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Abstract

Let R be a commutative ring with unity, let M be a left R-module. In this paper we
introduce the concept small monoform module as a generalization of monoform module. A
module M is called small monoform if for each non zero submodule N of M and for each
f € Hom(N,M), f # 0 implies ker f is small submodule in N. We give the fundamental

properties of small monoform modules. Also we present some relationships between small
monoform modules and some related modules.

Key Words: Monoform module, small monoform module, small submodule, prime module,
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Introduction

Throughout this article, R denotes a commutative ring with identity, and modules are
unitary left R-module.

We write N < M to denote that N is a submodule of M. A proper submodule L. of M

(L <M) is called small in M (denoted by L << M) if, for every proper submodule K of M, L +
K # M. A submodule N of M is called essential in M (denoted by N <. M) if N n K # 0 for
eachK<M,K=0,[1].

An R-module M is called monoform module if for each non zero submodule N of M and
for each f € Hom(N,M), f# 0 implies ker /= 0 (i.e. fis monomorphism, [2]). Equivalently M
is monoform R-module if and only if M is uniform and prime module [3,theorem(2.3)], where
M is uniform if every nonzero submodule N of M, N <. M, [1]. M is called prime R-module if
anngM = anngN, for each nonzero submodule N of M, [4], where anngM = {r € R: tM = 0}.

In this paper, we introduce the concept small monoform as a generalization of monoform
module, where M is called small monoform if for each N # 0, N < M, /' € Hom(N,M), f'# 0

implies ker /<< N. It is clear that every monoform module is small monoform, however the
converse is not true (see Rem. and Ex. 1.2 (1)). We give many properties of small monoform.
Also we see that under certain class of modules small monoform and monoform modules are
equivalent.

Moreover, we introduce many relationships between small monoform module and other
related modules such as small quasi-Dedekind modules, quasi-Dedekined module,
compressible modules.

1- Main Results

Definition 1.1:
Let M be an R-module. M is called small monoform if for each non-zero submodule

N and for each f € Hom(N,M), f'# 0 implies ker f << N.

Remarks and Examples 1.2:
(1) It is clear that every monoform module is small monoform. However the converse is not
true in general for example:

The Z-module Z; is not monoform because there exists Z-homomorphism,
f:Z4y—> Z4 such that f(X) =2%X for each X € Z, and ker f=<2># (0). But Z4 is
small monoform Z-module since the only non zero submodule of Z, are <2> and Z, and
the only non zero Z-homomorphism from <2> in Z4 is the inclusion mapping i and
ker (i) =<0>.

Also there are three nonzero homomorphism from Z; in to Z4 which are f; = identity
mapping, /2(X) =2X and f3(X) = 3X. Hence ker( f})) < Zs, Vi=1,2,3.

(2) It is clear that every chained module is small monoform, where an R-module is called
chained module if the lattice of submodules is linearly ordered.
In particular, each of the Z-module, pr , L4, 73, Z15, ... 1s small monoform.

(3) The epimorphic image of small monoform module is not necessarily small monoform, for
example

Z as Z-module is monoform since Z is uniform and prime. But n:Z—— Z/12Z. = Z,»,

where 7 is the natural projection. However Z, as Z-module is not small monoform, since
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if we take N = <2> and f : N — Z;, defined by f (X) = 2X for each X € N,
ker f={0,6} = N.But {0,6} + {0,4,8} =N. Thus ker / [ N.

(4) Every non zero submodule of small monoform module is small monoform module.

Proof: Let M be a small monoform R-module and let N < M. For any K < N, K # 0, let
f:K—>N,f=0.

K—L 3N—5M,iof #0.Butker(i of) =ker f, hence kerf < K.

Thus N is small monoform.

Recall that: If M is an R-module, then M is an R -submodule of M, where R = R/ann M
by using the definition

(r + ann M)x = rx, for each x € M. Hence every R-submodule of M is an R -submodule of M,
R

and conversely.

(5) Let M be an R-module. Then M is small monoform R-module if and only if M is small
monoform R -module
Proof: (=)
Let N be an R -submodule of M, let f': N—— M, f# 0 be R -homomorphism. It is clear
that N is R-submodule of M. To show that f* is an R-homomorphism.
Let r € R, f(rx) =f[(r + annM)x]
=(r+annM) + f(x)  since fis an R -homomorphism
=1/ (x)
Thus fis an R-homomorphism. But M is small monoform, so ker fis small R-submodule of
N. Hence ker fis small R -submodule of N.
The proof of the converse is similarly.

Remark 1.3:
Let M be a semisimple R-module. Then the following statements are equivalent:
(1) M is small monoform.
(2) M is monoform.
(3) M is simple.

Proof: (1) = (2) Let N< M, let f: N——> M, f# 0. Since M is small monoform, then

ker f << N. But M is semisimple, so N is semisimple and hence N has only small submodule
namely (0). Thus ker /= (0) and so M is monoform.

(2) = (1) Itis clear by (Rem. and Ex. 1.2(1)).

(2) = (3) Letx € M, x # 0. Since M is semisimple, then <x> is a direct summand of M. So
<x> @ K = M, for some K < M. But M is monoform, so for each homomorphism
fi<x>—> M, f#0, ker f= 0. Define g : M—— M, by g(rx + K) = f(rx). We can show that
g is well-defined as follows:

Let rx-+ k] =X+ k2 where I, 1 € R, k], k2 e kK

(I'] — I'2)X =k, -k e <x>nK= (O)

Hence (r; — r2)x = 0 =k, — k. Thus implies r1x =1rx and k; = ko.

Thus f (r1x) =f (r2x) and g(r1x + k) = g(r:x + k).

Now let rx + k € ker g, then g(rx + k) = f(rx) = 0.

It follows that ker g=ker f® K=0@® K =K. But ker g=0, so K=0.
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Thus <x> =M and therefore M is simple.

3) = (2) If M is simple, then M has only two submodules (0), M. So that for each
f:M——> M, f#0 ker f <M, hence ker f=0. Thus M is monoform.

Recall that an R-module M is called free if it has a basis, [1].

Theorem 1.4:

Let M be a free Z-module. Then M is small monoform if and only if M is monoform.
Proof: (=)

Let N<M, N#O,let f: N—> M, f# 0. Since M is small monoform implies
ker f << N. But M is a free Z-module implies N is a free Z-module, [5,Corollary (5.5.3)]. So,
N has only (0) small submodule. Thus ker /= 0; that is M is monoform.

(<) It is clear by 1.2(1).

The following proposition gives a characterization of small monoform module under the
class of Noetherian modules.

Proposition 1.5:
Let M be a non zero Noetherian R-module. Then M is small monoform if and only if
every non zero 3-generated submodule of M is small monoform.
Proof: (=) It is clear.
(<) suppose every non zero 3-generated submodule of M is small monoform. Let N < M, N

# 0 and let f € Hom(N,M), f# 0. To prove ker /' << N.

If ker f=(0) then ker f << N.

If ker f# (0), let x # 0 and x € ker f. Let y € N and let f (y) = z. Put L = <x,y,z>, L is
3-generated submodule of M.
By hypothesis, L is small monoform, let H = <x,y>. Let g = f |u: H —> L. Hence

ker g < H <N, since L is small monoform. This implies ker g << N. But x € ker g, so that
<x> c ker g < N. Thus <x> < N. Since M is Noetherian, ker f'is finitely generated. Hence
ker f=Rx; + Rxp + ... + Rx; = <xy, X, ..., Xp> for xy, ..., X, € M. Since <x;> < N for each
i=1,...,n So ker/ =) Rx; < N.

i=1
Thus M is small monoform.

Recall that an R-module M is called uniform if every non zero submodule is eesential, [1].
Recall that an R-module M is called quasi-Dedekind if for each N < M, N= 0, Hom(%

,M)=0, that is every nonzero submodule N of M is quasi-invertible, [6].
Recall that an R-module M is called small quasi-Dedekind if for each f € End(M), f# 0,

ker f << M. Equivalently M is small quasi-Dedekind if Hom((% ,M) =0 foreach N [ M
[7], where End(M) = set of all homomorphism from M to M.
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Let A be a submodule of an R-module M. A relative complement for A in M is any
submodule B of M which is maximal with respect to the property A " B =0 [8,p.17].

Proposition 1.6:

Let M be an R-module if M is small monoform, then M is uniform and M is small quasi-
Dedekind.
Proof:

By [7, Rem. and Ex. (3.2.9),p.109] M is small quasi-Dedekind, let N < M, N = (0). If
N <. M nothing to prove.

Suppose N %. M, then there exists (H < M) such that H is a relative complement of N.
Hence N @ H <. M by [8,proposition 1.3,p.17].
Define f: N®@ H——> Mbyf(a+b)=aforeacha+b e N® H.

Then ker f= (0) @ H, but M is small monoform, so ker /= (0) ® H < N @ H and this
implies H << H (which is impossible) unless H = (0) and hence N <. M. Thus M is uniform.

Corollary 1.7:
Let M be an R-module. If M is small monoform, then M is uniform and annM = ann N
R R

foreach N [ M.

Proof:
By proposition 1.6, M is uniform. Also M is small quasi-Dedekind, hence for each
N [ M, N is a quasi-invertible [7,Th. 3.1.3,p.95]. Thus ar}gnM = algnN foreach N M

[6, proposition 1.4,p.7]

Recall that an R-module Z(M) = {x € M, anng(x) <. R} is called a singular submodule
of M. If Z(M) = M, then M is a singular module. If Z(M) = 0, then M is called a non singular
module, [8,p.31].

Proposition 1.8:
Let M be a non singular R-module. Then M is small monoform implies M is quasi-
Dedekind.

Proof:
Let N < M. Since M is small monoform implies M is uniform (by proposition 1.6).

Hence N <. M, but N <¢ M and M is a non singular implies % is singular

[8,proposition 1.21,p.32]. Hence Hom(%,M) = 0 [8,Exc. 1,p.33]; that is N is quasi-

invertible. Thus M is quasi-Dedekind.
Note 1.9:
The condition M is nonsingular in Proposition 1.8 is necessary. For example Z; as

Z-module is small monoform, but is not quasi-Dedekind. Also Z is not a nonsingular Z-
module, since Z(Z4) # (0) (in fact Z(Z4) = Z4).

It is known that: A ring R is semisimple implies every R-module is a non singular.
Hence we get the following corollary.
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Corollary 1.10:

Let R be a semisimple ring, let M be an R-module, then M is small monoform implies M
is quasi-Dedekind.
Proof:

Since R is semisimple, M is nonsingular. Hence the result follows by proposition 1.8.

Recall that an R-module M is called a prime R-module if annM = ann N for every non
R R

zero R-submodule N of M, [4].

Corollary 1.11:

Let M be a non singular small monoform, then M is prime.
Proof:

By Proposition 1.8, M is small monoform and non singular implies M is quasi-Dedekind.
Thus M is prime [6,proposition 1.7, p.26].

Recall that an R-module M is called fully retractable, if for every non zero submodule N
of M and every non zero element g € Homg(N,M) we have Homgr(M,N)g # 0, [9].

Proposition 1.12:

Let M be an R-module such that M is fully retractable and for each N <M, N # (0), N is
small quasi-Dedekind, then M is small monoform.
Proof:

Let N <M, f:N—> M, f# 0. Since M is fully retractable, then there exists

g:M—— N, g#0. Consider N—L—>M ——N. By M fully retractable, g o f# 0. Since N

is small quasi-Dedekind, ker (g o /') << N. But ker f'c ker (g o /') and this implies ker /' << N.
Thus M is small monoform.

Recall that an R-module M is called a qusi-injective R-module if for each
monomorphism h: N —— M, where N is any R-submodule of M and any homomorphism

¢: N——> M, there is a homomorphism y: M —— M such that yoh= ¢ i.e. the following
diagram is commutative, [10,p.22].

N—3sM

N/

Recall that A submodule N of M is called coclosed if whenever K < N and [

~|z
~| =

implies K=N, [11].

We prove the following:
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Proposition 1.13:

Let M be a quasi-injective R-module and every submodule of M is coclosed then M is
small quasi-Dedekind if and only if M is small monoform.
Proof: (=)

Let N <M, N #(0), let f € Hom(N,M), f'# 0 consider the following diagram

N—>M
ANWAT
M

Since M is quasi-injective, then there exists g € End(M) such that g o i =f". Hence g(n) = f(n)
for each n € N, which implies ker /' < ker g. But M is small quasi-Dedekind, so ker g << M.
Thus implies ker f << M.

But every submodule of M is coclosed, then N is coclosed. Thus ker f = N and ker f < M
which implies ker /<< N, [12, Lemma 1.1]. Therefore M is small monoform.

(<) Itis clear.

Under the class of non singular modules, we have the following:

Proposition 1.14:
Let M be a non singular R-module. Then the following statements are equivalent:
(1) M is small monoform.
(2) M is uniform quasi-Dedekind
(3) M is uniform prime.
(4) M is uniform.
(5) M is monoform.
Proof:
(1) > (2) By Proposition 1.6 M is uniform. But M is small monoform and non singular
implies M is quasi-Dedekind by Proposition 1.8.
(2) > (3) It is follows by [6, Proposition 1.7, p.26].
(3) > 4) It is clear.
(4) > (5) It follows by [3, Theorem 2.2].
(5) > (1) It is clear by 1.2(1).

Recall that an R-module M is called compressible if for each N < M, N # 0 M can be
embedded in M (i.e. there exists f: M—— N, f'is monomorphism), [13].

Consider the following statement (*):
(*) Let M be an R-module such that ann% & annM, for each N <M, N # (.
R

We prove the following:

Proposition 1.15:
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Let M be a nonsingular R-module such that M satisfies (*). Then the following
statements are equivalent
(1) M is small monoform.
(2) M is quasi-Dedekind.
(3) M is prime.
(4) M is compressible.
(5) M is monoform
(6) M is uniform
(7) Endr(M) is an integral domain.
(8) R/anngM is an integral domain.
(9) anngM is a prime ideal in R.
Proof:
(1) > (2) By Proposition 1.8.
(2) > (3) It is follows by [6, proposition 1.7, p.26].
3) © (4) © (5) It is follows by [14, proposition 1.7].
(5) © (6) It is follows by [3, theorem 2.2].
(5) > (1) It is clear.
Le. (e 2)>B)eo @B« (6)
3) © (9) It is follows by [14, proposition 1.9].
4) © (7) © (8) It is follows by [14, theorem 2.5].
Le. () o> B) o) @) o) o®).
Thus all statement (1) through (9) are equivalent.

Corollary 1.16:

Let M be a multiplication non singular R-module. Then the statements from 1 to 9 in
proposition 1.15 are equivalent.
Proof:

It follows directly by proposition 1.15, since every multiplication module satisfies ().

Recall that an R-module M is called retractable if Homg(M,N) # 0 for all 0 # N < M,
[15].

Proposition 1.17:
Let M be retractable and nonsingular R-module, then the following statements are
equivalent:
(1) M is monoform.
(2) M is uniform.
(3) M is small monoform.
(4) M is compressible.
Proof:
(1) & (2) It follows by [3, theorem 2.2].
(1) > (3) It is clear by 1.2(1).
(3) > (2) It follows by Proposition 1.6.
(2) > (4) It follows by [9, Proposition 1.7].
(4) > (1) It follows by [3,corollary 2.5].

Recall that an R-module M is called small prime if ar}gnM = ann N for each N < M,
R
[16].
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Proposition 1.18:
Let M be small monoform and small prime R-module. Then M is monoform.
Proof:

Since M is small monoform then M is uniform by Proposition 1.6. Also ann M= atlgnN

for each N [ M by proposition 1.7. But by hypothesis M is small prime, so for each
N < M, N#(0), annM = annN. Thus ann M = ann N for each N < M, N # (0), that is M is a
R R

prime R-module. But M is uniform and prime implies M is monoform [3,theorem 2.3].

Under the class of finitely generated modules, we have the following result.

Corollary 1.19:
Let M be a finitely generated R-module, then the following statements are equivalent:
(1) M is monoform.
(2) M is uniform prime.
(3) M is quasi-Dedekind.
(4) M is small monoform and small prime.
(5) M is is compressible.
Proof:
(1) & (2) It follows by [3, Theorem 2.3].
(2) © (3) It follows by [6, Corollary 3.13].
(1) > (4) It is clear.
(4) > (1) It follows by Proposition 1.18.
(5) & (1) It follows by [3,Lemma 1.9 and Theorem 2.3].

Next we turn our attention to direct sum of small monoform R-modules

Remark 1.20:

M =M,; @ M,, M; and M, submodule of M, M is small monoform. Then M; and M, are
small monoform. But the converse is not true in general.
Proof: (=)

It is clear by Rem. and Ex. 1.2 (5).
Now, consider the following example:
Let M = Z4 @ Z4 as Z-module, Z4 as Z-module is small monoform (by Remarks and Examples
12()), et N=Z,@® <2>.Letf:Zs® <2>—> 74 ® Z4 defined by 1 (X,5) = (X,2y),
ker/ ={(0,0),(0,2)} =(0)® <2 > Z, ®(2)since<0>D<2>+HZ,®<0>)=Z,H<2 >
Thus the direct sum of small monoform modules need not be small monoform.

Recall that an R-module M is called fully stable if for each N < M. N is stable; that is for
each f: N—— M, fis R-homomorphism, /' (N) = N, [17].

Now we show that under certain condition, the direct sum of small monoform is small
monoform.
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Theorem 1.21:

Let M be a fully stable R-module, such that M = M; @ M,, M;, M, < M and for each R-
homomorphism f: N; @ N, —— M, f# 0 implies f(N;) # 0, f (N2) # 0 (i.e. f/N; # 0, f/N#0).
Then M, and M, are small monoform if and only if M is small monoform.

Proof: (=)

Let N<M, N #(0), f:N——> M, f# 0, to prove ker /<< N. Snce M is fully stable, every
submodule of M is stable so, N is stable and this implies N = (N N M;) @ (N n M) by
[17,Prop.4.5,p.29].

Consider (NNM,)—2>N—-~L>M—-23M,,
(NAM,)—25N—-L5M—25M,
Where i, i, are inclusion mappings and pi, p» are projection mappings. Then

plofoili (N M M]) —> M], pzofoizi (N M Mz)—) Mz, let N] =NnN M] N2 =NnN Mz. By
hypothesis f/N; # 0, so there exists nj € N M, n; #0, f(n;)# 0 and /N, # 0, so there
exists i, € NN My, np #0, f(np) # 0.

On the otherhand f o i;: (N N M;) —— M implies f o i1(n;) =f (n;) # 0, f
o ir:(N N M) —— M implies f o i(np) = f(n2) # 0.

Thus implies f o i;(N N M;) € N N My, since N, N are stable. Hence /(NN M;) € N M.
Similarly f (N n M;) <« N N My, But f (nj)) € N n M; and f (n;) # 0 and, so that

(profein)(m) =f (1) # 0.

Similarly (pyofoiz)(ny) = f (n2) # 0. Thus piofoi; # 0, pyofoir # 0. Since M, M, are small
monoform, then ker(p;ofoi;)@ker (profoir) <K(N N M)@(N N My)=N. Let x =n| +n/, eker f,
where nje NN M, nje NN M,, f(n)+f (n,))=0.Hence f (n))=—f(n}) € (N M)
N (N N M) = (0), it follows f (n])=0,f (n})=0. This implies pjofoii(n])=piof (n;) =
P ()= (n})= 0 profoir(ny)=pmof (n}) = pa( £ (n} )=/ (n})=0.

Hence x =n] +n) € ker(piofoi)@ker (pofoir) < N.

So that ker /' ker(pofoi;) @ ker (profoi;) << N. Thus ker f << N.
Therefore M is small monoform.

b o0p0) oglxll pid] el
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(<) It is clear by remarks and examples 1.2 (4).
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