11, *Journal of Kufa for Mathematics and Computer* **2024**, *11*(1), 70-82. http://dx.doi.org/10.31642/JoKMC/2018/110112 - 13. Yaseen, A. K.; Tahir, M. B. 13-brauer trees of the symmetric group S₂₂. *Appl. Math. Inf. Sci.* **2020**, *14*, 327–334. https://doi.org/10.29072/basjs.20190110. - 14. Fayers, M.; Morotti, L. On the irreducible spin representations of symmetric and alternating groups which remain irreducible in characteristic 3. *Representation Theory of the American Mathematical Society* **2023**, 27, 778-814. https://doi.org/10.1090/ert/654. - 15. Kleshchev, A.; Morotti, L.; Tiep, P.H. Irreducible restrictions of representations of symmetric and alternating groups in small characteristics. *Advances in Mathematics* **2020**, *369*, 1-66 https://doi.org/10.1016/j.aim.2020.107184. - 16. Morotti, Lucia. Composition factors of 2-parts spin representations of symmetric groups, *Algebraic Combinatorics* **2020**, *3*(*6*), 1283-1291. https://doi.org/10.5802/alco.137. - 17. Kazuya Aokage. Tensor square of the basic spin representations of Schur covering groups for the symmetric groups, *Journal of Algebraic Combinatorics* **2020**, *54*(1), 135-150, https://doi.org/10.1007/s10801-020-00972-1 - 18. Haggarty, R. J.; Humphreys, J. F. Projective Characters of Finite Groups. *Proceedings of the London Mathematical Society* **1978**, *36*(1), 176–192. https://doi.org/10.1112/plms/s3-36.1.176. - 19. Brundan, J.; Kleshchev, A. S. Representations of the symmetric group which are irreducible over subgroups, *Journal Für Die Reine Und Angewandte Math.* **2001**, 145-190, 530. https://doi.org/10.1515/crll.2001.002. - 20. Morotti, L. Irreducible Tensor Products for Alternating Groups in Characteristic 5. *Algebras and Representation Theory* **2020**, *24*(1), 203–229. https://doi.org/10.1007/s10468-019-09941-0. - 21. Morotti, L. Irreducible Tensor Products Of Representations Of Covering Groups Of Symmetric And Alternating Groups, *Journal of the American Mathematical Society* **2021**, 25, 543–593. https://doi.org/10.1090/ert/576. - 22. Maas, L. A. Modular Spin Characters of Symmetric Groups. Doctoral dissertation, University at Duisburg Essen, 2011. - 23. Puttaswamaiah, B. M., and Dixon, D.J. Modular representation of finite groups. New York. *Academic Press*, **1977**. - 24. James, D. G. The modular characters of the Mathieu groups. *Journal of Algebra* **1973**, 27, 57-111. https://doi.org/10.1016/0021-8693(73)90165-8. - 25. Brundan, J.; Kleshchev, A. S. Representations of the symmetric group which are irreducible over subgroups. *J. reine angew.Math.* **2001**, *530*, 145–190. https://doi.org/10.1515/crll.2001.002.