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Abstract  

This article studies the nonlocal inverse boundary value problem for a rectangular domain, a second-

order, elliptic equation and a two-dimensional equation. The main objective of the article is to find 

the unidentified coefficient and provide a solution to the problem. The two-dimensional second-order, 

convection equation is solved directly using the finite difference method (FDM). However, the inverse 

problem was successfully solved the MATLAB subroutine lsqnonlin from the optimization toolbox 

after reformulating it as a nonlinear regularized least-square optimization problem with a simple 

bound on the unknown quantity. Considering that the problem under study is often ill-posed and that 

even a small error in the input data can have a large impact on the outcome, Tikhonov's regularization 

technique is used to obtain stable and regularized results. 

Keywords: inverse problem, two-dimensional parabolic equation, overdetermination condition, finite 

difference schemes, Tikhonov technique. 

 

 1. Introduction 

Partial differential equations play an important role in many areas of everyday life. In the fields of 

engineering, design, construction and medicine, for example, high-speed computers have greatly 

influenced the development of numerical methods for solving partial differential equations, advancing 

and modernizing them compared to analytical methods. Researchers continue to observe steady 

progress in this field. According to mathematicians, it is the first inverse (ill-posed) problem in 

mathematics, (Hadamard, 1902). However, this problem has changed. In the twentieth century, 

practical applications are constantly being researched, which is of great interest for solving elliptic 

problems. It has been studied by many researchers. In [1], the approximate solution of the inverse 

elliptic problem with the Dirichlet condition was obtained using the finite difference method. In [2], 

we have used the Schwarz-alternating method. The numerical solution of the inverse problem for the 

multidimensional elliptic equation with overdetermination is obtained using a finite difference method 

in [3], a finite element method in [4], an integral equation method in space [5], the Tikhonov 

regularization method in [6–24], and the Lavrentiev regularization method [25]. 

The existence and uniqueness of a solution to this problem was proved in [26], and this paper aims to 
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solve this type of problem numerically. 

This article describes a way to solve this type of inverse coefficient problem numerically that is stable. 

It uses the finite difference method (FDM), an optimization method, and the Tikhonov regularization. 

The direct numerical solution of the problem was obtained using FDM. Subsequently, we used 

Tikhonov's approach to stabilize this problem. 

Section 2 presents the mathematical formulation of the inverse problem. In Section 2, we present the 

mathematical formulation of the inverse problem. Section 3 describes the direct finite difference 

scheme to obtain the numerical solution of a direct problem, along with numerical test examples. 

While Section 4 describes the numerical approach to solve an inverse problem using the Tikhonov 

technique, Section 5 provides a regularized solution. Section 5 presents and discusses the quantitative 

results. The conclusion of the paper can be found in Section 6. 

 

2. Mathematical formulation  

Consider the following inverse problem of retrieving an unknown time-dependent potential 

coefficient a(y) in the two-dimensional second-order elliptic equation: 

 

uxx(x, y) + uyy(x, y) = a(y)u(x, y) + f(x, y),     (x, y) ∈ Q                                               (1) 

 

under the boundary conditions 

u(x, 0) =  φ(x),             uy(x, Y) =  ψ(x),         x ∈ [0,1],                                                   (2) 

 

ux(0, y) = 0,        y ∈ [0, Y],                                                                                                     (3) 

 

with the nonlocal integral condition 

∫u(x, y)dx

1

0

= 0,       y ∈ [0, Y],                                                                                               (4) 

and additional measurement condition 

u(0, y) = H(y),  y ∈ [0, Y],                                                                                              (5) 

 

where the functions  f(x, y), φ(x),ψ(x),ω(x) and H(y) are given and   Q =  {(x, y): 0 < x <

1, 0 < y < Y < ∞}. The numerical solution of the inverse problem second-order elliptic equation (1)  

 

– (5) is written as {a(y), u(x, y)} such that a(y) ∈ C[0, Y] and u(x, y) ∈ C2(Q).  

The existence and uniqueness of theorems have been established by Y. Mehraliyev in [26] and stated 

as follows: 

2.1 Existence of the inverse problem classical solution.  

Assume the following conditions: 

E1) φ(x) ∈ C2[0,1], φ′′′(x) ∈ L2(0,1),    φ′(0) = φ′(1) = 0;  

E2) ψ(x) ∈ C1[0,1], ψ′′(x) ∈ L2(0,1), ψ′(0) = ψ′(1) = 0; 

E3)  f(x, y), fx (0, y) ∈ C(Q), fxx (x, y) ∈ L2(Q) and  

 fx (0, y) = fx (1, y) = 0, y ∈ [0, Y]; 

E4)   H(y) ∈ C2[0, Y], H(y) ≠ 0,   y ∈ [0, Y]; 

Theorem 1. Let the assumptions (E1)–(E4) and the condition  
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(𝒜1(Y) + 𝒜2(Y)  +  2)2 (ℬ1(Y) + ℬ2(Y)) <  1,                                                            (6)  

Where 

𝒜1(Y) = ‖φ(x)‖L2(0,1) + Y‖ψ(x)‖L2(0,1) + 2Y√Y ‖f (x, y)‖L2(Q) 

+2‖φ′′′(x)‖L2(0,1) + 2‖ψ′′(x)‖L2(0,1) + 2√Y‖fxx (x, y)‖L2(Q), 

𝒜2(Y) = ‖[H( y)]−1‖C[0,Y] {
1

√6
[‖φ′′′(x)‖L2(0,1) + ‖ψ′′(x)‖L2(0,1) + √Y ‖fxx (x, y)‖L2(Q)]

+ ‖H′′( y) − f(0, y)‖C[0,Y]}, 

ℬ1(Y) = 2Y(1 + Y),   ℬ2(Y) =  ‖[H(y)]−1‖C[0,Y]

1

√6
Y, 

Be satisfied. Then problem (1)–(5) has a unique classical solution in the ball K =  KR(‖u‖EY
3 ≤  R =

(𝒜1(Y) + 𝒜2(Y)  +  2) of the space  EY
3 (  EY

3 is Banach space).  

 

3. FDM scheme for direct (forward) problem 

In the following section, we will solve the direct problem, i.e., when the unknown term a(y) is 

presumed to be given. In order to solve this problem, we used FDM to find the numerical solution of 

the nonlocal problem given by equations (1)-(4). We sub divide the domain  Q  into  M × N mesh with 

spatial step size ∆x =
1

M
, and ∆y =

Y

N
 , where M and N are given positive integers. The grid points are 

given by 

xi = i∆x,           i = 0,1, … ,M, 

      yj =  j∆y, j = 0,1, … , N,     

we denote the discretized from of the quantities as follows; 

u(xi,  yj) = ui,j, a(yj) = aj, f(xi,  yj) = fi,j, ψ(xi) = ψi and φ(xi) = φi   

for  i = 0,1, … ,M,   j = 0,1, … , N.  

Then the FDM scheme combined with the trapezoidal rule quadrature for nonlocal integral condition, 

the discrete expression for equation (1), which can be approximated via central FDM expressions. 

ui,j+1 − 2ui,j + ui,j−1

(∆y)2
+

ui+1,j − 2ui,j + ui−1,j

(∆x)2
− ajui,j = fi,j, i = 0,1, … ,M,   j = 0,1, … , N. 

Simplifying the above equation, we get 

1

(∆y)2
(ui,j−1 + ui,j+1) − 2 (

1

(∆y)2
+

1

(∆x)2
+

aj

2
) ui,j +

1

(∆x)2
(ui+1,j + ui−1,j) = fi,j,   

 

  i = 0,1, … ,M, j = 0,1, … , N.                                                                                                   (7) 

The FDM discretizes equations (2) - (3) as 

ui,0 = φi,                                                    i = 0,1, … ,M,                                                         (8) 
ui,N+1 − ui,N 

∆y
= ψi,                                        i = 0,1, … ,M,                                                   (9) 

−3u0,j + 4u1,j−u2,j 

2∆x
= 0,                                    j = 0,1, … , N.                                          (10) 

The trapezoidal rule discretizes integral condition (4) as. 

1

2M
 (u0,j + uM,j + 2 ∑ ui,j

M−1

i=1

) = 0 ,                     j = 0,1, … , N.                
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Since u0,j = u1,j therefore, the above equation becomes.  

10

3
u1,j +

5

3
u2,j + 2 ∑ ui,j

M−1

i=3

+ uM,j = 0,          j = 0,1, … , N,                                            (11) 

finally, the discrete additional condition (5) as. 

u0,j = Hj ,                           j = 0,1, … , N.                                                                               (12) 

Equations (7)-(11) can be written in linear system at  j = 0,1, …N.  

1

(∆y)2
ui,2 + b1ui,1 +

1

(∆x)2
(ui+1,1 + ui−1,1) = fi,1 −

1

(∆y)2
φi,    i = 0,1, … ,M, 

1

(∆y)2
(ui,3 + ui,1) + b2ui,2 +

1

(∆x)2
(ui+1,2 + ui−1,2) = fi,2,         i = 0,1, … ,M, 

1

(∆y)2
(ui,4 + ui,2) + b3ui,3 +

1

(∆x)2
(ui+1,3 + ui−1,3) = fi,3,         i = 0,1, … ,M, 

     ⋮ 
1

(∆y)2
(ui,N + ui,N−2) + bN−1ui,N−1 +

1

(∆x)2
(ui+1,N−1 + ui−1,N−1) = fi,N−1, i = 0,1, … ,M, 

(bN +
1

(∆y)2
) ui,N +

1

(∆x)2
(ui+1,N + ui−1,N) +

1

(∆y)2
ui,N−1 = fi,N −

∆y

(∆y)2
ψi   i = 0,1, … ,M, 

the above system can be written in matrix form as 

𝐋U = P,                                                                                                                                       (13) 

Where, 

bj = −2(
1

(∆y)2
+

1

(∆x)2
+

aj

2
) , U = [U1,   U2,, … , UN−1, UN]T,  

Uj = [u1,j,   u2,j,, … , uM−1,j, uM,j]
T
 

L=

[
 
 
 
 
 
 
 
 

𝛤1      𝛬           𝛩       𝛩               …                      𝛩

𝛬        𝛤2         𝛬       𝛩            …                         𝛩

 
⋱

𝛩          𝛩       𝛩       𝛩  …    𝛬        𝛤𝑁−1         𝛬      0 

𝛩          𝛩       𝛩       𝛩 …      0          𝛬            𝛤𝑁      𝛬]
 
 
 
 
 
 
 
 

,   𝑃 =

[
 
 
 
 
 
 
 
 

𝐹1 − 𝛬𝜑𝑖

𝐹2

 
⋮

𝐹𝑁−1 

𝐹𝑁 − 𝛬∆𝑦𝜓𝑖]
 
 
 
 
 
 
 
 

, 

here, L be (NM) ×(NM) square matrices, P is a column with the size (NM)× 1, Γj and  Λ are the (M × 

M) matrix, Θ be (M × M) zero matrix and Fj is column with the size (M×1),  
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𝛤𝑗 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

4

3(∆𝑥)2
+ 𝑏𝑗     

1

 3(∆𝑦)2
        0          0           0       0   …               0            0    0   

  

1

(∆𝑥)2
              𝑏𝑗            

1

(∆𝑥)2
    0              0       0     …             0           0     0

   

 
 0              

1

(∆𝑥)2
            𝑏𝑗      

1

(∆𝑥)2
          0     0  …                  0           0     0   

⋱

   
0                     0            0                    …            0    

1

(∆𝑥)2
            𝑏𝑗      

1

(∆𝑥)2

    
10

3
              

5

3
            2                                          …       2             2          1    

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 

𝛬 =

[
 
 
 
 
 
 
 
 
 
 

1

(∆𝑦)2
       0          0                …                      0

0        
1

(∆𝑦)2
        0               …                      0

 
⋱

0           0              0    …    0      
1

(∆𝑦)2
         0

0            0             0      …   0            0             0]
 
 
 
 
 
 
 
 
 
 

, 𝐹𝑗 =

[
 
 
 
 
 
 
 
 

𝑓1,𝑗

𝑓2,𝑗

 
⋱

𝑓𝑀−1,𝑗 

0 ]
 
 
 
 
 
 
 
 

, 

 

 

3.1. Example for direct problem 

  We first investigate the robustness and efficiency of the proposed FDM method for a direct problem. 

In cases where the unknown coefficient is given, where the exact solution is 

     u(x, y) =
(
y
2 − 2) cos(πx)

10
,      (x, y) ∈ Q 

 

and the input data are as follows: 

 H( y) = (
1

20
) (y − 4),    φ(x) =

− cos(πx)

5
,    ψ(x) =

cos(πx)

20
,   (x, y) ∈ Q, 

 

a(y) =  −15y,    f(x, y) = (
1

20
) (−π2 + 15y)(y − 4) cos(πx),    (x, y) ∈ Q. 

Figure 1 presents the absolute error diagram of interior points when sizes of mesh N = M =

 {20, 40, 80}. Mesh independence has been attained, as well as numerical solution convergence toward 

the exact solution and high agreement. Figure 2, as the number of discretization rises, the findings for 

H(y),  becomes more accurate and showing a clear convergence. 

 



IHJPAS. 37 (2) 2024 

 

414 
 

 
Figure 1.   The absolute errors for the direct problem (1)-(4), when sizes of mesh are M = N ∈ {20, 40, 80}. 

 

 

 

 

Figure 2. The numerical value and accurate for desired output H(y) with various mesh sizes. 

 

4. Inverse Problem 

      For the nonlinear inverse problem (1)-(5), we seek a precise and stable identification of u(x, y) 

and a(y), that mean a(y) be unknown. The one-dimensional second-order elliptic equation together 

with u (x, y) satisfies the problem given by equations (1)-(5). During the iterative process to solve the 

inverse problem, we assume that a(0) is a constant starting assumption. Based on the given data, we 

can calculate this, we can calculate this at y =  0. To solve this problem, reformulate it as a nonlinear 

minimization problem. In other words: We try to find the smallest possible value for the discrepancy 

between the numerically calculated result and the measured data. Since this is an ill-posed problem, 

we need to apply Tikhonov regularization for a robust numerical solution in order to obtain stable 

results. The Tikhonov regularization functional can be derived from condition (5): 
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F(a) = ‖ u(0, y) − H(y)‖2
L2[0,Y] + β‖a(y)‖2

L2[0,Y],                                                      (14) 

 

where β > 0, is a regularization parameter.  The discretization of (14) is 

 

F( a) = ∑[u(0, yj) − H(yj)]
2

N

j=1

+ β∑aj
2

N

j=1

.                                                                       (15) 

 

The unregularized case, i.e., β =  0, produces the regular nonlinear least-squares functional, which is 

inherently unstable when dealing with noisy data. The MATLAB toolbox technique lsqnonlin is used 

to minimize F under the physical constraint a > 0 and does not need the user to provide the gradient 

of the objective functional (15) [27]. To determine the minimum of a scalar function with several 

variables, the lsqnonlin subroutine conducts a constrained nonlinear optimization. The subroutine is 

configured using the following parameters: 

• (Maxlter) Maximum number of iterations = 400 or  102 × (number of variables) 

• Solution tolerance (SolTOL) = 10−15 and   Objective function tolerance (FunTOL)  = 10−15.  

The solution of the inverse problem (1)–(5) is subjected to both accurate and noisy measurement data 

(5). By including a random error, the noisy data is numerically simulated as follows: 

Hϵ(yj) = H(yj) + ϵj,                            j = 0,1, … , N,                                                         (16) 

where ϵ, is random Gaussian normal distribution vectors with mean zero and standard deviations  σ,  

given by 

σ =  p × max
y∈[0,Y]

|H(y)| ;                                                                                                          (17)  

where p is the percentage of noise. We use the MATLAB bulletin function normrnd to generate the 

random variables ϵ = (ϵj) and  j = 0,1, … , N.  

as follows: 

ϵ  =  normrnd(0, σ, N),                                                                                                         (18) 

4.1 Initial guess  

As stated previously, to begin the iterative process of solving the inverse problem, an initial 

estimate is required. The following values for a(0)  can be derived from input data. 

Consider the nonlinear inverse problem (1)-(5) with unknown coefficient a(y) and from the equation 

(28) in [26], we have: 

a(y) = H−1(y) {H′′(y) − f(0, y) − ∑λk
2uk(y)

∞

k=1

} ,            y ∈ [0, Y]. 

From equation (5), since uk(y) = u(0, yk) = H(yk) and λk
2 = π2,  therefore the above equation 

becomes: 

𝑎(𝑦) = 𝐻−1(𝑦) {𝐻′′(𝑦) − 𝑓(0, 𝑦) − ∑ 𝜋2𝐻(𝑦𝑘)

∞

𝑘=1

} ,            𝑦 ∈ [0, 𝑌]. 

the above equations at y = 0 ,we get the first guess:  

𝑎0 = 𝐻−1(0) {𝐻′′(0) − 𝑓(0,0) − ∑ 𝜋2𝐻(0)

∞

𝑘=1

} ,   𝑦 ∈ [0, 𝑌],    (19)   

provided that H(0) did not vanish. 
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5. Results and discussion 

 We examine and evaluate the numerically computed results using the FDM in connection with the 

Tikhonov regularization approach, as described in the previous section. The root mean squares errors 

(rmse) utilized via the following expression. 

 

rmse(𝑎) = √
1

𝑁
∑(𝑎𝑖

𝑒𝑥𝑎𝑐𝑡 − 𝑎𝑖
𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)

2
𝑁

𝑖=1

.                                                                     (20) 

Calculated to determine the accuracy of the specified coefficient. For simplicity, we take Y = 1 in all 

examples. 

  First, we consider the case where the unknown coefficients are given to test the stability and 

effectiveness of the proposed FDM scheme for a direct problem, we have a direct problem, and the 

exact solution is               

        𝑢(𝑥, 𝑦) =
−𝑒

−7−𝑦
100 𝑐𝑜𝑠 (𝑥𝜋)

9
,           

and the input data are as follows: 

𝑎(𝑦) =  −10 𝑒−
5𝑦
100, 

𝑓(𝑥, 𝜏) =
𝑒

1
100

(−7−6𝑦)
(−100000 + 𝑒𝑦 20⁄ (−1 + 10000𝜋2))𝐶𝑜𝑠(𝜋𝑥)

90000
 

𝜑(𝑥) =
−𝑒

−7
100𝑐𝑜𝑠 (𝑥𝜋)

9
, 𝜓(𝑥) =

𝑒
−7
100𝑐𝑜𝑠 (𝑥𝜋)

900
,   𝐻(𝑦) =

−𝑒
−7−𝑦
100

9
. 

Next, we consider the inverse elliptic problem (1)-(5) with the coefficient a(y) is unknown. The initial 

guess was a0 = −10 can be found in the equation (19).  It is easy to verify the input data for the 

conditions of the Theorem 1. Hence, the inverse elliptic problem (1)-(5) with input data above has a 

unique solution. 

We fix M= N = 40 for the numerical investigation started with the situation of no noise included, i.e., 

p =  0 in (17). The objective function (15) represented in Figure 3(a), and a speed declining 

convergence is seen for achieving a shorter order tolerance  O(10−15) in just 9 iterations. Figure 3(b) 

shows numerical results for the coefficient a(y) with  rmse(a) = 0.0034.  
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(a) 

 
(b) 

 

Figure 3. (a) objective function (15) and (b) a(y) with noise-free and without regularization. 

 

Next, we add p ∈  { 0.05, 0.5}%  noise as in equation (17). The case of noisy data and no 

regularization is presented in Figures 4(a)-4(b). Figure 4(a), from this figure the monotonic 

decreasing achieved in about 16 iterations and 40 iterations respectively, and the steady convergence 

for the rest of iterations to O(10−15) in 40 iterations reaching a very low stationary value of order 

the associated numerical result was found stable and accurate (with p = 0.05, rmse(a) = 0.2750), 

but unstable and inaccurate (with p = 0.5, rmse(a) = 27.5397). This is expected since the problem 

under investigation is ill-posed problem and small errors (noise) in input data lead to drastic errors in 

outputs. As seen in Figure 4(b), the numerical solution of the a(y) stable and accurate at p = 0.05, 

and with p = 0.5, unstable and diverges from the exact solution but remains on the same path when 

the value of additive noise increases in equation (17).  

   In order to restore the deteriorate stability of the coefficient a(y)  a sort of regularization should be 

applied. The L-curve approach developed by P. Hansen [28], Morozov's discrepancy principle [29], 

and even just plain old trial and error, as advocated for in [30], are just a few of the available options.  

By incorporating the penalty terms into equation (15), we employ the Tikhonov regularization 

technique. We try out different values for the regularization parameter β ∈  {10−10, … , 10−6}, noise 

of p = 0.05% is added to replicate real input data. In Figures 5(a), the monotonic decreasing achieved 

in about 11 iterations and noise of p = 0.05%. In Figures 6(a), the monotonic decreasing achieved 

in about 28 iterations, indicating that the objective function minimization (15) is satisfied. Figures 

5(b) and 6(b) depict the unknown potential coefficient a(y). These figures demonstrate that results 

are nearly perfectly smooth, particularly in the range [0.3,1], until noise levels increase from 0.05% 

to 0.5% and instabilities appear. In addition, in Table 1 rmse(a) values reveal a reasonable range of 

values, with the best retrieval occurring at the lowest rmse(a). For additional information, see Table 

1 and Figure 5-6 for numerical results. 
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Table 1. The rmse(a) (20) for the noise p ∈  {0.05, 0.5} %, and regularization 𝛽 ∈  {10−10, … , 10−6}.. 

  𝐫𝐦𝐬𝐞(𝐚) 𝛃 =  𝟏𝟎−𝟏𝟎 𝛃 =  𝟏𝟎−𝟗 𝛃 =  𝟏𝟎−𝟖 𝛃 =  𝟏𝟎−𝟕 𝛃 =  𝟏𝟎−𝟔 

𝐩 = 𝟎. 𝟎𝟓% 0.2523 0.3709 0.8006 1.3559 2.0580 

𝐩 = 𝟎. 𝟓% 21.9455 8.6963 2.1730 1.3343 2.0448 

      

 

 

 

 
(b) 

 

Figure 4. (a) objective function (15) and (b) a(y), for different noise level p ∈  {0.05, 0.5} % and no regularization. 

 

 

(a) 
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(b) 

Figure 5. (a) objective function (15) and (b) a(y), for p = 0.05% noise and β = 10−10. 

 

 

(a) 

 

(b) 

Figure 6.  (a) objective function (15) and (b) a(y), for p = 0.5% noise and β = 10−7. 

 

The numerical and exact temperatures u(x, y), with p = 0.05% noise, β = {10−10},  p = 0.5% 

noise, β = {10−10},  as well as the absolute error between them, are illustrated in Figure 7 and execute 

arguments obtained. 
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(a) 

 

(b) 

 

Figure 7. The exact and numerical u(x, y) with (a) p = 0.05% noise β = 10−10, (b) p = 0.5% noise β = 10−7, as well 

as the absolute error between them. 

 

6. Conclusions  

The finite difference schemes were used for direct two-dimensional second order elliptic inverse 

problems in conjunction with quadrature by the trapezoidal rule. The instability induced by the ill-

posed problem was solved using Tikhonov regularization. The RMS values for noise p = 0 and β =

 0 were contrasted for the numerical test problem. It was found that a stable solution with p = 0.05% 

noise and the regularization parameter β =  10−10  
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