Vol. 27 (2) 2014



## Inaam M. A. Hadi Sameeah Hasoon Aidi\*

Department of Mathematics/ College of Education for Pure Science, (Ibn Al-Haitham)/ University of Baghdad

Received in: 8 May 2014, Accepted in: 22 June 2014

## **Abstract**

Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N  $\ll$  M), i.e. N + W  $\neq$  M for every proper submodule W in M. A  $\delta$ -hollow module is a generalization of hollow module, where an R-module M is called  $\delta$ -hollow module if every proper submodule N of M is  $\delta$ -small (N  $\square$  M), i.e. N + W  $\neq$  M for every proper submodule W in M with  $\frac{M}{W}$  is singular. In this work we study this class of modules and give several fundamental properties related with this concept.

**Key Words:** Small submodule,  $\delta$ -small submodule, hollow module,  $\delta$ -hollow module, singular module, nonsingular module.

<sup>\*</sup> This paper is a part of the thesis submitted by the second author.

Vol. 27 (**2**) 2014

## Introduction

Throughout this article all rings are commutative rings with identity, and all modules are unitary left R-module. A proper submodule L of a module M is called small (denoted by L  $\ll$  M), if for every proper submodule K of M, L + K  $\neq$  M. A module M is called hollow if every proper submodule of M is called small, [1]. As a generalization of the concept small submodule, Zhou in [2] introduce the concept  $\delta$ -small submodule, where a submodule N of an R-module M is called  $\delta$ -small (denoted by N  $\underset{\delta}{\square}$  M) if whenever N + K = M and M/K is singular module, then K = M. In fact an R-module M is called singular (non singular) if  $Z(M) = \{m \in M: \underset{\epsilon}{\text{ann}}(m) \text{ is an essential ideal of R}\} = M((0)), [3], \text{ and a submodule N of an R-module M is called essential in M (denoted by N <math>\underset{\epsilon}{\leq}$  M or N  $\overset{*}{\longrightarrow}$  M) if N  $\cap$  W  $\neq$  (0) for any non zero W  $\leq$  M, [4]. The concept of  $\delta$ -hollow module appeared in [5], where an R-module M is called  $\delta$ -hollow, if every proper submodule of M is a  $\delta$ -small in M. Hence hollow module is  $\delta$ -hollow, but the converse is not true.

The aim of this work is to give a comprehensive study of the class of  $\delta$ -hollow modules. It is of interest to know how far the old theories of hollow module extend to the new situation.

## 1- Preliminary

In this section, we give some definitions and propositions which are useful in our work.

#### **Definition 1.1:**

A non zero module M is called a hollow module if every proper submodule N of M is a small submodule of M (N  $\ll$  M) that is N + W  $\neq$  M for every W < M, [1].

## **Definition 1.2:**

Let M be an R-module. A submodule A of a module M is called a  $\delta$ -small submodule of M (denoted by  $A \square_{\delta} M$ ) if  $M \neq A + B$  for any proper c-singular B of M, (where B is c-singular if  $\frac{M}{B}$  is singular module), see [2]..

An R-module M is called  $\delta$ -hollow if every proper submodule is  $\delta$ -small in M, [5].

An R-module M is called semisimple if every submodule of M is a direct summand of M [3], [4].

#### **Proposition 1.3: [2]**

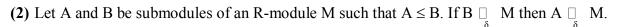
Let M be an R-module and A be a submodule of M. Then the following are equivalent (1) A  $\square$  M.

- (2) If M = A + B, then  $M = Y \oplus B$ , for projective semisimple submodule Y of A.
- (3) If M = A + B with  $\frac{M}{B}$  Goldie torsion, then M = B, where R-module M is called Goldie torsion if  $Z_2[M] = M$ , and  $Z_2(M)$  is defined by  $\frac{Z_2(M)}{Z(M)} = \frac{M}{Z(M)}$ , (see [3]).

## Proposition 1.4: [2]

(1) Let A and B be submodules of an R-module M such that  $A \leq B$ . If  $A \subseteq_{\delta} B$  then  $A \subseteq_{\delta} M$ .





- (3) Let A and B be submodules of an R-module M such that  $A \leq B$ , then B  $\square$  M if and only if  $A \square_{\delta} M$  and  $\frac{B}{A} \square_{\delta} \frac{M}{A}$ .
- (4) Let M and N be an R-modules and let  $f: M \longrightarrow N$  be a homeomorphism. If A is a submodule of M such that A  $\bigcap_{\delta}$  M, then  $f(A) \bigcap_{\delta}$  N.
- (5) Let A and B be submodules of an R-module M. Then  $A + B \bigsqcup_{\delta} M$  if and only if  $A \bigsqcup_{\delta} M$ and B  $\square$  M.
- (6) Let  $M = M_1 \oplus M_2$  be an R-module, let  $A_1 \le M_1$  and  $A_2 \le M_2$ . Then  $A_1 \oplus A_2 \sqsubseteq_{\kappa} M_1 \oplus M_2$ if and only if  $A_1 \square_{\tilde{x}} M_1$  and  $A_2 \square_{\tilde{x}} M_2$ .

## Proposition 1.5: [6]

Let A and B be submodules of an R-module M such that  $A \le B$ . If B is a direct summand of M and A  $\bigcap_{\delta}$  M then A  $\bigcap_{\delta}$  B.

Recall that an R-module M is called indecomposable if the only direct summand of M are (0), M, [4].

An R-module M is called a prime module if  $\underset{R}{\text{ann }} M = \underset{R}{\text{ann }} N$ , for each non zero submodule of M, [7].

A non zero R-module is called uniform module if every non zero submodule of M is essential in M (N  $\leq$  M), [4].

#### **Proposition 1.6:**

Let M be an R-module, then:

- (1) Let A be a proper submodule of an indecomposable R-module M. Then A  $\square_{\kappa}$  M if and only if  $A \ll M$ , [6, proposition 1.2.13].
- (2) Let A be a submodule of singular R-module M. Then A  $\square$  M if and only if A  $\ll$  M, [6, proposition 1.2.14].
- (3) Let M be torsion module over an integral domain R and A be a submodule of M. Then A  $\square$  M if and only if A  $\ll$  M, [6, corollary 1.2.16], where an R-module over integral domain R is called torsion if

 $T(M) = \{m \in M : \exists r \in R/\{0\}, rm = 0\} = M, [4].$ 

- (4) Let M be a prime R-module with  $Z(M) \neq 0$  and A be a proper submodule of M. Then  $A \square$  M if and only if  $A \ll M$ , [6, proposition 1.2.17].
- (5) Let M be a uniform R-module and A be a submodule of M. Then  $A \square_{g}$  M if and only if  $A \ll M$ , [6, proposition 1.2.18].
- (6) Let M be an R-module. Then every non singular semisimple submodule A of M is  $\delta$ -small in M, [6, proposition 1.2.3].



## 2- Basic Properties of δ-Hollow Modules

In this section, we give the basic properties about  $\delta$ -hollow modules. We see that under certain conditions hollow modules and  $\delta$ -hollow modules are equivalent. Also we noticed that some properties of hollow modules can be generalized to  $\delta$ -hollow modules.

## Remarks and Examples 2.1:

- (1) It is clear that  $Z_6$  is non singular semisimple, so every submodule of  $Z_6$  is non singular semisimple, hence every submodule is small by proposition (1.6 (6)). Thus  $Z_6$  is a  $\delta$ -hollow module. But  $Z_6$  is not hollow. Also notice that  $Z_6$  is decomposable.
- (2) It is clear that every hollow module is a  $\delta$ -hollow module. Hence each of the Z-module  $Z_4$ ,  $Z_8$  and  $Z_{p^{\infty}}$  are  $\delta$ -hollow.
- (3)  $Z_{12}$  as Z-module is not a  $\delta$ -hollow module since  $<\overline{3}>\oplus<\overline{4}>=Z_{12}$  and  $\frac{Z_{12}}{<\overline{4}>}\Box$   $Z_4$  and  $Z_4$  is a singular Z-module. However  $<\overline{4}>\neq Z_{12}$ .

By using proposition (1.6) hollow modules and  $\delta$ -hollow modules are coincident under certain class of modules.

#### Theorem 2.2:

Let M be an R-module. Then:

- (1) If M is an indecomposable module, then M is a hollow module if and only if M is a  $\delta$ -hollow module.
- (2) If M is a singular module, then M is a hollow module if and only if M is a  $\delta$ -hollow module.
- (3) If M is a prime module with  $Z(M) \neq 0$ , then M is a hollow module if and only if M is a  $\delta$ -hollow module.
- **(4)** If M is a uniform R-module then M is a hollow module if and only if M is a δ-hollow module.
- (5) If M is a torsion module over a commutative integral domain R then M is a hollow module if and only if M is a  $\delta$ -hollow module.

## **Proposition 2.3:**

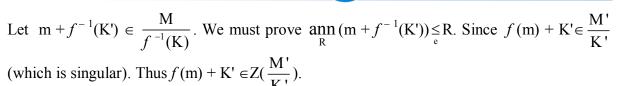
Epimorphic image of  $\delta$ -hollow module is  $\delta$ -hollow.

#### **Proof:**

Let M be a  $\delta$ -hollow module, let M' be a module and let  $f: M \longrightarrow M'$  be an epimorphism. Suppose N' is a proper submodule of M' with N' + K' = M' and  $\frac{M'}{K'}$  is singular.

This implies  $f^{-1}(N) \leq M$  because if  $f^{-1}(N) = M$  then  $ff^{-1}(N') = f(M) = M'$  and N' = M' which is a contradiction. Thus  $f^{-1}(N') = M$ . Also N' + K' = M' implies that  $f^{-1}(N') + f^{-1}(K') = M$ .

To check 
$$\frac{M}{f^{-1}(K)}$$
 is a singular R-module. We show that  $Z(\frac{M}{f^{-1}(K)}) = \frac{M}{f^{-1}(K)}$ .



So  $\underset{\mathbb{R}}{\text{ann}} (f(m) + K') \leq \mathbb{R}$ . Let J be any ideal of  $\mathbb{R}$ ,  $J \neq 0$  so  $\underset{\mathbb{R}}{\text{ann}} (f(m) + K') \cap J \neq 0$ . Thus there exists  $j \in J$ ,  $j \neq 0$  and  $j(f(m) + K') = 0_{\frac{M}{K'}}$ , then jf(m) + K' = K'. Thus  $jf(m) \in K'$ , which implies  $f(jm) \in K'$ , hence  $jm \in f^{-1}(K')$ . Thus  $j(m + f^{-1}(K')) = f^{-1}(K') = 0_{\frac{M}{f^{-1}(K')}}$ , that is  $j \in \operatorname{ann}_{\mathbb{R}} (m + f^{-1}(K')) \cap J$ , and hence  $\operatorname{ann}_{\mathbb{R}} (m + f^{-1}(K')) \leq R$ .

Thus  $m + f^{-1}(K') \in Z(\frac{M}{f^{-1}(K')})$ , that is  $\frac{M}{f^{-1}(K')}$  is singular. Since  $f^{-1}(N') \subseteq M$  and  $\frac{M}{f^{-1}(K')}$  is singular, we get  $f^{-1}(K') = M$  (since M is  $\delta$ -hollow). It follows that  $f(f^{-1}(K')) = f(M) = M'$ , hence K' = M'. Thus M' is a  $\delta$ -hollow module.

## Corollary 2.4:

Let M be an R-module. If M is a  $\delta$ -hollow module then  $\frac{M}{N}$  is a  $\delta$ -hollow module for every proper submodule N of M.

#### **Proof:**

Let N be a proper submodule of a  $\delta$ -hollow M. Let  $\pi: M \longrightarrow \frac{M}{N}$  be the natural epimorphism, then  $\frac{M}{N}$  is a  $\delta$ -hollow module by proposition (2.3).

#### **Corollary 2.5:**

A direct summand of a  $\delta$ -hollow module is a  $\delta$ -hollow module.

## Proof:

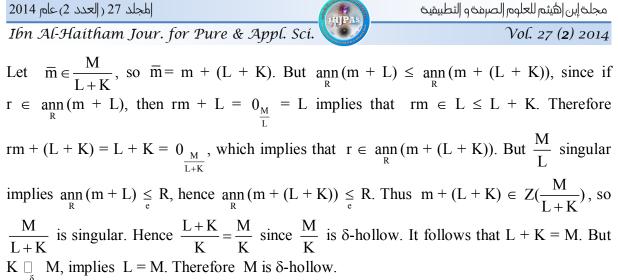
Let M be a  $\delta$ -hollow R-module and N be a direct summand of M. Hence  $M = N \oplus K$  for some submodule K of M. By second isomorphism theorem  $\frac{M}{K} \simeq N$ . But  $\frac{M}{K}$  is  $\delta$ -hollow by corollary (2.4). Thus N is  $\delta$ -hollow.

## **Proposition 2.6:**

Let M be an R-module and K  $\square$  M. If  $\frac{M}{K}$  is a  $\delta$ -hollow module then M is a  $\delta$ -hollow module.

## **Proof:**

Let N < M with M = N + L, where L is a submodule of M and  $\frac{M}{I}$  is singular R-module then  $\frac{M}{K} = \frac{N+L}{K} = \frac{N+K}{K} + \frac{L+K}{K}$ . But  $\frac{M}{K} / \frac{(L+K)}{K} \square \frac{M}{L+K}$  by third fundamental theorem. We shall prove  $\frac{M}{\Gamma + K}$  is singular.



## 3- δ-Hollow Modules and Other Related Modules

In this section, we give some relationships between  $\delta$ -hollow modules and other related modules.

Let M be a module, then:

M is called amply supplemented module if for any two submodules U and V of M with U + V = M, V contains a supplement of U in M, where a submodule A of M is called a supplement of B (B  $\leq$  M) if M = A + B and A  $\cap$  B  $\ll$  A. Equivalently A is a supplement of B if A + B = M and B is a minimal element in the set of submodules  $L \le M$  with B + L = M, [8]. Recall that every hollow module is amply supplemented, see [11,proposition (1.3.5)].

We shall give analogus statement for  $\delta$ -hollow, but first recall that an R-module is called  $\delta$ -amply supplemented if for any two submodules U and V of M with U + V = M, V contains a δ-supplemented of U in M, where a submodule N of M is called δ-supplement of a submodule W of M if N + W = M,  $N \cap W \subseteq N$ , [9], [10].

#### **Proposition 3.1:**

Every  $\delta$ -hollow module is a  $\delta$ -amply supplemented.

#### **Proof:**

Let U proper submodule of M and U + M = M. Since U + M = M and  $\frac{M}{M}$  = (0) singular and  $U \cap M = U$ . But  $U \underset{\delta}{\square} M$ , since M is  $\delta$ -hollow.

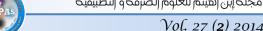
Recall that a submodule N of a module M is called  $\delta$ -coclosed in M (briefly N  $\leq$  M) if  $\frac{N}{K}$  is singular and  $\frac{N}{K} = \frac{M}{K}$  implies N = K for any submodule K of M contained in N, [12].

## **Proposition 3.2:**

Let M be a module and L be a non zero submodule of M which is  $\delta$ -hollow, then either L is  $\delta$ -small submodule of M or a  $\delta$ -coclosed submodule of M, but not both.

#### **Proof:**

Suppose L is not  $\delta$ -coclosed submodule of M, so there exists K < L such that  $\frac{L}{K} \subseteq \frac{M}{K}$ and  $\frac{L}{K}$  is singular. But L is  $\delta$ -hollow and K < L, hence K  $\square$  L and  $\frac{L}{K}\square$   $\frac{M}{K}$ . Hence



 $L \square_{\delta} M$ . If  $L \delta$ -coclosed submodule of M, and suppose that  $L \square_{\delta} M$  then  $\frac{L}{(\Omega)} \square_{\delta} \frac{M}{(\Omega)} = M$ , and hence L = 0, which is a contradiction.

## **Proposition 3.3:**

Every non zero  $\delta$ -coclosed submodule of a  $\delta$ -hollow module is  $\delta$ -hollow.

Let M be a  $\delta$ -hollow module and let N be a non zero submodule of M such that  $N \leq M$ . To show that N is  $\delta$ -hollow.

L  $\square$  N by [12, corollary (2.6)]. Thus N is a  $\delta$ -hollow module.

## **Proposition 3.4:**

Let M be a δ-hollow module and let N be a direct summand of M. Then N is δ-hollow. **Proof:** 

Let A be a proper submodule of N. Since M is  $\delta$ -hollow, A  $\square$  M and by proposition (1.5) A  $\square$  N. Therefore N is δ-hollow.

## **Proposition 3.5:**

Let M be a singular R-module, let N  $\bigcap_{\delta}$  M. If  $\frac{M}{N}$  is a finitely generated R-module, then M is finitely generated.

## **Proof:**

As  $\frac{M}{N}$  is finitely generated,  $\frac{M}{N} = R(x_1 + N) + ... + R(x_n + N)$  for some  $x_1, ..., x_n \in M$ . We claim that  $M = Rx_1 + ... + Rx_n$ . Let  $m \in M$  then  $m + N = r_1(x_1 + N) + ... + r_n(x_n + N)$ , so that  $m - r_1x_1 - \dots - r_nx_n \in \mathbb{N}$ . This implies  $m = r_1x_1 + \dots + r_nx_n + n$  for some  $n \in \mathbb{N}$ . Thus  $M = \langle x_1, ..., x_n \rangle + N$ . But  $M / \langle x_1, ..., x_n \rangle$  is singular (since M is singular) and  $N \subseteq M$  by hypothesis  $M = \langle x_1, ..., x_n \rangle$ .

#### **Corollary 3.6:**

Let M be a singular R-module and N be a proper submodule of module M. If M is a δhollow module and  $\frac{M}{N}$  is finitely generated then M is finitely generated.

#### **Proof:**

It is clear by proposition (3.5).

## **Corollary 3.7:**

Let M be an R-module with every factor of M is singular and let N < M. If M is a  $\delta$ hollow and  $\frac{M}{N}$  finitely generated, then M is finitely generated.

#### **Proof:**

It is clear by proposition (3.5).

## Note:

Let M be an R-module. If every non zero factor of M is indecomposable, then by [13,41.4(1)] M is hollow module, which implies that M is  $\delta$ -hollow. But the converse is not



true, for example  $Z_6$  as  $Z_6$ -module is  $\delta$ -hollow but does not imply that every non zero factor of  $Z_6$  is indecomposable, since  $\frac{Z_6}{(0)} \square Z_6$  is not indecomposable.

Recall that, an R-module. M is called  $\delta$ -lifting, if for every submodule N of M, there exist submodules K, K'  $\leq$  M such that M = K  $\oplus$  K' with K  $\leq$  N and N  $\cap$  K'  $\square$  M, [8].

It is clear that every lifting is  $\delta$ -lifting.

## **Proposition 3.8:**

Every indecomposable and  $\delta$ -lifting module is  $\delta$ -hollow.

## **Proof:**

Let M be indecomposable and  $\delta$ -lifting module and N be a proper submodule of M. Since M is  $\delta$ -lifting, then  $M=K\oplus K'$  where  $K\leq N$  and  $N\cap K' \underset{\delta}{\square} K'$ . But M is indecomposable, so K'=0 and M=K. Then  $M\leq N\leq M$  which is a contradiction. Hence K'=M and so  $N\cap K'=N\cap M=N$ . Thus  $N\underset{\delta}{\square} M$ . It follows that M is  $\delta$ -hollow.

## **Proposition 3.9:**

Every  $\delta$ -hollow module is  $\delta$ -lifting.

#### **Proof:**

Let N be a proper submodule of  $\delta$ -hollow module M, then  $M = (0) \oplus M$  and  $\{0\} \leq N$  where  $N \cap M = N \subseteq M$ . Thus M is  $\delta$ -lifting.

## **Proposition 3.10:**

Let M be an R-module. Then the following statements are equivalent:

- (1) M is indecomposable and  $\delta$ -lifting.
- (2) M is  $\delta$ -hollow and indecomposable.
- (3) M is hollow.

## **Proof:**

- (1)  $\Rightarrow$  (2) Let N < M. Since M is  $\delta$ -lifting then M = K  $\oplus$  K' with K  $\leq$  N and N  $\cap$  K'  $\underset{\delta}{\square}$  M. As M is indecomposable, then K' = 0 or K = 0. If K' = 0, then K = M, which implies that M  $\leq$  N. That is a contradiction. So K = 0, hence K' = M and N  $\cap$  K'=N  $\cap$  M=N  $\underset{\delta}{\square}$  M. Thus M is  $\delta$ -hollow.
- $(2) \Rightarrow (3)$  It is clear by proposition (2.2(1)).
- (3) ⇒ (1) If M is hollow, then M is indecomposable by [11,proposition 1.3.9]. But M is hollow, hence M is lifting by [11, proposition 1.3.16], which implies that M is δ-lifting.

The following is needed for the next result.

## **Definition 3.11:** [2]

A pair (P, f) is a  $\delta$ -projective cover of an R-module M, if P is a projective module and  $f:P \longrightarrow M$  is an epimorphism and  $\ker f \sqsubseteq P$ .

#### **Proposition 3.12:**

Let (P, f) be  $\delta$ -projective cover of M. Then M is  $\delta$ -hollow if and only if P is  $\delta$ -hollow. **Proof:** 



- (⇒) Since M is δ-hollow module and since  $f: P \longrightarrow M$  is an epimorphism, then  $\frac{P}{\ker f} \square M$  by the first fundamental theorem and hence  $\frac{P}{\ker f}$  is δ-hollow. But  $\frac{P}{\ker f}$  is δ-hollow and  $\ker f \square$  P. So by proposition (2.6), P is δ-hollow.
- ( $\Leftarrow$ ) Let N be a proper submodule of M, then  $f^{-1}(N)$  is a proper submodule of P. Since P is δ-hollow, then  $f^{-1}(N) \underset{\delta}{\square} P$ , and hence  $f f^{-1}(N) \underset{\delta}{\square} M$  by proposition (1.3(4)). But  $f f^{-1}(N) = N$ , so  $N \underset{\delta}{\square} M$ . Thus M is δ-hollow.

## References

- 1. Fleury, P. (1974), Hollow Modules and Local Endomorphism Rings, Pac.J.Math., 53, 379-385.
- 2. Zhou, Y.Q. (2000)Generalizations of Perfect Semiperfect and Semiregular Rings, Algebra Collog, 7, 305-318.
- 3. Goodearl K.R. (1976), Ring Theory, Nonsingular Rings and Modules, Marcel Dekkel.
- 4. Kasch, F. (1982) Modules and Rings, Academic Press, Inc-London.
- 5. Nematollah, M.J. (2009) On δ-Supplemented Submodules, Tarbiat Modlen Univ., 20<sup>th</sup> Seminar on Algebra 2-3 ordibehesht, 1388 (Apr 22-23), 155-158.
- 6. Hassan, S.S. (2011) Some Generalizations of δ-lifting Modules, M.Sc. Thesis, University of Baghdad.
- 7. Desale, G. and Nicholoson, W.K. (1981) Endoprimitive Ring, J. of Algebra, 70: 548-560.
- 8. Mohamed,S.H. and Muller,B.J. (1990)Continuous and Discrete Modules, Cambridge Univ. Press, Cambridge.
- 9. Wang, Y. (2007)δ-Small Submodules and δ-Supplemented Modules, International J. Math. And Mathematical Sciences, 1-8.
- 10. Kosan ,M.T. (2007)  $\delta$ -lifting and  $\delta$ -supplemented Modules, Algebra Colloguim, H (1), 53-60
- 11. Ali, P.M.H. (2005) Hollow Modules and Semihollow Modules, M.Sc. Thesis, Univ. of Baghdad.
- 12. Lomp, C. and Büyükasik, E. (2009) when δ-Semiperfect Rings are Semiperfect, Turk.J.Math., 33, pp.1-8.
- 13. Wisbauer, R. (1991) Foundations of Modules and Rings Theory, Gordon and Breach Science Publisher Reading.



# المقاسات المجوفه من النمط 8

إنعام محمد علي هادي سميعه حسون عيدي سميعه حسون عيدي قسم الرياضيات / كلية التربية للعلوم الصرفة(ابن الهيثم) / جامعة بغداد

# استلم البحث8 ايار 2014،قبل البحث في 22حزيران 2014

## الخلاصة

لتكن R حلقة إبدالية ذات محايد وليكن M مقاساً غير صفري أيسر أحادي على R. يُدعى M مقاساً مجوفاً اذا كان كل مقاس جزئي كل مقاس جزئي فعلي N في M مقاساً جزئياً صغيراً M مقاس المجوف، إذ يُدعى M مقاساً مجوفاً من النمط M المقاس المجوف، إذ يُدعى M مقاساً مجوفاً من النمط M كان كل مقاس جزئي فعلي M مقاس جزئي صغير من النمط M كان كل مقاس جزئي فعلي M في M مقاس جزئي صغير من النمط M كان كل مقاس جزئي فعلي M في M مقاس جزئي صغير من النمط M كان كل مقاس جزئي فعلي M في M مقاس جزئي صغير من النمط M كان كل مقاس جزئي فعلي M في M مقاس جزئي صغير من النمط M

مقاس جزئي فعلي W من M بحيث  $\frac{M}{W}$  مقاس منفرد. ندرس في هذا العمل الصنف من المقاسات ونعطي العديد من الخواص الاساسية المتعلقة بهذا المفهوم.

الكلمات المفتاحية: مقاس جزئي صغير ، مقاس جزئي صغيرة من النمط  $\delta$ ، مقاس مجوف ، مقاس مجوف من النمط  $\delta$ ، مقاس منفرد ، مقاس غير منفرد.