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Abstract

The summary purpose of this work: We extending certain results on a-centralizer of inverse
semiring under specific conditions, achieve new results on lie ideal of inverse semiring with some
consequent collieries, generalize assorted a-centralizer for lie ideal of inverse semiring with some
collieries, investigate significant theorems on jordan a-centralizer of prime inverse semiring and
we extend certain results of a —centralizers and jordan a —centralizers on lie-ideals of prime
semi-rings to prime inverse semi-ring, we generalizing the results of Mary in to a-centralizer on
semiring, Also we generalize our results on lie ideals of inverse semiring. We extending the results
of Shafig, Aslam, Javed to @ — centralizer of Inverse semiring. since R is left (right) Jordan a —
centralizer on V, we get the output R is a left (right) a — centralizeronV. If it where
a is an automorphism of V,R(u) € V,forany u € V,and a(Z(V)) = Z(V). We also get the
following output R is a @ — centralizer on V.
Keywords: Lie-ideal, prime inverse semi-ring, semi-prime inverse semi-ring, a —centralizer,
jordan a-centralizer.

1. Introduction
Let M be a non-empty set with binary operation () defined on M, then (M,e) is named semi —
groupiff k e (s et) = (k es)etforany k, s, t € M(1), a semi — group M is named
commutative semi — groupifk ¢ s = s ¢ k, holds forall k,s € M (1), A non — empty set
with two — binary operations(+) and (¢) is named semi-ring iff the following requirements
hold:

i) (M,+)is commutative semi — group.
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i) (M,s) semi — group.

i) ae(k+s)=aek+aes andlk+s)ea=kea+ s eaforallak,s €
M (2), (M, +) is named additive commutative with neutral element 0. (i.e. for allk € M, k +
0=0+k=k) Iiff k+ s = k+ n holdsforany k,s € M, and (M,) is a semi — group with
zero 0, i.e.,0.a = a.0 = Oforany a € M.Asemi—ring (M,+,») is named commutative
iff k e s = s ek holds for any k,s € M (2), Let (M, +, *) be an additively commutative semi-
ring. Then M is named inverse semi-ring, if (M, +) is an inverse semi-group (i.e) for each k €
M there are aunique k' € M suchthat, k = k + kK + k and k' + k + k' = k' (2),
and is called cancellative semi — ring iff forany k,s,m € M, such that k + s = k +
m,thens = m.A semi-ringM is named prime semi-ring if forany k,s € M, kMs =
0 implies that either k = 0 or s = 0. Asemi— ring M is named a semi-prime if forany k €
M,kMk = 0 mpliesthat k = 0. (3), A semi-ring M is named q — torsion free where ¢ # 0
is an integer if whenever gk = Owithk € M, then k=0. A
commutator [.,.] in inverse semi — rings defines as [k,s] = ks + ks"and,kos = ks+ ks
(3). In (4) Albas presented the @ — centralizer concept and the Jordan a —centralizer concept,
which could be a generalization of Jordan centralizer and centralizer and tried beneath particular
requirements on a 2 —torsion free semi — prime ring, each Jordan a-centralizer is a centralizer,
where o could be a surjective homomorphism. Inverse semi-rings considered in different directions
by numerous authors, see (5-12). In this work our aim is to consider the results of Majeed and
Meften (13) in the inverse semi-ring. In this article, M will represent additive inverse semi-ring that

satisfies the requirement that for any r € M, k + k is located in the center Z(M) of M .

2. Preliminaries

We recalled the definitions of lie — ideal, square closed Lie — ideal of a semiring M, and
some definitions, lemmas that will be used later.
Definition (2.1):(14)

An additive sub semi — group of inverse semi — ring M satisfies[n,q] = nq + q'k €
V forany k € V,q € M, is named a Lie-ideal of M .
Definition (2.2):(14)

Let V be a lie — ideal of aring, then V is named a squane closed Lie — ideal of M if k% €
V forallk € V.
Note that if V is a square closed Lie-idealof M, then 2kq € V forany k,q € V.
Definition (2.3):(2), (15)

Let | be anonzero ideal of M, the set Z(I) = {k € I,kq = gk,forany q € I} is named
the center of 1.
Definition (2.4):(2), (16)

Let g€ M , the set Z(M) = {k € M ,kq = qk,forall q € M} is named the center
of the semi — ring M. Clearly that Z(M) is a subsemi — ring of M.
Note that if M is multiplicatively commutative then Z(M) = M.
Lemma (2.5):(10), (17)
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Let M be an additive inverse semi-ring, forany k,q € M,if k + q = 0thenk = q'.Note
that in general k + k" # 0, k + k' = 0, iff there are some q € M withk + g = 0 [2]
Proposition (2.6):(12),(18)

For any r, s € M, the following are holds:

. (k+q) =k +4q
ii. (kq)" = k'q = kq'
iii. k" =k

iv. K'q" = (k'q)" = (kq)" = kq.
Lemma (2.7):(12),(19)

Let M be ring and k,q,w € M then

i. [k,k] =0

i. [k +q, w] = [k, w] + [q, W]

iii. [kq, w] = k[q, w] + [k, w]q
iv. [k,qw] = q[k,w] + [k, q]w.
Definition (2.8):(15),(20)

Let M be a semi-ring,an additive mappingR:M —» M is nameda (a,a)—
derivation if R(kq) = R(k)a(q) + a(k)R(q) for any k,q € M, and we say that R is
Jordan (a, @) — derivation if R(k?) = R(k)a(k) + a(k)R(k) for any k € M,where a be
additive mapping on M.

Every derivation is (a, @) — derivation is Jordan (a, a) — derivation, but the converse in general
IS not true.
Definition (2.9):(3),(21)

A left right)a — centralizer of a semi-ring M is an “additive mapping” R: M — M which
satisfies R(kq) + R(k)a(q)’' = 0,(R(kq) + a(k)'R(q) = 0) forany k,q €
M. «a —centralizer ofaring M is both left and right « — centralizer , where « is an additive
mapping on M.

Definition (2.10):(3),(22)

A left right) Jordan a — centralizer of a semi-ring M is an addittive mapping R:M —

M which satisfy R(k?) + R(k) a(k)’' =0, (R(k?) + a(k)'R(k) =0) forany k € M,a —
Jordan centralizer of aring M is both left and right Jordan «a — centralizer, where a be
additive mapping on M.

3. Main Results
To verify our main results, we must utilize the following.
Lemma (3.1):(4),(23)
If V & Z(M) is a Lie-ideal of a 2 — tortion free prime semirig M and k,q € M such that
kVq = 0,thenk = 0Oorm = 0.
From this we mean by V is a square closed lie — ideal of M.
Lemma (3.2)
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Let M be a 2 —tortion free prime semi-ring. Suppose that F,G : VxV — V biadditive
mappings. If F(k,q)w G(k,q) = 0 forany k,q,w € V,then F(k,q) wG(u,v) = 0 for any
k,qu,v,w € V.

Proof:

F(k,9)wG(k,q) = 0 forallk,qw eV *)
Replace k with k + u, we have

F(tk + u,qgwG(k + u,q) =0 forallk,qw,u €V

By using the additive of F and G

F(k,q)w G(u,q) = F(u,q)"wG(k,q)
Replace w by 2* F(k, q) z G(u, q)

(F(k,)w 2*G(u,q)) zF(k,q) w G(u,q) =

Fu,q) w2*G(u,q)zF(k,q)wG(k,q) = 0
by (*), we get

2*F(k, g)wG(u, q)zF (k, Q)wG(u,q) =0 forallk,qu,z€V (**)
If V¢ Z(M),by Lemma(3.1), we get
F(k,9)wG(u,q) = 0 forallk,quw €V

If V c Z(M), multiply the relation (**) from the right by zt, where t € M, we get

2°F(k,q)w G(u,q) zt F(k,)wG(u,q)z = 0, forallk,qu,zw €V,t € M
Since M is 2 — tortion free prime semi-ring, we have

Flk,g)wG(u,q)z = 0 forallk,q,u,z,w € V
If we multiply the relation by t an element of M, which is prime, and do a right multiplication, the
result is
F(k,g)wG(u,q) = 0 forallk,quw €V

We can acquire the lemma’s claim by exchanging q for q + v, in a way analogous to the one
used above.
Theorem (3.3)

Let M be 2 — tortion free prime semi-ring. If R isleft (right) Jordan @ — centralizer on V,
then R is a left (right) @ — centralizer onV.
Proof:
R(k?) + R(k)'a(k) = 0 forallk € V (1)
wereplace k by k + q when k,q in U, we get

R((k+@)*) = Rk + q)a(k + q)
R(k* + kq + qk + q*) = R(k*) + R(kq + qk) + R(q?
= R(k)a(k) + R(kq + qk) + R(q)a(q)

Rk + @)a(k + q) = R(K)a(k) + R(k)a(q) + R(q)a(k) + R(q)a(q)
We get
R(kq + qk) + R(k)a(q)' + R(Q)a(k) =0 forallk,q eV (2)
By replacing g with 2(kq + gk) and using (2), we get

2R(k(kq + qk) + (kq + qk)k) + 2R(k)a(kq)' + 2R(k)a(qk)' + R(kq + qk)a(k)’

=0

2R(k(kq + qk) + (kq + qk)k) = 2R(k)a(kq ) + 2R(k)a(qk) + 2 R(kq + qk)a(k)
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)
This can also be computed using an alternate way
2R(k?*q + qk?®) + 4R(kqk) + 2 R(k)a(kq)' + 2R(q)a(k®)' = 0 forallk,q €V (4)
From (3) and (4), we obtain
R(kqk) + R(k)a(qk)' = 0 forallk,qg € V (5)
If we linearize (5), we get
R(kqt + tqk) + R(k)a(qt)' + R(t)a(qgk)' =0 forallk,q,t € V (6)
Since V is a square closed Lie-ideal, we have
24(kqtqk + qktkq) € V.

Now we shall compute f = 2*R(kqtqk + qktkq) in two different ways, using (5) we have
f+ 2*R(k)a(qtqk)’ + R(q)a(ktkq)' = 0 forallk,q,t €V (7)
Using (6) we have
f+ 2*R(kq)a(tqk)’ + R(qgk)a(tkq)' = forallk,q,t €V (8)
Comparing (7) and (8)
R(k)a(qtqk)’ + R(q)a(ktkq)’ + R(kq)a(tqk) + R(qk)a(tqk) =0
(R(kq) + R(k)a(q))a(tgk) + (R(gk) + R(q)a(k)’) a(tkq) =0
Introducing a additive mapping,

G(k,q) = R(kq) + R(k)a(q)",
we arrive at

G(k,q@)a(tqk) + G(q,k)(tkq) = 0
By Lemma (2.5)
G(k, q)a(tgk) = G(q, k) a(tkq) (9)
We can be rewritten equality (2)in this notation as

G(k,q) + G(q, k)’ = 0.
Using equality (9) and this fact, we obtain
Gk,Qa(tlk,q])) = 0 forallk,qtz €V (10)
Now using Lemma (3.2), we have
Gk,)a(z[u,v])= 0 forallk,q,z,u,v € V (11)

(i) IfV isnon commutative
Since a is surjective and using Lemma (3.1), we have
G(k,g) =0 forallk,q € V
(i) IfV is commutative andV ¢ Z(M)

Compute N = 2* R(kqzqk) in two different ways. Using (5), we have
N +2* R(k)' a(qzqk) = 0 forallk,q,z € V (12)
N +2* R(km)'a(zmk) =0  forallk,q,z € V (13)
From (12) and (13), we arrive at

R(kq)a(zqk) + R(k)'a(qzqk) = 0

(R(kq) + R(k)'a(q))a(zqk) = 0

G(k,qQ)a(zqgk) = 0 forallk,q,z € V (14)
Let Y (k,q) = a(qk), it's clear that i is additive mapping, therefore
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Gk,gp)a(2)y¥(k,q) = 0 forallk,q,z € V
Using Lemma (3.2), we have
Gk,Qa(2)y(u,v) =0 forallk,q,z,u,v € V
Implies that
G(k,q)a(zuv) = 0 forallk,q,z,u,v € V (15)
Replacing a(v) with 2G(k, q)a(z), using Lemma (3.1) and M is prime semi-ring, we have
Gk,g)a(z) = 0 forallk,q,z € V
Using Lemma (3.1)
G(k,q) =0 forallk,g € V

(i IfV c Z(M)
Multiplying relation (15) on the right by t, where t € M and since M is a prime, we can obtain the
result.
G(k,q) =0 forallk,q € V
If R(k?) + a(k)'R(k) = 0, reaching the conclusion of the theorem with the same procedure as
before completes the proof.
Lemma (3.4)
Let M be a 2 — tortion free prime semi — ring, H,a: M — M, His (a,a) — derivation on
V and a € V some fixed element, where a is automorphism of V, such that a(V) =V then
(i) Hk)H(q) = Oforany k,q € UimpliesH = OonV.
(iiaa(k) + a(k)'a € Z(V) forany k € Vimpliesa € Z(V).
Proof:
() H(a(q)H (k) = H(k)H(qk) + H(k)'H(q)a(k)
H(k)(H(q@)a(k) + a(@)H (k) + H(k)'H(q)a(k) =0
H(K)H(q)a(k) + H(k)a(q)H (k) + H(k)'H(q)a(k) = 0
By hypothesis, and M is inverse semi-ring, we get
H(K)a(q)H (k) = 0
Since a is automorphism of V, such that a(V) =V, we get
Hk)VH((k) =0 forallke V
IfV ¢ Z(M),and a is automorphism of V, Lemma (3.2) wehave H = 0 onV.
IfV cZ(M)
H(k)tH(k) = 0 forallk € V,t € M
So, by primness of M, we have
H=0onV
(i) Define H(k) = aa(k) + a(k)a’
It is easy to see that His a (a, a) — derivations, since H(k) € Z(V) forany k € V, we have
H(q)a(k) = a(k)H(q) and also 2H(qz)a(k) = 2 a(k)H(qz)
Since M is prime, we get
H(q)a(zk) + a(q@)H(z)a(k)
= a(k)H(q)a(z) + a(kq)H(2)
H(q)(a(@)a(k) + a(k)a(z)") = H(z)(a(q)ak)' + a(k)(9)
H(@la(2),a(k)] = H(z)[a(q), a(k)]
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Since a is automorphism, take a(z) = a.Obviously H(a) = 0, so, we obtain by (i)
H(q)H(k) = 0
By virtue of (i) we get H=0and hence a € Z(M).

Lemma (3.5)

Let M be a 2 — tortion free prime semi — ring, R and « are additive mappings on M, and a €
V  some fixed element. If R(k)=aa(k)+ a(k)aandR(ko q)+ R(k)o a(q)’ =
OandR(koq)+ a(k)oR(q) =0 forany k,q € V then “a € Z(V), where a is a
surjective  endomorphism of V.

Proof:
By hypothesis

R(kq + qk) = R(k)a(q) + a(q)R(k) forallk,q €V
R(kq) + R(gk) = R(k)a(q) + a(q)R(k) forallk,q €V

R(kq) + R(qk) = aa(kq) + a(kq)a + aa(qk) + a(qgk)a

= aa(k)a(q) + a(k)a(q)a + aa(q)a(k) + a(q)a(k)a
R(k)a(q) + a(@)R(k) = aa(k)a(q) + a(k)aa(q) + a(q)aa(k) + a(q)a(k)a
taa(k)a(q) + a(k)a(q)a + aa(q)a(k) + a(q)a(k)a

=aa(k)a(q) + a(k)aalq) + a(q)aa(k) + a(q)a(k)a
(a + a)a(k)a(g) + a(@a(k)(a + a) + a(k)a(q)a + aa(q)a(k) + a(k)a'a(q) +
a(q)a’a(k) = 0
Sincea + a' € Z(V)

a(k)a(qg)(a+a +a)+ (a+a + a)a(q)ak) + aa(q)a(k) + a(k)a’a(q) =0
a(kK)a(q)a + a(k)a'a(q) +aa(q)alk) + al(q)a’alk) =0
a(k)(a(q)a+a'a(q)) + (a(g)a + d'a(q)a(k)’ = 0
But « is a surjective
aa(k) + a(k)a’ € Z(V)
By Lemma (3.4) (ii), we get a € Z(V)
R(koq)+ R(k)oa(q) =0andR(koq) + a(k)'oR(g) = 0.
Lemma (3.6)

Let M be a 2 — tortion free prime semi-ring, and R, a are additive mappings on M, R satisfies
R(koq)+ R(k)oa(q)' =0and R(ko q) + a(k) o R(q) =0 for anyk,q € V, then R(z) €
Z(V) forany z € Z(V), where « is a surjective endomorphism of V/.

Proof:
R(kq + qk) + R(K)a(q)" +a(q)'R(k) = 0
R(kq + qk) + a(k)'R(q) + R(@)a(k)’ = 0.
because R(z) € Z(V)
Take any t € Z(U) and denote a = R(t)
2R(tk) = R(tk + kt) = R(t)a(k) + a(k)R(t)
= aa(k) + a(k)a
A simple check reveals that M (k) = 2R(tk) is satisfies
M(koq) = 2R(t(kq + qk) = 2R(tkq + qtk)
= 2R(tk)a(q) + 2 a(q)R(tk)
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= M(k)a(q) + a(q)M(k)
= M(k)oa(q)
M(koq) = 2R(t(kq + qk) = 2R(k(tq) + (tq)k)
= 2a(k)R((tq) + 2R(tq)a(k)
= a(k)M(q) + M(q)a(k)
= a(k) o M(q)
M(koq) = M(k)oa(q) = a(k)oM(q) fonallk,q € M
By Lemma (3.5),we have R(t) € Z(M).
Theorem (3.7)

Let M be 2 — tortion free prime semi — ring and R, a: M — M additive mappings, R
satisfies R(k 0 q) + R(k)oa(q) = 0and R(koq) + a(k)'oR(q) =0 forallk,q eV
then R is a a — centralizer on V, where « is an automorphism of V, R(u) € V,forany u € V,
and a(Z(V)) = Z(V).

Proof :
Since U is a square closed Lie — ideal of M, and by Lemma (2.5), we get
2R(kq + qk) = 2R(k)a(q) + 2a(q)R(k)
= 2a(k)R(q) + 2R(q)a(k)
If V is a commutative, we have
R(r?) = R(ra(r) = a(r)R(r)
If V is a non-commutative
Replace g by 2kq + 2qk in (2), we get,
4R(k)a(kq + qk) +4a(kq + qk)R(k)
=4a(k)R(kq + qk) + 4R(kq + qk)a(k)
4R(k)a(k)a(q) + 4R(k)a(q)a(k) + 4a(k)a(q)R(k) + 4a(q)a(k)R(k) =
4a(k)R(k)a(q) +4a(k)a(q)R(k) +4R(k)a(q)a(k) + 4a(q)R(k)a(k)
By using the property of 2 — tortion free semi — ring, we obtain
R(a(k)a(g) + al@)a(k)R(k) + a(k)'R(k)al(q) + a(q)R(k)a(k)’ =0
Now it follows that

[R(K), a(i)]alq) = a(q)[R(k), a(k)] forallk,q eV
but « is surjective, then we get
[R(k),a(k)] € Z(V) forallk,q € V

The next goal is to show that [R(k),a(k)] = 0 forallk € V.
Take any t € Z(U)
4R(tk) = 2R(tk + kt) = 2R(t)a(k) + 2a(k)R(t)
= 2R(k)a(t) + 2a(t)R(k)
Using Lemma (3.6), we get
R(tk) = R(k)a(t) = R(t)a(k) forallk,te V
4[R(k),a(k)]a(t) = 4R(k)a(kt) + 4a(k)'R(k)a(t)
= 4R(k)a(tk) + 4R(k)a(t)a(k) =0
Since a(Z(V)) = Z(V), and [R(k), a(k)] itself is central element, By Lemma (3.1), we get our
goal.
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2R(k?) = R(kk + kk) = R(k)a(k) + a(k)R(k)
= 2R(k)a(k) = 2a(k)R(k).
By Theorem 3.3, we get our result.

4. Conclusion
In this work, we extend certain results of a-centralizers and Jordan a-centralizers on lie ideals
of prime rings to prime inverse semirings.
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