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Abstract

Let M =[ABO0OD] be an upper triangular operator matrix which is unbounded and
defined on H®H, where H is infinite dimensional Hilbert space. This paper is concerned
with new spectral properties which defined to other bounded operators. Some sufficient and
necessary conditions are given in which these properties are equivalent. We further
investigate the relations among Weyl’s type theorems and Brodwe’s theorems for this type of
operator under some conditions. As an application the paper define the plate pending problem
equation with henge end, fixed end and free end, after transform it to Hamitonian matrix then
calculate the spectrum sets for this matrix which leads to if A has eigenvalues of finite
multiplicity, so is M. Inaddition if A, A* has finite ascent this implies that the Hamiltonian
operator M has finite ascent.
Keywords: Browder’s Spectrum, Spectral Properties, Upper Triangular Operator
Matrices,Weyl’s Spectrum, Weyl’s Theorems.

1. Introduction

The conception of unbounded operator delivers a non-figurative background for allocating
with differential operators, unbounded perceptible in quantum mechanics, and other
circumstances. The Weyl’s Theorem for bounded hermitian operators was established by
Weyl (1). Weyl’s Theorem has since been expanded to encompass the class of bounded
normal, hyponormal, and Toeplitz operators (2) as well as a number of other non-normal
categories of bounded operators. The familiar Weyl’s theorem is generalized in such a way.
Furthermore, he established this modified version of the traditional Weyl’s theorem for
limited hyponormal operators in (3). The works in this direction recently been expanded to
include the classes of unbounded posinormal operators and unbounded hyponormal operators
(4).
For unbounded operators on different spaces such as the space of Banach with non-empty
resolvent, the authors introduced the B-Fredholm theory in (5, 15). Weyl’s Theorem for the
category of paranormal operators on Banach spaces was established by Ramanujan(6), and it
was further developed by Aiena and Guillen to include the investigation of Weyl’s. Theorem
for the perturbation of paranormal operators by algebraic operators and for unbounded
compact operators defined on a Banach space are investigated by the authors (7,16,19) ,

including those by Browder and Weyl. The theory is demonstrated in the final section using
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examples involving isometrics, analytically Toeplitz operators, semi-shift operators, and
weighted right shifts. Both generalized Weyl’s theorem and generalized Browder’s theorem
are susceptible to failure for matrices with two by two operators. In this study, we also
investigate the survival of generalized Weyl’s, generalized Browder’s, generalized a- Weyl’s,
and generalized a-thecorems Browder’s for 2D- upper triangular operator matrices on the
Banach space (8, 20, 21).
Operator matrices are important to determine the solvability and stability of the underlying
systems and are found in various areas of pure and applied mathematics.
If M is a bounded linear operator on a Hilbert space H = H,; @ H,, one always has the
following block representation.
M = (Myy My; Myy M3 )
In addition, if M,; = 0, then M is an upper triangular operator matrix. There are many
publications looking at the spectral properties of upper triangular operator matrices. It's worth
mentioning that some authors estimate the set (o,(4) U g,.(D)) \ 0.(M) and obtain some
sufficient conditions of
g,(M) = 0,(A) U a,(D)
where M the upper triangular operator matrix is acting in a Banach space, and o, €
{Uwr O¢, Op, Oyp, O-SF_:}'
Block operator matrices play a significant role in coupled systems of partial differential
equations of mixed order. The study of upper triangular operator matrices and related topics
is one of the hottest areas in operator theory. A number of mathematicians have studied upper
triangular operator matrices in the past.
2. Preliminaries

In this section, we recall the following concepts, which are used later.
All through this work, H denotes to infinite dimensional complex Hilbert space, C(H) is the
set of all closed linear operators defined on H. For an operator M € C(H), we define N(M)
as the kernel of M, while D(M) represents the domain, and R(M) denotes the range of M.
The upper semi Fredholm operator is define if R(M) is closed and n(M) =
dim dim N(M) is finite while we say that M is lower semi Fredholm operator if d(M) =
codim R(M) is finite. A Fredholm operator is upper and lower semi Fredholm operator.
SF.(H)={M € C(H): M is upper semi Fredholm},
SF_-(H) ={M € C(H): M is lower semi Fredholm}.
The index of M is defined as ind (M) = n(M) — d(M).
An operator M € C(H) which is Fredholm operator of index 0 is defined as Weyl operator,
while ¢,,(M) = {n € C: M — nl is not weyl} is used to define the Weyl spectrum of M. In
addition we can assign the following notations:
SF;(H)={M € C(H): M € SF,(H), ind(M) <0}
SE*(H) = {M € C(H):M € SF_(H), ind (M) = 0}
In (4), Berkani generalized the concept of Fredholm operators to B-Fredholm operators as
follows
QM) ={i € N:Vj€N,j=i=R(M)nNM) S R(M)nNM)}
The degree of stable iteration of M is denoted by dis(M) and defined by dis(M) =
inf N(M) and dis(M) = oo when 2(M) = Q.
Furthermore, for M € C(H) the B — Fredholm operator is upper and lower semi B —
Fredholm operator, where M is upper (resp., lower) semi B — Fredholm operator if
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3d e nM): dim{N(M) n R(M%)} is finite and R(M%) closed and (resp., codim {R(M) +
N(M™)} is finite), and the index of M is

ind(M) = dim{N(M) n R(M%)} — codim{R(M) + N(M%)}.

We call M € C(H) as B — Weyl if it’s B- Fredholm operator with index 0 and ogy, (M) is
used to symbolize the B-Weyl spectrum of A and defined by o5, (M) ={n€C:M —nlis
not B-weyl }.

Moreover, the ascent asc(M) and descent dsc(M) for M € C(H) are defined as:

asc(M) = inf {d:N (M%) = N(M*)} dscM) = inf {d:R(M?) = R(M**)}

An operator M € C(H) is called Browder if it’s both upper and lower semi Browder, where
M € C(H) is upper semi- Browder if asc(M) < oo with M is upper semi- Fredholm and it
is lower semi-Browder if dsc(M) < oo with M is lower semi — Fredholm.

Now, we can define the following spectrum for an operator M as:

osr, (M) = {n € C: M — nl not upper semi Fredholm},

s (M) = {n € C: M — nl not lower semi Fredholm},

g.(M) = {n € C: M — nl not Fredholm},

osez (M) = {n € C:M —nl & SF; ()},

oup (M) = {n € C: M — nl not upper semi-Browder },

op(M) = {n € C: M — nl not lower Semi-Browder} and

o,(M) = {n € C: M — nl not Browder }, respectively.

Evidently

o.(M) c 6,(M) € 0,(M) = 0,(M) U acco(M),

where acc o(M) denotes the set of accumulation points of the spectrum o(M) of M.
approximate point spectrum of M.

Weyl claims that the Wey’l spectrum of a Hermition operator contains exactly all of the
points in the spectrum of A with the exception of those points, which are isolate eigenvalues
of restricted pluralism, in (9), where he proved the Weyl’s theorems for bounded hermition
operators. Weyl’s theorem has now been extended to other types of bounded operators (10).
Recall that one says that M obeys Weyl's theorem if
a(M)\ 0,,(M) = Eo(M),
where E,(M) is the set of isolated points of (M) which are eigenvalues of finite
multiplicity, and that one says that M obeys Browder's theorem if a,,(M) = a;,(M).

We say that M obeys a-Weyl's theorem if
oqo(M) \ 05g; (M) = Eg (M),
where E§(M)is the set of isolated points of o,(M) which are eigenvalues of finite
multiplicity, and that M obeys a-Browder's theorem if o5z~ (M) = 0y, (M).
Let H be an infinite dimensional Hilbert space. Hamiltonian operator can be defined as
densely closed operator matrix
T=(ABC —A"):(D(A)ND(C) ® (D(B)ND(A")) > HDH,
where A is a densely defined closed operator, B and C are self adjoint operators.(see (4)).
For the proof of the main results in the next section, we need the following auxiliary lemmas.
2.1. Lemma
1. M is upper semi- B-Fredholm and n(M) < oo if and only if M is left Fredholm.
2. M is lower semi- B-Fredholm and d(M) < oo if and only if M is right Fredholm.
Proof. The proof of this lemma is similar to the proof in bounded case.
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2.2. Lemma (see (13)) Let M = (ABOD ):D(A) @ D(D)c HP H — H @ H be a closed

operator matrix such that A, D are closed operators with dense domains and B is a closable

operator. Then

(1) If A and D are right Fredholm, then M is right Fredholm.

(2) If A and D are left Fredholm, then M is left Fredholm.

(3) If A (resp., D) and M are Fredholm, then D (resp.,A) is Fredholm.

(4) If A (resp., D) and M are Weyl, then D (resp., A) is Weyl.

2.3. Lemma (see (14)) Suppose that either n(M) or d(M) is finite, and that asc(M) is finite

then n(M) < d(M).

2.4. Lemma (see (14)) Suppose that either n(M) or d(M) is finite, and that dsc(M) = q is

finite then d(M) < n(M) + dim H/D(M?1). In particular, d(M) < n(M) if D(M) = H.

2.5. Lemma (see (14))

a) If asc(M) and dsc(M) are finite, then asc(M) < dsc(M). If also D(M) = H, then
asc(M) = dsc(M).

b) Suppose that asc(M) is finite and that n(M) = d(M) < oo. Then dsc(M) = asc(M).

c) Suppose that D(M) = H, that dsc(M) is finite, and that n(M) = d(M) < co.
Then asc(M) = dsc(M).

2.6. Lemma (see (11))

If M is linear operator on a vector space X then the following hold:

1. If acs (M) < oo then n(M) < d(M).

2. If dsc(M) < cothen d(M) < n(M).

3. Results

In this part of paper, we define some spectral properties for unbounded upper triangular
operator matrices, these properties are defined for operators in bounded case (see (4), (5),
(12) and (13)). Furthermore, we effort some necessary and sufficient conditions to obtain the
equivalence among them and among the Weyl type theorems such as Weyl’s, a-Weyl’s,
Browder’s and a-Browder’s. Before we proceed, we need to define the following spectrums:

ap_(.) ={n € a,(.):n(.—nl) = oo};
op, ()= {n_ eC:neaoy, (1 )};
gy, (-) = {n € o,(.):n(.—nl) > d(.—nI)} for an operator (.) and
or(M) ={n € C:R(M —nl) is not closed }.
3.1. Theorem If op_ (D) N ap_(A") =ap (A) Nap (D7) =0 and op, (A7) \osr_(A7) =
op, (D*)*\O'SF_ (D*)* = @ with o(M) = o,(M) then M obeys Weyl’s theorem if and only if
M obeys a-Weyl’s theorem.
Proof. Since o(M) = o,(M)this would imply that E,(M) = E§(M).To prove the
equivalence, it sufficient to show that o, (M) = ogp+(M). Let n ¢ o,.+(M), to prove
n & a,,(M) i.e., M — nl is weyl operator. Since ap_(D) Nop_ (A") =0p (A)Na, (D7) =
@ these conditions imply that A and D are Fredholm operators, by Lemma 2.2 (1) and (2),
we get M is Fredholm operator. Clearly ind(A — nlI) > 0, ind(D — nI) > 0 Since 0p+(A*)*\
osr_(A") =9 and op (D) \osr_(D*)" = @, thus ind(M — nl) = ind(A —nl) + ind(D —
nl) > 0, but ind(M — nl) < 0 then ind(M — nI) = 0 which leads to n ¢ a,,(M —nl). The
proof is completed.
3.2. Theorem M obeys a-Weyl's theorem if and only if M obeys a-Browder's theorem, and
EG(M) Nnog(M) = @,EG(M) N ogsc(M) =0
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Proof. The proof is similar to the proof in bounded case (see (16)).

3.3. Theorem M obeys Weyl's theorem if and only if M obeys Browder's theorem, and
Eo(M)no,, (M) =0

Proof. The proof is similar to the proof in bounded case (see (16)).

3.4. Definition (6) For M € C(H), we say M obeys

1. (w) ifa,(M)\ USF;(M) = E,(M)

2. Property (gw) if oo ( M) \ ospp; (M) = E(M)

3. Property (b) if 0,(M) \ a5z (M) = a(M) \ 0,( M)

4. Property (gb) if a,( M) \ ospp; (M) = (M)

3.5. Definition. For M € C(H), we say M obeys

1. (am) if o,( M)\ 0,(M) = Eg (M)

2. Property (sz) if a( M) \ ogp (M) = E(M)

3. Property (asz) if a( M) \ asp- (M) = m(M)

3.6. Theorem

Let M obeys property (gw) with (M) = o,(M) and op_(A) Uop (D) = @ then M obeys
(sz) property.

Proof. Letn € o(M)\asg; (M), then n € (M) and ind(M —nl) < 0, by lemma 2.1.(1), we
have M — nl is upper Semi B-Fredholm with n(M — nl) < oo, since by assumption ¢(M) =
a,(M), thenn € g,(M\ospr; (M), but M obeys (gw) property, thus n € E(M).

For the reverse inclusion, let n € E(M), then n € (M), by assumption: o, (A) U0, (D) =
@ and (D —nl) are right Fredholm with ind(A —nI)+ ind(D —nl) < 0, then by Lemma
2-1(1), we have (M — nl) is right Fredholm with ind(M —nl) = ind(A —nl) + ind(D —
nl) < 0,thenn ¢ osp; (M) thus, n € a(M)\asr; (M). Then M obeys Property (sz).

3.7. Theorem

Let M obeys property (gb) with o(M) = o,(M) and o, (A)VU o, (B) =9, then M obeys
property (asz).

Proof. The proof of this theorem is similar to the Proof of theorem 3.6.

3.8. Theorem If ¢(M) = 0,(M) and D(M) = H, then M obeys (w) property with E,(M) N
Oasc(M) = @ and Eq(M) N Ezg.(M) = @ if and only if M obeys property (b) with E,(M) N
or(M) =90

Proof. To prove (M) obeys property (b) with Eo;(M)NEx(M) =@ we need to
proof o, (M)\dsrz (M) = o (M)\ap(M).

Letn € o,(M)\osp- (M), thenn € o,(M) = o(M)and (M —nl) is upper semi Fredholm
with ind(M —nl) < 0, to prove n ¢ a,(M), i.e., (M —nl) is Browder operator. Since by
assumption Eq(M) N oy5c(M) =@ and Eq(M) N o,5.(M) = @ then asc(M —nl) < oo and
dsc(M —nl) < oo, by Lemma 2.4. we get d(M —nl) < n(M —nl) < oo, thus n ¢ a,(M)
then n € a(M)\o,(M), thus o(M)\osp- (M) S a(M)\o,(M), but M obeys property (w) , i.e.,
n € Eq(M) then Ey(M) N ax(M) = Q.

Now, Let n € a(M)\o,(M), then n € o(M) = 0,(M) and M — nl is Browder i.e., (M —nl)
is Fredholm operator with finite ascent and finite descent, then by definition of Fredholm
operator: M —nl is upper and lower semi Fredholm operator. Since asc(M —nl) and
d(M —nl) < oo, then by lemma 2.3 and lemma 2.4 we get n(M —nl) = d(M — nl) thus
M —nl is belong to osg- (M), thus n & osp; (M), from all of that we get n € ,(M)\ogr; (M)
then (M) obeys property (b).
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To proof the reverse direction, i.e., to proof M obeys property (w) we need to show that
oqa(M)\osr; (M) = Eo(M) let n € o,(M)\osr7 (M), since M obeys (w) property then
n € ag(M)\ o5z (M) = my(M) = {n € t(M):n(M —nl) < oo}, then n € iso o(M). Since
M —nl is upper semi Fredholm operator with ind(M —nl) < 0and asc(M —nl) < o and
dsc(M —nl) < oo with D(M) = H. then n(M —nl) =d(M —nl) < o, also n(M —nl) =
d(M — nl) must be larger than zero, if n(M —nl) = d(M —nl) = 0 then M — nl is one-one
mapping of D(M) onto all of H. The inverse (M — nl)~ ! is then closed and hence bounded,
thus n € o (M), which is Contradiction. Hence n(M — nl) > 0, thenn € Ey(M).

Now, assume n € Eq(M), To prove n € o,(M)\osr~ (M) Since n € Eq(M) then n € isos (M)
which imply n € o(M) = 6,(M). To prove M — nl is belong to osz-(M). Since M obeys (b)
property with Eq(M) Nog(M) =@ and n € Eq(M), then 0 <n(M —nl) < oand R(M —
nl) is closed with M —nl is Browder operator i.e., n & ogp; (M) and E(M) N ogsc(M) = 0
and Eo(M) N a45.(M) = ¢. The proof is completed.

3.9. Theorem If M is upper triangular unbounded operator matrix with E§ (M) N g,5.(M) =
® and o, (A)Uao, (D)=0 , 0, (A")\osr_(A")" = 0p, (D) \osr_ (D7) =@, then M
obeys property (am).

Proof. Let n € a,(M) \ o,(M), to prove n € Eg(M) i.e., to prove n € Eg(M) = {n €
isoo,(M):0 <n(M —nl) < oo}.

Since g,(M) \ (M) = 0,(M) \ (0,(M) U acc a(M))

= g,(W)\o,, (1) € E§(u), sincen ¢ a,(M) thenwe get 0 < n(M —nl) =d(M —nl) < o
thus n € E5(M).

Let n € Eq(M), to prove n € o,(M)\o,(M) Since n € Eg(M), then n € a,(M), it remains to
prove n € a3, (M), since EZ (M) N o45.(M) = @ then asc(M — nl) < oo. From lemma 4 (see
(9)) and 0, (A) U, (D) = @ we see that ind(A — nl) + ind(D —nl) < 0, and since

oy, (A") \osp_(A")" = 0,,(D")"\0sr_(D*)* = @, we have ind (A —nl) = 0 and ind(D —
nl) = 0 Hence ind(M — nl) = Othen by lemma 2 - 5 - (b), we get asc(M) = dsc(M) < oo,
thus n & a,(M). Then M obeys (am) property.

3.10. Theorem If M obeys Weyl’s theorem and D(M) = H with Eq(M) N 0,,.(M) = @ and
Eo(M) N o45.(M) = @ then M obeys (am) property.

Proof. By using the same steps in theorem 3.9 one can show o,(M)\o, (M) < E§. It remains
to proof E§ (M) < 0,(M)\o,(M).Letn € Eg(M) thenn € a,(M) also n € Eq(M) but M
obeys Weyl's theorem then o(M)\o,,(M) = Eq(M) i.e., M — nl is Weyl theorem. By
assumptions we have E§ (M) N o,5.(M) = @ and E§ (M) N 045.(M) = @ these would imply
that asc(M — nl) and dsc(M — nl) are finite then (M — nl) is Browder operator. Then the
proof is completed.

3.11. Example In this example, we tried to apply the results in (16) and (17) and some results
in this paper to the Hamiltonian operator matrix by applying the plate bending problem.
Assume the plate bending problem

92 92\’
A (ﬁ + W) w=0
With x and y from O to 1.
For the y-direction: at y = 0 we have w = 0 (Hinge end)

aty = 0.7 we have w = 0 and Z—V;:O (Fixed end)
2
at y = 1 we have w =given function and ?)TV: = 0 (Free end)
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For the x-direction: w, Z—V: are given functionatx = 0tox = 1.
the problem can be described by the following Hamiltonian system (18)

0 92 1 2
a(Wﬁ‘DH)—(OlOO—6—31200—50006—)}200—10>(W19¢‘U),
and the corresponding Hamiltonian operator matrix is given by
2 1 dZ
H=(01 —-— - = —_ —10 )|=:(AB0 — A"
(0 00 dyZOO DOOO dyZOO 0) (ABO )

with domain is D(A) @ D(A*) < L,(0,1) @ L,(0,1) ,A = AC[0,1], and
A={01 dzo B—OOOlDA— 9)EH:w(0)=0,0 €EA,w €H
= 520 ) _( —5) (A) ={w9)€eEH:w(0)=0,w EAw €H}

With some simple calculation, we have ap, (4") \osr_(4")" = 8,0, (4") = ®,—a, (A")N
0y, (A7) =0, =0,,(A)" N0y, (A) = @ and o, (A7) = @. Then from Propositions 4.1, 4.2
and 4.3in (5), and from Propositions 10 and 11 in (10), we have

o.(H) = —0.(A") U a.(4),

where o, € {o,, 0,05, 0sp, 0 }.

now, by theorem 3.1 we found that o,,(H) = ogz+(H) if 6,(H) = o(H).

4. Conclusion

In this paper, other spectral properties are introduced and studied for the upper triangular
operator matrices. Furthermore, Weyl’s type theorems and Browder’s theorems are also
proved under certain conditions. Finally, as an application the paper study the plate bending
problem and calculate the spectrum sets denoted by o, where o, € {0,, 0\, 01, 05r7, 01 }.
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