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Abstract 

 The level density is a parameter that has great importance in the theoretical nuclear 

calculation, and it is considered a key of many theoretical studies, therefore, the level density 

in pre-equilibrium reaction or what is the so-called accurate partial level density PLD has 

been studied. The partial  level density PLD  used  in pre-equilibrium reactions is dependent 

on the parameter called single particle level density which can be calculated by two methods 

either using the equidistant spacing model (ESM) or non-equidistant spacing model (non-

ESM)  In this study, the parameter 𝑔  is estimated by using the relation between the level 

density parameter 𝑔 and 𝑎 based on Ericson and Williams's formulas (𝑎 =  
𝜋2

6
𝑔 )  is 

substituted from the Thomas-Fermi formula and the new 𝑔 was substituted one-component 

Ericson's formula, two-components Ericson's formula, Williams's formula, spin formula, and 

surface formula.  The results show that the PLD estimated from one-component Ericson's 

formula gives the best agreement with the experimental data between 4 MeV to 5 MeV. 

Keywords: Exciton model, induced nuclear reaction, level density, pre-compound nucleus, 

pre-equilibrium reactions. 

1. Introduction 

Many theoretical calculations, including reaction rates, cross-section, and astrophysics, 

use level density (L.D.) as a parameter. It is also important for medical physics and nuclear 

reaction design [1, 2]. The first use of the L.D. was made by the scientist Bethe in 1936 when 

he established the Fermi gas model [3, 4]. The parameter known as single article level 

density (g), representing the sum of the proton and neutron single-particle levels at the Fermi 

surface, determines the L.D. The Fermi gas model first used g, assuming it to be a non-

degenerate and equidistant spacing model in its simplest picture, the non-degenerate and 

equidistant spacing model ESM [5].  We also used the non-equidistant spacing model, or 

non-ESM, to derive the parameter g, similar to the Exaction model [6]. Numerous studies 

exist on level density features, but we highlight those that are most relevant to our work, such 

as the calculation of the level density parameter for deformed nuclei (161-168Er and 204-

210Bi). In this study, we employed collective enhancement, which encompasses the 
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rotational ground state modes at neutron binding energy. We obtained these modes using 

both ESM and non-ESM for each isotope, and we compared them with other models and 

experimental data [7]. We also studied the effect of the deformation parameter on the nuclear 

level density parameter for certain radioisotopes (Dy, W, and Os), focusing on level density 

values that correspond to energies from the observed spectra near the neutron binding energy. 

The calculations were done in the framework of ESM, and the results have good agreement 

when they are compared with the s-wave neutron resonance data [8]. In this paper, a new 

formula for the parameter g is derived using the relation between g and the level density 

parameter a (a= π^2/6 g) [9]. The study aims to use the new formula g in the calculation of 

PLD in a pre-equilibrium region, and then compare the results with the experimental values of 

PLD to test the validity of the new formula.    

 

2. Materials and Methods 

Ericson's formula and several corrected formulas give the level density in the pre-

equilibrium region of nuclear reactions [10]. A more accurate expression refers to the level 

density in the pre-equilibrium region as partial level density (PLD), as it excites some 

nucleons in the nucleus when protons and neutrons are considered indistinguishable particles 

[10]. 

𝜔1(𝑛, 𝐸) =
𝑔𝑛𝐸𝑛−1

𝑝!ℎ!(𝑛−1)!
                                                                                                              (1) 

The symbols ω1(n,E) are the PLD, 𝐸 excitation energy, 𝑝 particle number,ℎ hole number and 

𝑛 = 𝑝 + ℎ is the exciton number, which represents the sum of the particle number and the 

hole number. The parameter  𝑔 is the single particle level density we will discuss it in detail 

later. If the protons and the neutrons are considered as distinguishable particles, the PLD is 

given by two-component Ericson’s formula [6]. 

  

𝜔2(n, E) =  
(𝑔𝜋)𝑛𝜋 (𝑔𝜐)𝑛𝜐𝐸𝑛−1

𝑝𝜋!ℎ𝜋!𝑝𝜐!ℎ𝜐!(𝑛−1)!
                                                                                               (2) 

𝑝𝜋 the proton particles, hπ is the proton holes, p𝜐 is the neutron particles, h𝜐 
is the neutron 

holes, nπ is the proton exciton numbers and nυ is the neutrons exciton number. The symbols 

𝑔𝜋 and gυ  are single particle level densities for protons and neutrons, respectively. 

Many corrections were added to the PLD formula; one of them is shown in William’s 

formula, which contains effect 1 of Pauli’s exclusion principle in William’s formula [6]. 

 

w1(n,E) =
gn (E−A(p,h))

n−1

p!h!(n−1)!
                                                                                                         (3) 

 

𝐴(𝑝,ℎ) =
𝑝(𝑝+1)+ℎ(ℎ−3) 

2𝑔
                                                                                                             (4) 

The second correction is the spin correction which means adding the spin effect to the PLD 

formula that is represented by the factor 𝑅(𝐽), then the PLD formula becomes [10]. 

𝑊1(𝑛,𝐸)=
𝑔𝑛 𝐸𝑛−1

𝑝!ℎ!(𝑛−1)!
 𝑅(𝐽)                                                                                                           (5) 

𝑅(𝐽) =
2𝑗+1

2√2𝜋𝜎𝑛
3

𝑒𝑥𝑝 [−
(𝑗+

1

2
)2

2𝜎𝑛
2 ]                                                                                                  (6) 

 𝜎𝑛 is the cut-off parameter, 𝐽  is the total angular momentum.   
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The third correction is the surface correction, which is because the nuclear potential at the 

surface of the nucleus is shallower than it is inside the nucleus [6]. 

 

𝜔1(𝑛, 𝐸, 𝑉) = 𝜔1(𝑛, 𝐸, ∞) × 𝑓1(𝑛, 𝐸, 𝑉)                                                                                 (7) 

 𝑓1(𝑛, 𝐸, 𝑉) = ∑ (−1)𝑗𝐶𝑗
ℎ [

𝐸−𝑗𝑉(ℎ)

𝐸
]

𝑛−1
ℎ
𝑗=0 Θ (𝐸 − 𝑗𝑉(ℎ))                                                      (8) 

The parameter 𝑔 can be given either in the framework of the equidistant spacing model ESM 

or by the non-equidistant spacing model (non-ESM) [8]. In this study, we will derive a new 

formula of 𝑔 using the relation between the level density parameter 𝑎 and 𝑔 [11, 1]. 

 

𝑔 =
6

 𝜋2 𝑎                                                                                                                              (9) 

The parameter a from the Thomas-Fermi formula. 

   

𝑎 = (0.109(1 − 4.476𝐼2)𝐴 + 0.076(1 + 31.47𝐼2)𝐴
2

3⁄ − 0.0024𝑍2𝐴
−1

3⁄ )                      (10) 

𝐼 Represents isospin, 𝑍 is the atomic number, 𝐴 is the mass number 

Then, 𝑔 become 

  

𝑔 =
6

𝜋2  (0.068𝐴 + 0.213𝐴
2

3⁄ + 0.385𝐴
1

3⁄ )                                                                         (11) 

In the case of two-component [6]: 

  

𝑔𝜋 = 
𝑍

𝐴
𝑔                                                                                                                                  (12) 

𝑔𝜐    = 
𝑁

𝐴
𝑔                                                                                                                               (13) 

 

In the next section, the g formulae are substituted in all PLD formulas and compared to the 

results with the experimental data. 

 

3. Results and Discussion 

The discussion was made by comparing the theoretical curves that came from 

substituting g from the Thomas-Fermi formula in all PLD formulas mentioned above with the 

experimental data, and the equations are programmed using Mat. Lab.  

Figure 1. shows a comparison between one-component Ericson's formula of the PLD curve 

with 𝑔 from the Thomas-Fermi formula and the experimental data. It is noticed that the 

theoretical curve is less than the experimental curve up to 4 MeV and from 4 MeV to 5 MeV. 

Both curves become in agreement, and after 5 MeV, the theoretical curve becomes higher 

than the experimental curve. In other words, the theoretical curve mediates the experimental 

curve. In other words, the theoretical curve mediates the experimental curve. This behavior 

can be attributed to the 𝑔 formula from Thomas-Fermi which contains 𝐴 with different 

powers, as shown in equation (10). This makes the PLD depending on 𝑔 from Thomas-Fermi 

increasing moderately in agreement with the experimental data.  

Figure 2. shows a comparison between two components of Ericson's formula for PLD with g 

from the Thomas-Fermi formula and the experimental curve. Because two components divide 
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the energy into more particles than one, the theoretical curve lies below the experimental 

curve. The theoretical curve begins at 1 MeV and grows with increasing excitation energy. 

Figure 3. shows a comparison between the one-component William's formula for PLD from 

Thomas-Fermi and the experimental data. The theoretical curve is lower than the 

experimental data because Pauli's principle limits the occupied energy levels. Also, it shows 

that the theoretical curve increases with increased excitation energy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. A comparison between the theoretical curve of PLD from one component with g from Thomas-Fermi 

and the experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. A comparison between the theoretical curve with g from Thomas-Fermi and the experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. A comparison between the theoretical curves of PLD from Williams's with g from Thomas-Fermi   

and the experimental data 
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Figure 4. shows a comparison between the theoretical curve of PLD from spin correction 

with Thomas-Fermi and the experimental curve. We notice that the theoretical curve is lower 

than the experimental curve because the spin limits the levels occupied by particles; therefore, 

the level number decreases, and the PLD also decreases. The difference between them is 

significant at 1 MeV and decreases with increasing excitation energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. A comparison between the theoretical curve of PLD from spin with g from Thomas-Fermi and the 

experimental data. 

Figure 5. gives a comparison between the theoretical curve of PLD from surface correction 

with Thomas-Fermi and the experimental curve. It is noticed that the theoretical curve starts 

at 8 MeV and increases with data, while the experimental curve starts from the origin point; 

therefore, the theoretical curve cannot be useful to describe the experimental data. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. A comparison between the theoretical curve of PLD from the surface with g from Thomas-Fermi and 

the experimental data. 

4. Conclusion 

The theoretical curve that gives agreement with the experimental data is Ericson's curve 

with g from Thomas-Fermi. One can show that the curve mediates the experimental values: it 

starts at 1 MeV and goes up to 4 MeV; it is below the experimental curve; from 4 to 5 MeV, it 

agrees with the experimental data; and after 5 MeV, it becomes above the experimental data. 
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When we use g from Thomas-Fermi in one component of Ericson's formula, we observe this 

agreement, but when we use the same g in other PLD formulae such as two-component 

Ericson's formula, Williams, spin, and surface, we cannot notice this agreement. Other 

theoretical curves, resulting from substituting g from Thomas-Fermi in other PLD formulae 

such as two-component Ericson's formula, Williams's formula, spin formula, and surface 

formula, fall below the experimental curve. All theoretical curves start at 1 MeV and increase 

noticeably as the energy increases . 
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