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Abstract     

     The main purpose of this paper is to study a predator – prey dynamical system consisting of 

three species prey, specialized predator and generalist predator namely H (t), I (t) and J (t) 

respectively, w food web and refuge for the prey and specialized predator population. The 

consider system has five equilibrium points  𝐴0 = (0, 0, 0),  𝐴1 = (1, 0, 0),  𝐴2 = (ℎ
−

, 𝑖
−

, 0), 

𝐴3 = (ℎ̿, 0, 𝑗 ̿),  and the positive equilibrium point   𝐴4 = (ℎ̃, 𝑖̃, 𝑗̃ ).The stability and bifurcation 

of the equilibrium points was studied and the main influence was the qualitative behavior of the 

solution. It was found that 𝐴0 was unstable while the other equilibrium points are stable under 

condition so we study their bifurcation and show that   𝐴1,  𝐴2 and 𝐴3 are transcritical while  𝐴4 

is saddle node bifurcation. Numerical simulations were used to illustrate the occurrence of local 

bifurcation of this model. 

Keywords: Local bifurcation, predator–prey, stability analysis, Lyapunov’s function, 

ecological, Refuge.       

                                                                                                      

1. Introduction 

      The mathematical study of changes in a dynamical system's qualitative asymptotic structure 

is known as bifurcation theory (1, 2). As well as its attempts to explain various phenomena that 

have been described in the natural sciences over the centuries. Where performing bifurcation 

analysis is often a powerful way to analyze the properties of such systems. The prey and predator 

model is an important topic at present as it is used to solve many problems in the ecological 

nature and other sciences. The prey system includes several interactions, such as competition co-

existence and stage-structured (3). The system is also impacted by a number of other factors, 

such as shelter, sickness, and others. A bifurcation, which is the primary qualitative shift in the 

behavior of a dynamic system as a result of changing one of its coefficients, can occasionally 
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emerge from variations in any parameter in the system, leading to complex behavior that leads 

to system instability. Local and global bifurcations were the two main classes that made up the 

bifurcation. Changes in the local stability parameters of equilibria or periodic orbits can be used 

to evaluate local bifurcation. Global bifurcation, on the other hand, happens when periodic orbits 

run into equilibrium. This leads to changes in the topology of the trajectories in phase space that 

cannot be contained within a limited region as is the case with local bifurcation. These 

bifurcations occur when a single parameter is changed (4-9). Perko (10), on the other hand, 

identified the prerequisites for local bifurcation, including saddle-node, transcritical, pitchfork, 

and period-doubling. Finally, Sotomayor's theorem(11) for local bifurcation was applied in this 

work to examine the occurrence of local bifurcation at equilibrium sites local bifurcation 

methods close to all equilibrium points, and a number of fundamental results (12-22).  

                

2. Model formulation                                                                                                                     

         An ecological model was suggested for investigation in this section. A prey was included 

in the model, and its overall population density at time t is represented by the symbol H(t), 

engaging with a specialized predator I(t) is the population density at time t and generalist 

s assumed that the prey wa. It J(t)by  4is denoted tat time 4population density whosepredator 

with refuge and specialist predator is with the prey refuge.                                                                                

The following presumptions are now used to create the fundamental ecological model shown in 

Table 1: 

 
𝑑𝐻

𝑑𝑇
 = 𝜌H (1 -   

𝐻

𝐾
 ) – α (1-𝑚1) H I –β (1-𝑚2) H J 

𝑑𝐼

𝑑𝑇
 = 𝛼1 (1 - 𝑚1) H I – 𝛾 (1-𝑚3) IJ –𝑑1 I                                                                                    (1) 

𝑑𝐽

𝑑𝑇
 = β1 (1 -𝑚2) H J –𝛾1 (1-𝑚3) IJ –𝑑2 J 

 
Table 1. The parameters of model (1) 

parameters Biological meaning 

 𝜌 > 0  intrinsic growth  

𝑘 > 0 carrying capacity (in logistic growth) 

α > 0 maximum attack rate by specialist predator 

β > 0 maximum attack rate by generalist predator 

𝑑1𝑎𝑛𝑑 𝑑2 natural death rate of specialist and generalist predator 

𝛼1 > 0 maximum predation rate of the specialist predator over the prey 

β1 > 0 maximum predation rate of the generalist predator over the prey 

𝛾 > 0  maximum attack rate by generalist predator on specialist predator  

𝛾1 > 0 maximum predation rate of the generalist predator over the specialist 

predator 

0< 𝑚1 < 1, The refuge rates constants of the prey from the specialist predator 

0< 𝑚2 < 1 The refuge rates constants of the prey from the generalist predator 

0< 𝑚3 < 1 The refuge rates constants of the specialist predator from the generalist 

predator 
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The above model has 13 parameters so, it is difficult to study all of them, there for reduce them 

a dimensionless variables and parameters are defined:                                                                  

𝑡∗ = 𝜌 t ,    h =
H

k
  ,   i =

I

k
 ,   j =

J

k
,  r1 =

αk(1− 𝑚1)

𝜌
 ,  r2 =

βk(1− 𝑚2)

𝜌
   

 ,  r4 =
γk(1− 𝑚3)

𝜌
,   ,  𝑟5 =

 d1

𝜌
 ,  r6 =

β1k(1− 𝑚2)

𝜌
  ,  𝑟7 =

 𝛾1𝑘(1−𝑚1) 

𝜌
,     r3 =

 α1k(1− 𝑚1)

𝜌
 

    𝑟8 =
 d2

𝜌
 . 

Now, for simplicity rename 𝑡∗ = 𝑡. 

So, the dimensional system (1) can be formulated as:  

 

   
𝑑ℎ

𝑑𝑡
= ℎ[1 − ℎ −  r1𝑖 −  r2j] = 𝑓1( ℎ, 𝑖 , 𝑗 )                            

             
𝑑𝑖

𝑑𝑡
= 𝑖[ r3ℎ −  r4𝑗 − 𝑟5 ] = 𝑓2( ℎ, 𝑖 , 𝑗 )                                           

𝑑𝑗

𝑑𝑡
= 𝑗[ r6ℎ +  r7𝑖 −  r8] = 𝑓3( ℎ, 𝑖 , 𝑗 )                              

  }
  
 

  
 

                                   (2) 

 

    With ℎ( 0 ) ≥ 0 ,   𝑖( 0 ) ≥ 0 𝑎𝑛𝑑 𝑗( 0 ) ≥ 0.  In system (2) there are 8 parameters. All of the 

functions on system (2) right side are 𝐶2 (ℝ3, ℝ+).                                                                           

𝑅+
3 = {(ℎ, 𝑖 , 𝑗 ) ∈ 𝑅3 ∶ ℎ( 0 ) ≥ 0, 𝑖( 0 ) ≥ 0 ,   𝑗( 0 ) ≥ 0 }. 

       Therefore, these functions are Lipschitzian on  𝑅+
3  , and as a result, system (2) has a unique 

and existing solution. 

Theorem 1 [Uniformly Boundedness]: 

5 All the solutions of system ( 2 ) with nonnegative initial conditions are uniformly bounded.     

Proof: Let the solution of (2) be [ℎ(𝑡) , 𝑖(𝑡) , 𝑗(𝑡)] the initial condition [ℎ(0) , 𝑖(0) , 𝑗(0)] ∈ 𝑅+
3  

are nonnegative.                                                                                                                                

Now, let    Ḣ(𝑡) = ℎ(𝑡) + 𝑖(𝑡) + 𝑗(𝑡), 

     
𝑑Ḣ

𝑑𝑡
< 2ℎ − (𝑟1 − 𝑟3)ℎ𝑖 − (𝑟2 − 𝑟6) ℎ𝑗 − (𝑟4 −  𝑟7) 𝑖𝑗 − ℎ − 𝑟5𝑖 − 𝑟8 𝑗.  

  Now, ecologically  r3 <  r1, r6 <  r2 and r7 < r4.   

𝑑Ḣ

𝑑𝑡
< 2 − δ Ḣ   ,      𝑤ℎ𝑒𝑟𝑒  𝛿 = 𝑚𝑖𝑛  {1 ,  r5,  r8}. 

Now, by solving this differential inequality for the initial value H (0) = 𝐻0 , we get that:          

         Ḣ(t) ≤  
  2

δ
+ (Ḣ(0) −

  2 

  δ 
) e−δ t 

 Thus       0 ≤ Ḣ(𝑡) ≤
 2 

 δ 
          as  𝑡 → ∞.                                                                                           

Hence system (2)  has uniformly bounded.                                                                                       

3. Equilibrium points are existence and stable:     

       There are maximum of five equilibrium points in System (2), which are listed below: 

 ⦿  The point of equilibrium  𝐴0 = ( 0 ,0 ,0 ),  it is always present it is referred to as the 

vanishing point, which is unstable and always existing. 

 ⦿ The axial equilibrium5 point 𝐴1 = (1 ,0 ,0 ), existence without conditions additionally. 
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Therefore, the characteristic equation of J (𝐴1) is as follows: 

𝐽1 =𝐽(𝐴1) =  [  

−1        − 𝑟1           − 𝑟2 
     0       𝑟3 − 𝑟5           0      
     0            0            𝑟6 − 𝑟8

].                                                                              (1. 𝑎) 

(−1 − 𝜆) [(r3 − 𝑟5) − 𝜆] [(r6 − 𝑟8) − 𝜆] = 0.                            
    Which gives the eigenvalues of  𝐽1 𝑏𝑦:   

𝜆1ℎ = −1 < 0,       𝜆1𝑖 = r3 − 𝑟5 < 0     and   𝜆1𝑗 = (r6 − 𝑟8)  < 0                               

The equilibrium point 𝐴1 then becomes asymptotically stable under the following conditions: 

    𝑟3 > 𝑟5  ,                                                                                                                                             (3) 

    𝑟8 > 𝑟6 .                                                                                                                             (4)  

Otherwise, 𝐴1 is unstable. However, it is a saddle point. 

 ⦿ The equilibrium7 point  𝐴2 (ℎ
−

, 𝑖
−

, 0) exists7 uniquely7 in   7𝐼𝑛𝑡. 𝑅+
2  (Interior of 𝑅+

2 ) of  ℎi −

plane  provided that: 

  𝑟3    >   𝑟5.                                                                                                                                            (5) 
Where:   

ℎ
−

=
𝑟5
𝑟3
  > 0.                                                                                                                                          (6)      

 𝑖
−

= 
𝑟3 − 𝑟5

𝑟1  𝑟3
 .                                                                                                                            (7)  

And the Jacobian matrix of system ( 2 ) at  𝐴2 can be written as 

      𝐽2 =   𝐽(𝐴2) = [ 𝜇𝑖𝑗 ]3×3  ,                                             
( 2. 𝑎 ) 

 where:   

 𝜇11 = 1 − 2ℎ
−

− 𝑟1 𝑖
−

,   𝜇12 = −𝑟1ℎ
−

 < 0,   𝜇13 = −𝑟2ℎ
−

,  

 𝜇21 = 𝑟3 𝑖
−

> 0,    𝜇22 = 𝑟3ℎ
−

−𝑟5 ,  𝜇23 = −𝑟4 𝑖
−

, 

,  𝜇31 = 0 , 𝜇32 = 0,   𝜇33 = 𝑟6ℎ
−

 + 𝑟7 𝑖
−

−  𝑟8.    

 Consequently, the characteristic equation of J (𝐴2) is as follows: 

     ( 𝜇33 -λ)[ 𝜆2 − Ȃ)λ + det (Ȃ)] = 0       

where ∶  Ȃ = [ 
1 − 2ℎ

−

− 𝑟1 𝑖
−

  −𝑟1ℎ
−

𝑟3 𝑖
−

 𝑟3ℎ
−

−𝑟5
] ,  

Then  [(𝑟6ℎ
−

 + 𝑟7 𝑖
−

 −  𝑟8)  −  λ] [(1 − 2ℎ
−

− 𝑟1 𝑖
−

 −  λ)(𝑟3ℎ
−

−𝑟5 −  λ) + 𝑟1𝑟3 ℎ
−

  𝑖 
−

] = 0 

  Either,     𝜆2ℎ = 𝑟6ℎ
−

 +  𝑟7 𝑖
−

 −  𝑟8 

Which, as a result of the following condition, produces the first eigenvalues  𝐽2with negative 

real parts:          𝑟8 > 𝑟6ℎ
−

 +  𝑟7                                                                                                    (8) 

or,       𝜆2 − tr(Ą)λ + det (Ą)  = 0 

Where: 

 tr (Ȃ) = 𝜆2𝑖 + 𝜆2𝑗 = 1 − 2ℎ
−

− 𝑟1 𝑖
−

 +  𝑟3ℎ
−

−𝑟5 

                                     = (1 + 𝑟3ℎ
−

) − (2ℎ
−

+ 𝑟1 𝑖
−

+𝑟5) > 0,      



IHJPAS. 2025, 38 (1) 
 

371 
 

 det (Ȃ) =   𝜆2𝑖𝜆2𝑗 

                = (𝑟3ℎ
−

−𝑟5) (1 − 2ℎ
−

− 𝑟1 𝑖
−

) + 𝑟1𝑟3 2𝑟5 𝑖
−

 

                = (2𝑟5 + 𝑟3)ℎ
−

+ 𝑟1𝑟5  𝑖
−

 − (2𝑟3 ℎ
−
2 + 𝑟5) > 0.  

Which, as a result of the following criteria, produces the second two eigenvalues of 

J2with negative real parts: 

2ℎ
−

+ 𝑟1 𝑖
−

+𝑟5 < 1 + 𝑟3ℎ
−

,                                                                                                                         (9) 

2𝑟3 ℎ
−
2 + 𝑟5   <  (2𝑟5 + 𝑟3)ℎ

−

+ 𝑟1𝑟5  𝑖
−

.                                                                                             (10) 

Therefore, 𝐴2 is stable equilibrium point if conditions (8), (9) and (10) are satisfied. However 

otherwise, it is unstable. 

⦿ The specialist predator free equilibrium point 𝐴3 =(ℎ̿, 0,  𝑗 ̿) exists if the solutions to the 

following set of equations are positive: 

ℎ̿ =
𝑟8
𝑟6
   > 0                                                                                                                                     (11)   

            𝑗̿ =  
𝑟6 − 𝑟8

𝑟2  𝑟6
                                                                                                                   (12)  

    The equation (12) is positive, provided that:                                           

  𝑟6 >   𝑟8 .                                                                                                                                          (13) 

The Jacobian matrix of system ( 2 ) at  𝐴2 can be written as: 

𝐽3 =   𝐽(𝐴3)  = [ 𝜂𝑖𝑗 ]3×3  ,                                                                                                            
( 3. 𝑎 ) 

 where:  𝜂11 = 1 − 2ℎ̿ − 𝑟2𝑗,̿ 𝜂12 = −𝑟1ℎ̿ < 0 , 

  𝜂13 = −𝑟2ℎ̿ < 0 𝜂21 = 0 ,   𝜂22 = 𝑟3ℎ̿−𝑟4 𝑗 ̿ − 𝑟5 ,  

𝜂23 = 0,   𝜂31 = 𝑟6 𝑗,̿   𝜂32 = 𝑟7 𝑗 ̿    𝜂33 =  𝑟6ℎ̿   −  𝑟8. 

Characteristic equation for J (𝐴3) is then provided by: 

                ( 𝜂22 - λ)[ 𝜆2 − tr(Å)λ + det (Å)] = 0       

where ∶    Å = [ 
1 − 2ℎ̿ − 𝑟2𝑗 ̿   −𝑟2ℎ̿

𝑟6 𝑗 ̿   𝑟6ℎ̿   − 𝑟8
].     

Then        [(𝑟3ℎ̿−𝑟4 𝑗̿ − 𝑟5)  −  λ]  [(1 − 2ℎ̿ − 𝑟2𝑗̿ −  λ)]  ( 𝑟6ℎ̿ − 𝑟8 −  λ) + 𝑟2𝑟6  ℎ̿ 𝑗 ̿ = 0 

  Either,   𝜆3ℎ = 𝑟3ℎ̿−𝑟4 𝑗 ̿ − 𝑟5 

Because of the following circumstance the first eigenvalues of  J3 have negative real portions: 

       𝑟3ℎ̿  >  𝑟4 𝑗 ̿ + 𝑟5                                                                                                                           (14) 

  or,            𝜆2 − tr(Å   )λ + det (  Å )  = 0 

Where, 

tr (Å)   = 𝜆3𝑖 + 𝜆3𝑗 = 1 − 2ℎ̿ − 𝑟2𝑗̿ +   𝑟6ℎ̿   −  𝑟8 > 0 

det (Å) =   𝜆3𝑖𝜆3𝑗  

               = (1 − 2ℎ̿ − 𝑟2𝑗)̿( 𝑟6ℎ̿   −  𝑟8) + 𝑟2𝑟6  ℎ̿ 𝑗 ̿   
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= ( 𝑟6 + 2 𝑟8)ℎ̿ +  𝑟2𝑟8  𝑗 ̿  − (2𝑟6 ℎ̿
2 + 𝑟8) > 0.                

Therefore, as a result of the following requirements, results in the second two eigenvalues of J3 

having negative real portions: 

           2ℎ̿ + 𝑟2𝑗̿ −  𝑟6ℎ̿ < 1,                                                                                                              (15) 

2𝑟3 ℎ
−
2 + 𝑟5   <  (2𝑟5 + 𝑟3)ℎ

−

+ 𝑟1𝑟5  𝑖
−

.                                                                                          (16) 

Therefore, 𝐴3 is stable equilibrium point if conditions (14), (15) and (16) are satisfied. 

On the other hand, it is unstable.   

⦿ Finally, the positive (coexistence) equilibrium point 𝐴4 = (ℎ̃, 𝑖̃, 𝑗̃ )exists if the following 

system of equations has a positive solution: 

ℎ̃  = 
( 𝑟4 + 𝑟1 𝑟5)   −  𝑟1 𝑟4 𝑟8  𝑟7⁄

( 𝑟4 + 𝑟1 𝑟3)  − 𝑟1 𝑟4 𝑟6  𝑟7⁄
                                                                          

            𝑖̃  =  
 𝑟8  −  𝑟6ℎ̃ 

 𝑟7
  ,       𝑗̃   =  

 𝑟3 ℎ̃−  𝑟5

 𝑟4
 .                                                    

     Note that ℎ
=

 is positive, provided that: 
( 𝑟4  +  𝑟1 𝑟5)    <  𝑟1 𝑟4 𝑟8  𝑟7⁄     and  ( 𝑟4  +  𝑟1 𝑟3)   <  𝑟1 𝑟4 𝑟6  𝑟7⁄ .  

Or   
( 𝑟4  +  𝑟1 𝑟5)    >  𝑟1 𝑟4 𝑟8  𝑟7⁄     𝑎𝑛𝑑  ( 𝑟4  +  𝑟1 𝑟3)   >  𝑟1 𝑟4 𝑟6  𝑟7⁄  

So,  𝑖̃  and 𝑗̃ are positive5, provided that:     

 𝑟3  ℎ̃  >  𝑟5  and  𝑟8 >  𝑟6  ℎ̃   respectively. 

    For 𝐴4 = (ℎ̃, 𝑖̃, 𝑗̃),   can be expressed as: 

 𝐽4 =   𝐽(𝐴4) = [ ñ𝑖𝑗 ]3×3 ,                                                                                                                  
(4. 𝑎)  

Where: 

 ñ11 = 1 − 2ℎ̃  − 𝑟1𝑖̃ −  𝑟2 𝑗̃,  ñ12 = − 𝑟1ℎ̃ < 0 , ñ13 = − 𝑟2ℎ̃  < 0, ñ21 = 𝑟3𝑖̃ > 0 ,  

𝑛22 = 𝑟3ℎ̃  −  𝑟4 𝑗̃  − 𝑟5 , ñ23 = − 𝑟4𝑖̃, ñ31 = 𝑟6 𝑗̃ > 0 , ñ32 = 𝑟7 𝑗 ̃> 0,  ñ33 =    𝑟6ℎ̃  + 𝑟7 𝑖 ̃-  𝑟8 

A characteristic equation for J (𝐴4) is then provided by: 

   𝜆3 + Ř1𝜆
2 + Ř2𝜆 + Ř3   = 0,                                                                                               (4.b)                                                                                                         

where:    Ř1 = −(ñ11 + ñ22 + ñ33) ,                                                       

Ř2 = −[ñ23ñ32 − ñ22ñ33 − ñ11(ñ22 + ñ33) + ñ21ñ12 + ñ13ñ31]  

Ř3 = −ñ11(ñ22ñ33 − ñ23ñ32) + ñ12ñ21ñ33 − ñ12ñ31ñ23 − ñ13ñ21ñ32 − ñ13ñ31ñ22.    

Now,   Ř1 > 0 and   Ř2 > 0   provided that: 

1 <  2ℎ̃  +  𝑟1𝑖̃ +  𝑟2 𝑗,̃                                                                                                      (17)                

ℎ̃  <  𝑟4 𝑗̃  +  𝑟5 ,                                                                                                                                   (18)    

𝑟6ℎ̃  +  𝑟7 𝑖̃   <  𝑟8                                                                                                                                  (19)  

Also,   ∆ =  Ř1 Ř2 - Ř3 > 0. 

By the following condition:  

ℎ̃ <  
𝑟4

𝑟1𝑟3+2 𝑟4
 (1 − 𝑟1 𝑖 ̃ −  𝑟2 𝑗 ̃),                                                                                                (20) 

𝑟2𝑟6 ℎ̃ 𝑗 ̃ <  𝑤1  𝑤2 ,                                                                                                                                (21) 

𝑟4𝑟6 𝑖 ̃ 𝑗 ̃  <  𝑟1 ℎ̃(𝑟6 ℎ̃ + 𝑟7 𝑖 ̃  - 𝑟8) .                                                                                            (22)                                                                                     

Where,  𝑤1 = 2ℎ̃  +  𝑟1𝑖̃ + 𝑟2 𝑗̃ -1,  𝑤2 =  𝑟6ℎ̃  + 𝑟7 �̃� -  𝑟8. 
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      Using the Routh-Hurwitz criterion, however, allows each of the additional eigenvalues of eq. (4. 𝑏), 
have negative real parts if and only if  𝑅1 > 0, 𝑅3 > 0 and   𝑅1𝑅2 − 𝑅3 > 0. 

     Therefore, all of 𝐽(𝐴4) eigenvalues have a negative real portion if the additional criteria from (17) - 

(22) hence 𝐴4 is asymptotically stable locally. In contrast, it is unstable. 

4. Local Bifurcation Analysis 

         This section investigates the dynamical behavior of system (2) around each equilibrium 

point as a result of altering the parameter values. Remember that the existence of the system (2)'s 

non-hyperbolic equilibrium point is a required, but not sufficient, need for bifurcation. As a 

result, it is appropriate to apply the Sotomayor's Theorem for local bifurcation in the following 

theorems.     Currently, in accordance with the Jacobian matrix9 of system (2).   

J = 

[
 
 
 
 
𝜕𝑓1

𝜕ℎ
    
𝜕𝑓1

𝜕𝑖
    
𝜕𝑓1

𝜕𝑗

𝜕𝑓2

𝜕ℎ
   
𝜕𝑓2

𝜕𝑖
   
𝜕𝑓2

𝜕𝑗

𝜕𝑓3

𝜕ℎ
   
𝜕𝑓3

𝜕𝑖
   
𝜕𝑓3

𝜕𝑗 ]
 
 
 
 

                                                                                                                               (5. 𝑎) 

where 𝑓𝑖  ; 𝑖 =1, 2, 3 are displayed on the system's right side (2) and 
 𝜕𝑓1

𝜕ℎ
= 1 − 2h − 𝑟1𝑖 − 𝑟2,

𝜕𝑓1

𝜕𝑖
 =  − 𝑟1ℎ,

𝜕𝑓1

𝜕𝑗
 = − 𝑟2ℎ ,

𝜕𝑓2

𝜕ℎ
= 𝑟3𝑖,      

  
𝜕𝑓2

𝜕𝑖
 = 𝑟3ℎ − 𝑟4 𝑗 - 𝑟5 ,   

𝜕𝑓2

𝜕𝑗
 = - 𝑟4𝑖,  

𝜕𝑓3

𝜕ℎ
 =  𝑟6 𝑗,    

𝜕𝑓3

𝜕𝑖
 = 𝑟7 𝑗,  

𝜕𝑓3

𝜕𝑗
 = 𝑟6ℎ + 𝑟7 𝑗 -  𝑟8. 

It   is clear   to 7verify   that  for any nonzero vector7  �̇� = (�̇�1, �̇�2, �̇�3)
𝑇 we have: 

J�̇� =[ 𝜏𝑖𝑗 ]3×1 

Where: 
𝜏11 = (1 − 2ℎ − 𝑟1𝑖 − 𝑟2𝑗)�̇�1 − 𝑟1ℎ�̇�2 − 𝑟2ℎ�̇�3, 
𝜏21 = 𝑟3𝑖�̇�1 + (𝑟3ℎ − 𝑟4𝑗 − 𝑟5)�̇�2 − 𝑟4𝑖�̇�3, 
𝜏31 = 𝑟6𝑗�̇�1 + 𝑟7𝑗�̇�2 + (𝑟6ℎ + 𝑟7𝑖 − 𝑟8)�̇�3. 

D2℉𝜇(Ý, 𝜇)(�̇� , �̇�) = [ �̈�𝑖𝑗 ]3×1.                                                                                                (23) 

Where:  

�̈�11 = (−2�̇�1 − 𝑟1�̇�2 − 𝑟2�̇�3)�̇�1 − 𝑟1�̇�1�̇�2 − 𝑟2�̇�1�̇�3 ,                                                                          
�̈�21 = 𝑟3�̇�1�̇�2 + (𝑟3�̇�1 − 𝑟4�̇�3)�̇�2 − 𝑟4�̇�2�̇�3, 
                                                                          
�̈�31 = 𝑟6�̇�1�̇�3 + 𝑟7�̇�2�̇�3 + (𝑟6�̇�1 + 𝑟7�̇�2)�̇�3.                                                                         

Where  Ý = (ℎ, 𝑖, 𝑗)𝑇 and  𝜇 is any bifurcation parameter.  

Theorems in the following the local bifurcation conditions near equilibrium points are 

established. 

4.1 7Local 7bifurcation analysis7 near 𝑨𝟏:  

Theorem (2):  If the value of the parameter 𝑟3 passes through  𝑟3̈ = 𝑟3  then, system (2) at the 

axial equilibrium point  𝐴1 = (1, 0, 0)    possesses: 

• No saddle-node bifurcation9. 

• 7Transcritical bifurcation7.     

Proof: According to the Jacobian matrix  𝐽(𝐴1) given by eq.(1. 𝑎 ): Zero eigenvalue exists for 

system (2) at equilibrium point 𝐴1= (1,0,0). (say   𝜆1𝑖 = 0 ) at    𝑟3 =  𝑟3̈ , and the Jacobian 

matrix   𝐽1  with  𝑟3 =  𝑟3̈ becomes:  
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𝐽1̈ = 𝐽1( 𝑟3 =   𝑟3̈  ) =  [ 
−1          − 𝑟1          − 𝑟2 
     0               0                0    
     0               0         𝑟3 − 𝑟5

], 

Now, let   �̇�[1] = (�̇�1
[1],  �̇�2

[1] , �̇�3
[1] )

𝑇

 be the eigenvector7 corresponding7 to the 

7eigenvalue  𝜆1𝑖 = 0. Thus  ( 𝐽1̈ − 𝜆1𝑖𝐼) �̇�
[1] = 0, which gives: 

  𝜌[1] = (−𝑟1�̇�2
[1],  �̇�2

[1], 0)  where  �̇�2
[1]

 and  �̇�2
[1]

 are any 7nonzero real number. 

Let  Ç[1] = (Ç1
[1] , Ç2

[1] , Ç3
[1])

𝑇

 be the 7eigenvector 7associated with the 7eigenvalue  𝜆1𝑖 = 0 of 

the 7matrix [  J̈1]
𝑇
. Then we have, ( 𝐽1̈

𝑇
− 𝜆1𝑖𝐼) Ç

[1] = 0. By solving7 this 7equation Ç[1], 

We obtain,   Ç[1] = (0,  Ç2
[1], 0)

𝑇

where Ç2
[1]  7any 7nonzero real number. 

Now, 

 
∂𝑓

∂𝑟3
= 𝑓𝑟3(𝐴1, 𝑟3) = (

∂𝑓1
∂𝑟3  

,
∂𝑓2
∂𝑟3

,
∂𝑓3
∂𝑟3

)
T

= (0, h𝑖, 0)T.    

So,  
∂𝑓

∂𝑟3
(𝐴1,  �̈�3) = (0, 0, 0)

𝑇 that's why (Ç)𝑇
∂𝑓

∂𝑟3
(𝐴1,  �̈�3) = 0. 

Therefore, 7according to 7Sotomayor’s theorem7 the saddle7-7node 7bifurcation cannot occur. 

While the first 7condition of 7transcritical 7bifurcation is satisfied7. Now, since  

 𝐷𝑓𝑟3( 𝐴1,  �̈�3)�̇�
[1] = (

 0    0     0
0    1     0
0    0     0

)(
−𝑟1�̇�2

[1]  

�̇�2
[1]

0

) = (

0

−�̇�2
[1]

0

),                        

        (Ç[1])
𝑇
[𝐷𝑓𝑟3( 𝐴1 , �̈�3)�̇�

[1]] = (0,  Ç2
[1], 0)

𝑇
(

0

�̇�2
[1]

0

) =  Ç2
[1]𝜌
̇

2
[1]  ≠ 0. 

Now, by 7substituting  �̇�[1] in (23), we get: 

      𝐷2𝑓( 𝐴1, �̈�3)(�̇�
[1], �̇�[1]) = (

4𝑟1
2[�̇�2

[1]]2

− 𝑟1𝑟3[�̇�2
[1]]2

0

). 

Hence, it is 7obtained that: 

(Ç[1])
𝑇
𝐷2𝑓( 𝐴1 , �̈�3)(�̇�

[1], �̇�[1])  =  (0 ,  Ç2
[1] , 0)

𝑇

 (
4𝑟1

2[�̇�2
[1]]2

− 𝑟1𝑟3[�̇�2
[1]]2

0

) =  − 𝑟1𝑟3[�̇�2
[1]]2 Ç2

[1]  ≠ 0  

Thus, 7according to 7Sotomayor’s 7theorem system  ( 2 )  has 7transcrirtical 7bifurcation but 

not 7experience a 7saddl node 7bifurcation at  𝐴1 with the 7parameter  𝑟3, where 𝑟3 =   𝑟3̈ . 

4.2 Near by local bifurcation analysis𝑨𝟐 ( 𝐡
−

 , 𝒊
−

 , 𝟎  ) : 

Theorem (3):   Assume that the following conditions are met: 

         €2 ≠ 0,                                                                                                                                            (24)  

         €4 ≠ 0,                                                                                                                                            (25) 

𝜗 = −2€1€3(€1 + 𝑟1 + 𝑟2€2) + 𝑟3€1 − 𝑟4€2 + €2€4(𝑟6€1 + 𝑟7) ≠ 0                               (26) 
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        €1 = 
 h
−

 [𝑟1𝑟4 h
−

 𝑖
−

 − 𝑟2(𝑟3ℎ
−

− 𝑟3)]

𝑖 [𝑟4 (1 − 𝑟1 𝑖
−

) − (2𝑟4 + 𝑟2𝑟3)h
−

]

−  ,    €2 =  
( 1 − 2 h

−

  − 𝑟1 𝑖
−

)𝑖
−

− 𝑟1ℎ
−

𝑟2ℎ
−  

        €3 = 
𝑟3ℎ
−

− 𝑟5

𝑟1ℎ
−
−  ,      €4 =  

𝑟2ℎ
−

 €3 + 𝑟4 𝑖
−

𝑟6ℎ
−

+ 𝑟7 𝑖
−

− 𝑟8
. 

Then system (2) at the equilibrium5 point 𝐴2 = ( h
−

 , 𝑖
−

 ,0  )  with the parameter5 

   𝑟8  ̈ = 𝑟6ℎ
−

+ 𝑟7 𝑖
−

             
5possesses: 

• No 5saddle-5node bifurcation.    • Transcritical5 5bifurcation.   

Proof: According5 to the Jacobian5 matrix   𝐽(𝐴2) given by eq.(2. 𝑎 ) of  system ( 2 ) at the 

5equilibrium point 𝐴2 = ( h
−

 , 𝑖
−

 ,0 )  has zero eigenvalue (say  𝜆2𝑗 = 0 ) at  𝑟8 = �̈�8 , and the 

5Jacobian matrix  𝐽2 with  �̈�8 = 𝑟6ℎ
−

+ 𝑟7 𝑖
−

  becomes: 

𝐽2̈ = 𝐽2(𝑟8 = �̈�8) =  [𝜇𝑖𝑗𝑖𝑗]3x3
   , 

where,  𝜇𝑖𝑗̇ ij =  𝜇𝑖𝑗  for all i, j =1,2,3 except5  𝜇𝑖𝑗̇ 33 = 𝑟6ℎ
−

+ 𝑟7 𝑖
−

− 𝑟8=0.  

Let  �̇�[2] = (�̇�1
[2] , �̇�2

[2] , �̇�3
[2] )

𝑇

be the 5eigenvector corresponding5 to the eigenvalue  𝜆2𝑗 = 0.     

Thus   (𝐽2̈ − 𝜆2𝑗𝐼) �̇�
[2] = 0,   which gives5: 

      �̇�1
[2]
= €1�̇�2

[2]
  and  �̇�3

[2]
= €2�̇�2

[2]
,

where �̇�2
[2] any nonzero, real number with €1, €2 and  which and which are mentioned in the 

state of the theorem. 

Let   Ç[2] = (Ç1
[2] , Ç2

[2] , Ç3
[2])

𝑇

be the 4eigenvector 4associated with the 4eigenvalue  𝜆2𝑤 = 0  of 

the 4matrix  j ̈ 2 . 

 Then we have  (   j ̈ 2 − λ2wI) Ç
[2] = 0. By 4solving this 4equation for  Ç[2],  we 4obtain  Ç[2] =

(€3Ç2
[2] , Ç2

[2] , €4Ç2
[2])

𝑇

 , where  Ç2
[2]

 any real numbers that are not zero, with €3, €4   𝑤hich are 

54mentioned in the state of the theorem45. 

Now, consider: 

 
∂𝑓

∂𝑟8
(Ý, 𝑟8) = 𝑓𝑟8(Ý , 𝑟8) = (

∂𝑓1
∂𝑟8

,
∂𝑓2
∂𝑟8

,
∂𝑓3
∂𝑟8

)
T

= (0 , 0 , 𝑗)𝑇 

 So,                
∂𝑓

∂𝑟8
(A2 , 𝑟8) = (0 , 0, 0 )𝑇 . 

That's why (Ç[2])
𝑇
𝑓𝑟8(A2, �̈�8) = 0. 
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Therefore9, according to Sotomayor9’s theorem there can be no saddle-node bifurcation. 

Although the first need for transcritical bifurcation has been satisfied. Now, since  

𝐷𝑓𝑟8( 𝐴2 , �̈�8)�̇�
[2] = (

0     0     0
0     0    0

   0     0 − 1 
)(

€1�̇�2
[2]

�̇�2
[2]

€2�̇�2
[2]

) = (

0
0
0

−€2�̇�2
[2]

) 

 (Ç[2])
𝑇
[𝐷𝑓𝑟8( 𝐴2 , �̈�8)�̇�

[2]] =  (€3Ç2
[2] , Ç2

[2] , €4Ç2
[2]) (

0
0

−€2�̇�2
[2]
) = −€2€4Ç2

[2]�̇�2
[2] ≠ 0.         

Moreover, by 4substituting  �̇�[2] in (23), we get: 

  𝐷2𝑓(𝐴2 , �̈�8)(�̇�
[2],  �̇�[2]) =   [

−2€1(�̇�2
[2])2 (€1 + 𝑟1 + 𝑟2€2)

2(�̇�2
[2])2(𝑟3€1 − 𝑟4€2)

  

2€2(�̇�2
[2])2(𝑟6€1 + 𝑟7)

].        

Hence, it is 4obtained that:  (€3Ç2
[2] , Ç2

[2] , €4Ç2
[2]) 

 (Ç[2])
𝑇
𝐷2𝑓(𝐴2 , �̈�8)(�̇�

[2] , �̇�[2]) = 2𝜗(�̇�2
[2])2Ç2

[2]  

Where,   €1,  €3 𝑎𝑛𝑑 €4  are mentioned in the theorem's state. 

As a result of condition (26), we get that: 

      (Ç[2])
𝑇
𝐷2𝑓(𝐴2 , �̈�8)(�̇�

[2] , �̇�[2]) ≠ 0 . 

Thus, 4according to 4Sotomayor’s 4theorem system (2)  has a 4transcritical bifurcation4 at the 

4equilibrium point   𝐴2 = (h
−

, 𝑖
−

, 0  )  with the 4parameter  �̈�8 = 𝑟6ℎ
−

+ 𝑟7 𝑖
−

. 

4.3 Local4 bifurcation4 analysis4 near 𝑨𝟑 = (�̿�, 𝟎, 𝒋 ̿): 

 Theorem (4): Assume that the following criteria are fulfilled: 

𝑟4 >
𝑟3 ℎ ̿ − 𝑟5 

𝑗 ̿
,                                                                                                                                     (27) 

  𝜀2̀ ≠ 0,                                                                                                                                                     (28) 

 ℝ  ≠ 0                                                                                                                                                       (29)  

where: 

𝜀1̀ =
𝑟1𝑟6ℎ̿ + 𝑟7𝑗(̿1 − 2ℎ̿ − 𝑟2)

ℎ̿[𝑟2 + 𝑟1(𝑟6ℎ̿ − 𝑟8)]
, 𝜀2̀ =

1 −  𝑟2 𝑗 ̿ − (2 − 𝑟2𝜀1̀)ℎ̿

𝑟1 ℎ̿
, 𝜀3̀ =

𝑟7𝑗̿

𝑟1ℎ̿
 , 

 ℝ =  Ç3
[3][€2(𝑟6€1 + 𝑟7) − €1€3(€1 + 𝑟1 + 𝑟2€2)] + Ç2

[3][𝑟3€1 − 𝑟4€2].  

    Then system ( 2 ) at the 4equilibrium point  𝐴3 = (ℎ̿, 0, 𝑗 ̿) with the  4parameter value: 

  �̈�4 = 𝑟3ℎ̿ − 𝑟4𝑗 ̿ has  a transcritical  bifurcation,  but  a saddle4 − node cannot 4occur at 𝐴3.    

Proof: The characteristic equation represented by eq. ( 3. 𝑎 ) of  𝑠ystem (2) at the   

equilibrium point 𝐴3 has zeroeigenvalue (say  𝜆3𝑖 = 0  ) at 𝑟4 = �̈�4 and the Jacobian matrix  

𝐽3 with 4parameter  𝑟4 = �̈�4 becomes: 
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         𝐽3̈ = 𝐽3(𝑟4 = �̈�4) = [�̃�𝑖𝑗  ]3×3
 ,   

Where:  �̃�𝑖𝑗 = 𝜂𝑖𝑗  for all  i , j = 1,2,3  except  �̃�𝑖𝑗 = 𝑟3ℎ̿ − �̈�4𝑗̿ − 𝑟4 = 0.       

Let   �̇�[3] = ((�̇�2
[3] , �̇�2

[3] , �̇�3
[3] )

𝑇

be the eigenvector which follows the eigenvalue be the 

eigenvector which follows the eigenvalue. 𝜆3𝑠 = 0. Thus  (𝐽3̈ − 𝜆3𝑠𝐼) �̇�
[3] = 0  , which gives:  

�̇�[3] = (�̇�1
[3],  𝜀2̀ �̇�1

[3] ,  𝜀1̀ �̇�1
[3])

𝑇

, where �̇�1
[3]  any nonzero4 number with,  𝜀1̀  which are 

mentioned4 in the state4 of the theorem. 

Let  Ç[3] = (Ç1
[3] , Ç2

[3] , Ç3
[3] )

𝑇

 become the eigenvector linked to the eigenvalue 𝜆3𝑠 = 0  of the 

matrix   𝐽3̈. Then we have (𝐽3̈
𝑇
− 𝜆3𝑖𝐼) Ç

[3] = 0.  

By solving this equation for  Ç[3],  we obtain: 

Ç[3] = (𝜀3̀ Ç3
[3],  Ç2

[3],  Ç3
[3] )

𝑇

where  Ç3
[3]  any nonzero number9 with  𝜀3̀  those are referred to in 

the theorem's state. Now, consider: 

 
∂𝑓

∂𝑟4
(Ý, 𝑟4) = 𝑓𝑟4(Ý , 𝑟4) = (

∂𝑓1
∂𝑟4

,
∂𝑓2
∂𝑟4

,
∂𝑓3
∂𝑟4
)
T

= (0,−𝑖𝑗, 0)𝑇 

 So,                
∂𝑓

∂𝑟4
(A3 , 𝑟4) = (0 , 0, 0 )

𝑇 . 

And hence (Ç[3])
𝑇
𝑓𝑟4(A3, �̈�4) = 0. 

Therefore, the saddle-node bifurcation is ruled out by Sotomayor's theorem. While the first 

transcritical bifurcation condition has been satisfied. Now, since�̇�[3] = [�̇�1
[3],  𝜀2̀ �̇�1

[3] ,  𝜀1̀ �̇�1
[3]] 

𝐷𝑓𝑟4( 𝐴3 , �̈�4)�̇�
[3] = (

0     0      0
0   − 𝑗    0
   0     0      0 

)(

�̇�1
[3]

 𝜀2̀ �̇�1
[3]

 𝜀1̀ �̇�1
[3]

) = (

0

−𝑗 𝜀2̀ �̇�1
[3]

0

) 

 (Ç[2])
𝑇
[𝐷𝑓𝑟4( 𝐴2 , �̈�4)�̇�

[2]] =  (€3Ç3
[3] , Ç2

[3], Ç3
[3]) (

0

−𝑗 𝜀2̀ �̇�1
[3]

0

) = −𝜀2̀ Ç2
[3]𝑗 ̿ �̇�1

[3].         

So, by condition (28), we obtain that: 

 (Ç[2])
𝑇
[𝐷𝑓𝑟4( 𝐴2 , �̈�4)�̇�

[2]] ≠ 0 

Moreover, by 4substituting  �̇�[3] in (23), we get: 

                  𝐷2𝑓(𝐴3  , �̈�4)(�̇�
[3],  �̇�[3]) =   [

−2€1(�̇�2
[2])2 (€1 + 𝑟1 + 𝑟2€2)

2(�̇�2
[2])2(𝑟3€1 − 𝑟4€2)

  

2€2(�̇�2
[2])2(𝑟6€1 + 𝑟7)

].   

Hence, it is 4obtained that:  (€3Ç3
[3] , Ç2

[3] , Ç3
[3]) 
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 (Ç[2])
𝑇
𝐷2𝑓(𝐴3 , �̈�4)(�̇�

[3] , �̇�[3])=2(�̇�2
[2])2 ℝ 

Where, €1,  €2, €3 and ℝ  are mentioned in the state of the theorem. As a result of condition (29), 

we get that:  (Ç[2])
𝑇
𝐷2𝑓(𝐴2 , �̈�8)(�̇�

[2] , �̇�[2]) ≠ 0 . 

      Thus, 4according to 4Sotomayor’s 4theorem system (2)  has a 4transcritical bifurcation4 at 

the 4equilibrium point 𝐴3 = (ℎ̿, 0, 𝑗 ̿)  with the 4parameter   �̈�4 = 𝑟3ℎ̿ − 𝑟4𝑗.̿ 

4.4 Local bifurcation4analysis near    𝑨𝟒 = (�̃�, �̃�, 𝒋̃ ): 

Theorem (5): Assume that the following criteria are fulfilled: 

€1=
−𝑟3

𝑟6
 ,     €2=

  𝑟8−𝑟6h̃ −(𝑟7�̃�+𝒋̃€1) 

𝑟6  �̃�
,   €3 =

−𝑟3 �̃�

   𝑟6  j̃   
,                                            

€4=
  (𝑟6h̃+𝑟7�̃� −𝑟8) €3− 𝑟4 𝒋̃   

𝑟2  h̃ 
 ≠ 0,                                                                                                            (30) 

1 = 2 h̃ + 𝑟1𝑖̃  + 𝑟2  j̃,                                                                                                                             (31) 

€2€4 [€2 + 𝑟1€1 + 𝑟2] ≠ €1[𝑟3€2 + 𝑟4] + €4[𝑟6€2 + 𝑟7€1].                                                      (32) 

Then system ( 2 ) at the 4equilibrium point 𝐴4 = (ℎ̃, 𝑖̃, 𝑗̃ ) with the  4parameter value:              

  𝑟1̈ =
1 − 2 h̃ − 𝑟2  j̃ 

𝑖̃
  , 

has a saddle − node bifurcation,  but neither a transcritical4nor a pitchfork bifurcation4 at 𝐴4.    

Proof: The characteristic equation given by eq. (4.a)  if 𝐻4 = 0 and 𝐴4 becomes a non- 

hyperbolic equilibrium point, of system (2) having zero eigenvalue (say 𝜆4ℎ = 0). 

The Jacobian matrix for system (2) at equilibrium point 𝐸4 with parameter( 𝑟1 =  𝑟1̈)  

clearlybecomes:            𝐽4̈ = 𝐽4( 𝑟1 =  𝑟1̈) = [�̿�𝑖𝑗 ]3×3 ,  

where, �̿�𝑖𝑗 =  ñ11   for all i, j =1, 2, 3 except    ñ11  which is given by: 

      ñ11 = 1 − 2ℎ̃  −  𝑟1̈ 𝑖̃  −  𝑟2  j̃ 

Let  �̇�[4] = (�̇�1
[4] , �̇�2

[4] , �̇�3
[4] )

𝑇

be the eigenvector9 that follows the 9eigenvalue  𝜆4ℎ = 0 . 

Thus  (𝐽4̈ − 𝜆4ℎ𝐼) �̇�
[4] = 0, which gives:  

  �̇�[4] = (€2�̇�3
[4] , €1�̇�3

[4], �̇�3
[4])

𝑇

, where �̇�3
[4]  any non-zero value that has the €1 and €2 

conditions given in the theorem.  

Let  Ç[4] = (Ç[4] , Ç[4] , Ç[4])
𝑇
 be the eigenvector4 associated4 with the 4eigenvalue 𝜆4𝑖 = 0 of 

the matrix   𝐽4̈. Next, we have   (𝐽4̈
𝑇
− 𝜆4𝑖𝐼) Ç

[4] = 0. By solving this 4equation for  ∅[4],  we 

obtain:                                                              

Ç[4] = (€4Ç2
[4] , Ç2

[4], €3Ç2
[4] )

𝑇

where Ç2
[4]  any 4nonzero 4number with €3 and €4    which are 

4mentioned in the state4 of the theorem. 

Now,   
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𝜕𝑓

𝜕𝑟1
= 𝑓𝑟1(Ý , 𝑟1) = (

𝜕𝑓1
𝜕𝑟1

,
𝜕𝑓2
𝜕𝑟1

,
𝜕𝑓3
𝜕𝑟1

, )
𝑇

= (−ℎ𝑖, 0, 0)𝑇 ,    

So,    𝑓𝑎1(𝐴4 ,  𝑟1̈) = (−ℎ̃ 𝑖̃ , 0, 0)
𝑇
 ,   and hence, it is 4obtained that: 

(Ç[4])
𝑇
𝑓𝑟1(𝐴4 ,  𝑟1̈) = −ℎ̃ 𝑖̃ €4Ç2

[4] . 

In the context of condition (30), we thus have that: (Ç[4])
𝑇
𝑓𝑟1(𝐴4 ,  𝑟1̈) ≠ 0. 

𝐷2𝑓(𝐴4 ,  𝑟1̈)(�̇�
[4] , �̇�[4]) = [

−2 €2 (�̇�3
[4])2[€2 + 𝑟1€1 + 𝑟2]

2 €1 (�̇�3
[4])2[𝑟3€2 + 𝑟4]

2  (�̇�3
[4])2[𝑟6€2 + 𝑟7€1]

] . 

Hence, it is 4obtained that: 

(Ç[4])
𝑇
 𝐷2𝑓(𝐴4  ,  𝑟1̈)(�̇�

[4] , �̇�[4])   

= −2  (�̇�3
[4])2Ç2

[4] (€2€4 [€2 + 𝑟1€1 + 𝑟2] − €1[𝑟3€2 + 𝑟4] − €4[𝑟6€2 + 𝑟7€1]). 

Therefore, in accordance with condition (32) we get that: 

(Ç[4])
𝑇
 𝐷2𝑓(𝐴4  ,  𝑟1̈)(�̇�

[4] , �̇�[4]) ≠ 0                                    

Sotomayor's theorem is used to show that system (2) has a saddle-node bifurcation    𝐴4 =

(ℎ̃, 𝑖̃, j ̃ ) at  𝑟1̈.   

5. Numerical Simulation 

     This section numerically analyzes System (2)'s dynamical behavior for a given set of 

parameters and various initial point sets. These are the study's objectives, including: 

1.  Analyze the impact of changing the value of each parameter on the system's dynamic 

behavior (2).  

2. Verify the analytical results that were found.  

The following hypothetical collection of parameters is found to satisfy the stability 

requirements of the positive equilibrium point, system ( 2 ) has a globally asymptotically9 

stable positive equilibrium point as shown in Figure 𝟓. 𝟏 (𝒂, 𝒃, 𝒄),   

 

 

(5.1) 

 

 

 

 

       𝒓𝟏 = 𝟎. 𝟎𝟓  , 𝒓𝟐 = 𝟎. 𝟏 , 𝒓𝟑 = 𝟎. 𝟎𝟑,     𝒓𝟒= 𝟎. 𝟏 , 

         𝒓𝟓= 𝟎. 𝟎𝟏 ,      𝒓𝟔 = 𝟎. 𝟎𝟔 ,          𝒓𝟕 = 𝟎. 𝟎𝟕 ,      𝒓𝟖 = 𝟎. 𝟏 
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Figure1: The time series of the solution of system (2) started from the three different initial point (0.8, 0.7, 1.64), 

(1.2, 0.7, 1.64)   and (0.2, 0.4, 0.64) for the data given by (5.1), (a) the trajectories of h as a function of time, (b) the 

trajectories of i as a function of time, (c) the trajectories of j as a function of time.                                              

                                                                                                                                                  

As the solution of system (2) approaches asymptotically to the positive equilibrium point  A4= 

(0.4544, 0.6567, 2. 1722) beginning with three distinct starting points, Figure1. clearly 

demonstrates that system (2) has a globally asymptotically stable, and this is supporting our 

obtained analytical results. We will now talk about how system's (2) parameter settings affect 

the system's dynamical behavior. The system is numerically solved for the data in (5.1) by 

changing one parameter at a time, sometimes even two, and the results are shown below.           

The system will get closer to the point of positive equilibrium A4 in the interior of the positive 

quadrant of the hij-plane as shown in Figure2. a1 when the predation rate on a prey is varied 

from the specialist predator in the range  0.0001 < r1 ≤ 0.595  while maintaining other 

parameters as data given in (5.1), r1  has a usual value of 0.15. As shown in Figure2.a2 for 

average value r1=0.9, it is seen that the solution of system (2) approaches asymptotically to the 

equilibrium point A2 in the range 0.595 < r1 < 2 

                                                                                                         
Figure2.a1: The time series of the solution of system (2) approaches asymptotically to the positive equilibrium 

point  A4= (0.8182, 0.7275, 0.7271) in the interior of 𝑅+
3 . For the data in (5.1) with r1 = 0.15. Figure2.a2: The time 

series of the solution of system (2) approaches asymptotically to the positive equilibrium point  A2= (0.3333, 0.7407, 

0) in the interior of 𝑅+
3 . For the data in (5.1) with r1 = 0.9. 

   

 Additionally, changing the specialist predator's mortality death rate between 0.0001 and 0.03 

while maintaining the other parameters according to the data in (5.1) results in the specialized 

predator going extinct, and Figure3.e1 illustrates how system (2) approaches asymptotically to 

the positive equilibrium pointA4 with a typical value of  r5=0.01, however, for a typical value of 
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 r5=0.1, as shown in Figure3.e2, at 0.03<  r5  <0.15 approaches asymptotically to the axial 

equilibrium point A1,  additionally, for a typical value ofr5=0.5, Figure3.e3 shows that for 

0.15≤ r5 <0.6 approaches asymptotically to the equilibrium point A3.                                  

                                                                                                                                               

 
Figure3.e1: The time series of the solution of system (2) approaches asymptotically to the positive equilibrium 

point  A4= (0.99043, 0.6535, 0.6304) in the interior of 𝑅+
3 . For the data in (5.1) with r5 = 0.01. Figure3.e2: The 

time series of the solution of system (2) approaches asymptotically to the positive equilibrium point  A1= (1, 0, 0) 

in the interior of 𝑅+
3 . For the data in (5.1) with r5 = 0.1. Figure3.e3 time series of the solution of system (2) 

approaches asymptotically to point  A3= (0.6667, 0, 3.3333).   

                                                                                     

The system (2) still approaches asymptotically to the equilibrium point A2 despite changing the 

parameter  r6 which represents the conversion rate from the prey to the generalist predator in the 

range 0.0001 ≤ r6 < 0.015 this causes extinction in the prey, however in additional for 0.015≤

 r6<0.1 approaches asymptotically to the positive   equilibrium point A4,  as shown in Figure4. 

g2, for typical value r6=0.08.    

                                                                                            
 Figure4.g1: The time series of the solution of system (2) approaches asymptotically to the positive equilibrium 

point  A2= (0.3392, 13.2187, 0) in the interior of 𝑅+
3 . For the data in (5.1) with r6 = 0.013. Figure4.g2: The time 

series of the solution of system (2) approaches asymptotically to the positive equilibrium point   A4= (0.7311, 

4.1682, 0.6044) in the interior of 𝑅+
3 . For the data in (5.1) with r6 = 0.08  

 

6. Discussion 

     Starting with the hypothetical set of data provided by eq. (5.1), system (2) has been 

numerically solved for several sets of initial points and various sets of parameters, and the 

following observations are obtained:                                                                 

1. When approaching globally stable locations via   Int. 𝑅+
3 techniques system (2) only has two 

types of attractors. The system (2) approaches asymptotically to the globally stable positive 

point𝐴4 = ( 0.4544, 0.6567 , 2.1722 )for the set parameter value specified in (5.1).   

2. The positive equilibrium point  𝐴4  being approached by the solution of system (2) as the 

assault rate on a victim from the specialized predator r1 increases to 0.15 while maintaining the 
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other parameters as in eq. (5.1), but if  r1=  0.59 it can be seen that the solution to system (2) 

approaches the equilibrium point A2 asymptotically; r1= 0.595 is a bifurcation point.                      

3. The trajectory changed from the axial point A1 to the equilibrium point   A2  in the range 

0.0001 ≤ r3 < 0.006, and from the equilibrium point A2  to the equilibrium point  A4 in the 

range  0.006 ≤ r3 < 0.0125 consequently the bifurcation points for the parameter r3  are at 

 𝑟3= 0.006 and 𝑟3 = 0.01 respectively. 

4.  As the attack rate of generalist predator on specialist predator 𝑟4  keeping the rest of 

parameters as in eq.(5.1), the solution of system (2) approaches to the positive point 𝐴4, if 𝑟4 

=1.5, it is shown that the solution of system (2 ) approaches asymptotically to the equilibrium 

point 𝐴3, indicating that 𝑟4=1.5 is a bifurcation point.  

5. The natural death rate of specialist predator  r5 the solution of system (2) advances from the 

positive equilibrium point A4  to the axial equilibrium point A1with 0.03 <  r5 < 0.15 keeping 

the other parameters as in eq.(5.1), and from the axial equilibrim point A1 to the  equilibrium 

point A3 in the ring 0.15≤ r5 <0.6, the parameter 𝑟5 = 0.045 is bifurcation point.  

6. As the conversion9 rate of prey to the generalist predator 𝑟6 decreasing, and keeping the rest 

parameters values as in eq. (5.1 ) the solution of system (2) approaches the equilibrium point A4, 

while for   0.0001 ≤ r6 < 0.015 , the generalist predator population  revives  and then the 

trajectory changed from the point  A2 to the positive equilibrium point A4, while for  0.015 ≤

r6 < 0.1 thus, the parameter  𝑟7 =  0.015 is  a bifurcation point. 

7. In light of the conversion rate of specialist predator to the generalist predator 𝑟7 decreasing to 

0.0002 and keeping the rest parameters values as in eq. (5.1) the solution of system (2) 

approaches the equilibrium point A2, while for  0.00001 ≤ 𝑟7 < 0.005 the generalist predator 

population revives and when 0.005≤ 𝑟7 <0.2, the trajectory changed from the point A2 to the 

positive equilibrium point  A4, the parameter 𝑟7 =0.005 is a bifurcation point.  

7. Conclusion    

     This study used an ecological mathematical model that includes a predator-prey model and a 

food web, as well as a population of prey and a population of specialized predators as refuges. 

Additionally, this model includes linear types of functional reactions for the predation of 

creatures that were not protected.  
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