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Abstract

The conditions under which the local bifurcation including (saddle-node, transcritical, and
pitchfork) of all stable points in a model of a food chain occur are examined in this paper. The
Growly-Martin model and the emotion of fear have both been important factors in the
development of a functional reaction in a food chain model, It has been shown that a
transcritical bifurcation and a pitchfork bifurcation can be discovered near to each of the sites
Al, A2, A3and A4, and that a saddle-node bifurcation can be found close to the point where
positive equilibrium is located. In conclusion, a numerical simulation was run in order to
illustrate how the proposed model may display bifurcation in its behavior. This was done in
order to show how the impact of parameters on the dynamics of the proposed model.
Keywords: Transcritical pitchfork, Sotomayor's theorem, Local bifurcation, Global
bifurcation.

1. Introduction

Bifurcation theory is the scientific study of how a moving system's structure changes over
time. Changes that can be qualitative or visual in integral family curves, vector fields,
differential equation solutions. Bifurcation happens when a small, smooth change in the values
of a system's parameters (bifurcation parameters) causes a sudden shift in its "specific" or
"topological™ behavior. This term is used a lot when mathematicians study systems that change
over time (1-5). There are two major categories of bifurcations: local and global. Local
bifurcations like the saddle node, transcritical pitchfork, period-doubling flip, Hopf, and
Neimark secondary Hopf bifurcation, which can all be studied purely by analyzing how their
local stability properties change, happen as parameters cross critical thresholds. Global
bifurcation happens when stability and bigger invariant sets, like periodic orbits, collide.
Contrary to local bifurcations, this alters the structure of the pathways in phase space in a non-
local manner. Topological shifts are widespread because they can have an impact on areas over
incredibly large distances; for instance, the homoclinic (6-8).Pamuk and Cay (9) looked at the
steady state with respect to Hopf bifurcation of a feedback diffusion method, which is used to
control how vascular cells and inhibitors talk to each other. Mukherjee and Maji (10)
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established the criteria for local bifurcations for all equilibrium points and Hopf for positive
equilibrium points in a prey-predator model with prey haven. While Majeed and Ali (11)
presented a model of bifurcation with refuge that included a predator-structured stage food
chain. In recent years, many researchers have studied the importance of bifurcation. Majeed
and Alabacy (12) found the conditions for local bifurcation at all equilibrium points a prey-
predator-refuge-harvesting model. Since then, lots of researchers have considered the fear
effect of predators in the dynamical study on prey-predator models (13-14). Many other
academics have studied the local bifurcation in recent years, including (15-19).

Finally, in this work, the occurrence of the local bifurcation (LB) of the proposed system have
been discussed.

2. Materials and Methods
2.1. Model formulation
Consider the following system that given in (20).

dR; TRy 2 B1R1R>
= —m.R{ — = f1(R{.R, .R3).
dt ~ 1+KiR, 1™ (1+a.R)(A+azRy) f1(Ry R . Rs)
dR; 2R, 2 l1R1R; B2R2R3
—=———-m,R5 + — —d.R, = R{.R,.R 1
dt 1+K3R3 272 (1+a1R1)(1+a2R2) (1+a3R2)(1+a4R3) 112 fZ( 1 2 3) ( )

ar (1+aszR;)(1+asRs) d,Rs = f3 (R1 .R; .R3).
Following is a table describing the positive parameters of system (1).

Table 1. The system's parameters (1):

Parameters Parameters Description

Ri.=1.2.3 THE DENSITY OF PREY . INTERMEDIATE PREDATOR AND TOP — PREDATOR AT TIME T. RESPECTIVELY
RL=1.2 THE INTRINSIC GROWTH RATE OFTHE PREY AND THE INTERMEDIATE PREDATOR RESPECTIVELY
M1=1.2 THE RATE OF INTERNAL COMPETITION FOR THE PREY AND THE INTERMEDIATE PREDATOR RESPECTIVELY
K.1=1.2 THE RATE OF FEAR OF PREY AND INTERMEDIATE PREDATOR RESPECTIVELY

B.1=1.2 ATTACK RATE FOR PREY AND INTERMEDIATE PREDATOR RESPECTIVELY

L.1=1.2 FOOD TRANSFER RATE FOR INTERMEDIATE PREDATOR AND TOP PREDATOR RESPECTIVELY

A 1=1.3 HANDLING TIME OF PREY AND INTERMEDIATE PREDATOR RESPECTIVELY

ALl=2.4 MAGNITUDE OF DISTRUBANCE AMONG INTERMEDIATE PREDATOR AND TOP PREDATOR RESPECTIVELY
D.1=1.2 THE NATURAL DEATH RATE OF INTERMEDIATE PREDATOR AND TOP PREDATOR RESPECTIVELY

2.2. Local bifurcation analysis

In this subsection, the local bifurcation of the model (1) has been examined, with a particular
emphasis on the changes that occur around each equilibrium point as a result of changes in the
parameter values governing the dynamic behavior. With the assistance of Sotomayor's
theorem, our mission is to develop higher order conditions with the intention of ensuring the
appearance of the most typical of the area's local bifurcations.

Now, according to Jacobean matrix J(R;.R,.R3) of the system (1) which is given in (16) as
follows:

= |uy; 2
] [ l]]3><3 ( )
where:
ry BiR> ( r1R.Ky B1iRy
U= —2 _2mR, — Uy — n CUen = O
11 1+K1R2 1™ (1+31R1)2(1+32R2) 12 (1+K1R2)2 (1+31R1)(1+32R2)2 13
L1R; Iy l1Ry B2R3
Uy = Uy, = —2— — 2m,R, + _ ‘
21 (1+31R1)2(1+32R2) 22 1+K2R3 27%2 (1+31R1)(1+32R2)2 (1+33R2)2(1+34R3) 1
r,R;K; B2R _ _ [LR3
31 = O¢uzy =

= — —_ [ [
Y23 = T KGR)Z (1 + asRy) (1 + agRg)2 - (1 +a3R,)2(1 + a,R,)
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_ 2R, _
Us3 = TrmrpGraRy? 92
For any non- zero vector T =(t;.t,.t3)7:

(X W (T.T) = [Vig]ax1. 3)

_ BiRza, _ ) 2_( K3 B1 ) ( Ky
h, = 2(((1+a1R1)3(1+a2Rz) ™) 4" " \Gr? T Grarzararz) 12 Y \Grgr,s
Biaz 2
tZ Rl ’

(1+a1R1)(1+a2R2)3
Y. = _2( l1Rza4 £.2 — Ly ( r2Kz°R,
21 (1+a;R1)3(1+a,R,) 1 (1+ayR;)2(1+a,R,)? ftz (1+K, R3)3
B2 asRy 2 ( l1Rya; _ B2Rzas ) 2 ( 2Ky
(1+a3R2)(1+a4R3)3)t3 + mz + (1+31R1)(1+32R2)3 (1+a3R2)3(1+a4R3) (1+K2R3)2
B2 )t ¢ )
(1+a3R;)2(1+a4R5)2/ 273/
_ lzR3a;3 2 l R0, 2
Y31 - ((1+a3R2)3(1+a4R3) tz (1+33R2)2(1+34R3)2 2t3 + (1+33R2)(1+34R3)3 t3 ) !
and D*E,(X.p)(T.T.T) = [WiJsxa | @)
_ 1Ky Bia; ) 2 ( t R2‘111‘“1) Biast,® _
Wiy = 6[((1+K1R2)3 + (1+a;,R1)2(1+azR;)3 Lty” + 1+a,R,  1+aiRy/ (1+aiR1)3(1+azRy)
( r1K13Ry B1az%Rq ) 3]
(1+K1R)* = (1+a;R1)(1+ayR,)* )
_ r;K,?2 B2 ay ) 2 (R2a1t1 ) ) liait,?
W21 - 6[((1+K2R3)3 + (1+33R2)2(1+34R3)3 t2t3 + 1+a1R1 1+a2R2 (1+a1R1)3(1+a2R2)
( LR1az? _ B2Rsas® ) 3 ( B2 asts _ Liazty Yt
(1+31R1)(1+32R2)4 (1+33R2)4(1+34R3) (1+33R2)3(1+34R3)2 (1+31R1)2(1+32R2)3 1
( r.K2°R; B1az2%Rq )t 3]
(1+K2R3)4 (1+a1R1)(1+a2R2)4 !
Wi = 6 [( asRst; 13 ) lyasty? +( asRots 3 ) lpats? ]
31 (1+33R2) (1+34R3) (1+33R2)3(1+34R3) (1+a4R3) (1+33R2) (1+a3R2)(1+a4R3)3 !
where X = (R;.R,.R3) and (u ) any parameter.
. N l
Theorem (1): System (1) with the parameter value d'; = d; =1+ — i;lr , has a
1tair

transcritical and pitchfork bifurcation at 4; = (;_1' 0.0), if the next conditions hold:
1

VAR AP 5)
ANEAN (6)
Where:

.~ LN B2R3as
Z 1= ((1+31R1)2(1+32R2)2 + (1+33R2)3(1+34R3)),

11R2a1N2 + mz + l1Rq1ay )1
(1+31R1)3(1+32R2) (1+31R1)(1+32R2)3

( 11R2a12N3 11R1a22 )

(1+31R1)4(1+32R2) (1+31R1)(1+32R2)4 !
Lia,N? liazN B2Rzaz? )
(1+31R1)3(1+32R2)2 (1+31R1)2(1+32R2)3 (1+33R2)4(1+34R3) '

Proof: By using the Jacobian matrix in equation (1.7) in (20) J°; = J,(4;.d";) = [q‘ij]gxg,

where q°;; = q;; , except q',, = 0 .Then, the characterizing equation forJ"; has an eigenvalue
of zero, which is ?\m at d‘1 =d;,

Now, let 711 = (t 1:[1 )T be the eigenvector associated with an eigenvalue Mg, = 0.
Thus,(J°; — leZI)T = 0. this gives:

tl[l] = thl]. tgl] = 0.where N = — (Tl—K1 + ﬁ—)and t, Tany real number that is not zero.

mq mi+a 1y

318



IHIPAS. 2025, 38(2)

Let M1 = (m m[ m )T be the eigenvector associated with an eigenvalue A;g, = 0 of
the matrix J°{". Then. (J'f — Mg, ) MM =0.

T
By solving this equation for. MY = (0. mgl]. 0) .where mgl] any real number that is not zero.

T
Now consider thls — —fdl(X d,) = (gf gf gf) = (0.—R,.0)T.
1 1

So, fz,(Ay.d'y) = (0.0.0)T and hence (M ) fa,(A1.d) =0
Using Sotomayor's theorem, it is impossible to satisfy the saddle-node bifurcation condition.
The first condition for transcritical bifurcation is therefore satisfied. Now

0 0 O
Dfdl(X'dl): 0—-10 y
0 0 O

where, Df, (X.d;) represents the derivative of f; (X.d,) with respect to X = (Ry.R,.R3)".
Furthermore, it is observed that:

0o o of[nelH 0
Dfy, (Ap.d)TM =[0 —1 0 1| = —ti!
0 0 O 0

0
T

(M) [Dfy, (Ar.d)TH] = (0.m.0)" (0.-£}').0) = —ef'ml! # 0.

By substituting 711 in equation (3) we get:

2, (Ay.d (T ) = (v U) (7)
- 2r(_ReaaN” Ria; B1 ( KiRy
Y 1 = 2t2 [((1+a1R1)2 (1+a1R1)(1+a2R2) + (1+32R2)2) (1+a1R1)(1+a2R2) + (1+K1R2)
Ky 2
N) (1+K1R;)? my N7,
N _ 2 N _ R1a2 _ 11R2a1N2 ll _
Y 21 — 2t2 [((1+a1R1)(1+a2R2) (1+32R2)2 (1+31R1)2) (1+a1R1)(1+a2R2) mz +
Bz2Rsasz ]
(1+33R2)3(1+34R3) !
Y\ _ —2t2212R3a3
317 (1+a3Rz)3(1+a4R3) '

Hence, it was obtained

2
(M[l])T[DZFu(A1-d\1)(T[1]'T[1])] =2 (tgl]) mgl] (Z1—-2>)#0.
This indicates that the system (1) exhibits a transcritical bifurcation at A, with a parameter
d’, = d;, If condition (5) not satisfied then.
By substituting 71! in equation (4) we get:

SE,(Ag. &) (T T T = (W), (8)
N _ 3 _ K1R1 T1K12 a1N2 azN _ R2a12N3 _
W 1= 6t2 [(N (1+K1R2)) (1+K1R2)3 ((1+a1R1)2(1+a1R1) + (1+a1R1)(1+a2R2)2 (1+a1R1)3
az*Ry ) B1 ]
(1+a2R2)2 (1+a1R1)(1+a2R2) !

W\ _ 6t 3 R2a12N3 _ a1N2 _ azN
21 — 2 [( 3 2 2
(1+a;Rq) (1+a;R1)?(1+azRz)  (1+agR1)(1+azRz)
Rya5° ) L _ B2Rzas?
(1+32R2)3 (1+a1R1)(1+a2R2) (1+a3R2)4(1+a4R3) !
_ 6ty 313R3a3?
317 (1+a3R,)*(1+a4R3)’

T Y 3 N N
(M) [D3E, (4. ) (T T T = 6 (V) mit(zy - 20) = 0
Which grantee that there is pitch fork bifurcation at A; where d*; = d;.
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Theorem (2): System (1) with the parameter value d, = d, = 1ZLR2 ,has a transcritical and
3
pitchfork bifurcation at A, = (0. R,. 0).if the next conditions hold:
7, # Z,. €))
7y + Z,. (10)
Where:
z _ le Z— _ lzRgagAz 12R2a4
1= (1+33R2)2(1+34R3)2 ! 2~ ((1+33R2)3(1+34R3) (1+33R2)(1+34R3)3) !
7 lz R3a32A2 R2a4_2 7 le Ay a3A
Z3 - (1+a3R2)(1+a4R3) ((1+33R2)3 + (1+a4R3)3) ! Z4 - (1+33R2)2(1+34R3)2 ((1+a4R3) + (1+a3R2))'

Proof: By using the Jacobian matrix in equation (1.8) in (20) J, = J,(4z.d,) = [c‘zij]gxg,
where @;; = a;; , except azz = 0.Then, the characterizing equation for/, has an eigenvalue of
zero, which is A2R3 at &2 =d,.

Now, let T[] = (t t[2 )" be the eigenvector associated with an eigenvalue Az, = 0.
Thus,(J; — AZRZI)T = 0. this gives:t14 = 0. £} = A¢l?].
where :
_ _ (TeR2K; B2Rz [2] .
A= (rz_d1 (1+a3R2)(r2—d1))’ and t3 any real number that is not zero.

Let M2 = (m&z].mgz].mgz])T be the eigenvector associated with an eigenvalue A,g, = 0 of
the matrix /7. Then. (J — A, I) M2 =0.

T
By solving this equation for. M2l = (O. 0. m[z]) . and mgz] any real number that is not zero.

T
Now consider this: —=- —fdz(X d,) = (g(];l gf gf) = (0.0.—R3)T.
2 2

So, fu,(42.d,) = (O. 0.0)" and hence (M'?)' £, (4,.d,) = 0.
Using Sotomayor's theorem, it is impossible to satisfy the saddle-node bifurcation condition.
The first condition for transcritical bifurcation is therefore satisfied. Now

0 0 O
0 0-1

where, Df, (X.d,) represents the derivative of f;, (X.d,) with respect to X = (Ry.R,.R3)".
Furthermore, it is observed that:

o o o1 9,
Dfy,(Ay.d )T =10 0 of |2
0 0-1 t[z —t[z
2(,.12
(M2 [Dfy, (4. dz)T 7= (0.0.m{) =-mPtl 20
By substituting T12lin equation (3) we get.
2F (A dy) (T TR = (7). (11)
5 2 [2] T1K12 B1a;
11 = 287Rq 85 ((1+K1R2)3 + (1+a1R1)(1+a2R2)3)’
V.. =2 t[z][( RzazA? R, A ) B2 _ 1Ry a,47
21 = 2 "3 W(@1+a3Rp)2 ' (1+a4R3)2  (1+a;R;)(1+azR;)/) (1+aiR)(1+azR;)  (1+a;Ry)(1+azR;)3
KR, K, 2
( (1+K2R3)) (1+K;R3)2 m, A%,
Par = 200 e (e — et -

(1+a;R1)(1+azR;) *(1+a;R1)(1+azR;) (1+azR;)2  (1+a4R3)2”’
Hence, it was obtained.
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(M2 [D2E,(4,.d,) (T2, T12))] = 2 (tgﬂ)z m#(Z, —7,) # 0.

This indicates that the system (1) exhibits a transcritical bifurcation at A, with a parameter
d, = d,. If condition (9) not satisfied, then.

By substituting 72! in equation (4) we obtain:

D3, (A, dy) (T T2 T2 = (W)). (12)

T A2 [2])3 B1a2°R, 1K1 Ry
Wiy = —6A (t3 ((1+a1R1)(1+asz)4 + (1+K1Rz)4)’

W21 — 6(t£2])3 [(A _ KRy ) r K,? +( LAd B1 ) az’Ry
(1+K3R3)/ (1+K;R3)3 (14+a3R;)3  (1+azR,)3” (1+a.R1)(1+azRy)
( asA ay _ R3a32A2) B2A 1
(1+a3R;)(1+asR3)  (1+a4R3)2  (1+a3R,)2/ (1+asR,)2(1+asR3)"’
3
— 6(t£2]) ) R3a32A? Rya,? aA azA?

31 = (1+a3R2)(1+a4R3) (1+33R2)3 (1+a4R3)3 (1+33R2)(1+34R3)2 o (1+33R2)2(1+34R3) !
T - 3 _ _
(M) [D3E, (4. ) (T T T2)] = 6 (e) mP(Zs - Z) % 0
Which grantee that there is pitch fork bifurcation at A, where d, = d,.

Theorem (3): System (1) with the parameter value d, = d, = lfaR:ﬁz , has a transcritical and
pitchfork bifurcation at A; = (R;. R,.0), if the next conditions hold:
72, # Z,. (13)
23+ 7. (14)
Where:
Z"l — 1,0, "Zz — 12R3a3(Z)22 LLRya4 )‘
(1+a3R3)2(1+a4R3)? (1+a3Rz)3(1+a4R3)  (1+azRy)(1+ayuR3)3
23 _ I (R3a32(2)23 Rpa4? )‘ 24 _ 1,0, as az®, .
(1+a3Ry)(1+a4R3) \(1+a3R;)3  (14+a4R3)3 (1+a3R3)?2(1+a4R3)% “(1+a4R3)  (1+azRy)

Proof: By using the Jacobian matrix inequation (1.9) in (20) f; = J5(4s.d;) = [dij]gxg,
where ciij =d;; , except ds; = 0 .Then, the characterizing equation for f; has an eigenvalue
of zero, which is Az, at d, = d; .

Now, let T3 = (¢1*]. ¢1*). ¢1*))T be the eigenvector associated with an eigenvalue Azg, = 0.

Thus,(f3 — Az, /)T = 0. this gives: t3 = ¢, ¢ B = g, ¢

where: @, = dz3diz ‘@, = dpzdis
" T dy1dy,—dyads 2 7 dypdy1—di1das’

and tf] any real number that is not zero.

Let M3 = (mES].mE].mE])T be the eigenvector associated with an eigenvalue Az, = 0 of

the matrix /5. Then. (f — Asg,/)MB! =0.
T
By solving this equation for . M3! = (O. 0. mf]) ,and mE’] any real number that is not zero.

Now consider this:;—; = fa,(X.dy) = (%.%.S—Q)T = (0.0.—R3)T.

So, f4,(As.dy) = (0.0.0)"and hence (M[3])de2 (45.d,) = 0.

Using Sotomayor's theorem, it is impossible to satisfy the saddle-node bifurcation condition.
The first condition for transcritical bifurcation is therefore satisfied. Now

0 0 O
Dde(X.dz) =10 0 0].
0 0-1
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where, Df,, (X.d,) represents the derivative of f;, (X.d,) with respect to X = (R;.R,.R3)".
Furthermore, it is observed that:

0 0 0 0
Dfy,(As.dp)TB) = o 0 0] 0

0—-1 t

3 T (3], [3]
(MB'[Dfy, (As. dz)T ]_ 00m3 =-my 'ty #0
By substituting 713! in equation (3) we get.

Fu(As.dp)(TBLTEI) = (7). (15)

_ Rya,10, 010> azR20,° B1

Yll o 2 ( ) ((1+a2R2)2 (1+a1R1)(1+a2R2) + (1+a2R2)2) (1+a1R1)(1+a2R2)
K1R101 mnK, 2
((1+K1R2) ®1®2) (1+K; Rp)? my0,°],
910, _ Rpa10,° _ R1a20,° Ly azR30,”
Py = 2( ) ((1+a1R1)(1+a2R2) (1+a;R;)? (1+a2R2)2) (ra k) (rarry) ((1+a3R2)2
82 4R B2 _ 2 K2Ry r2Ks
(1+33R2)(1+34R3) + (1+34R3)2) (1+33R2)(1+34R3) m2¢2 + ((1+K2R3) @2) (1+K2R3)2],
2

0 2(t£3]) L2 P2 _ R3a30,° ___Reay )

31 = (1+33R2)(1+34R3) (1+33R2)(1+34R3) (1+33R2)2 (1+34R3)2 !
Hence, it was obtained

(MB) [D2F,(45.d,)(TELTR] = 2 (e3) ml (2, - 2,) # 0.

This indicates that the system (1) exhibits a transcritical bifurcation atA, with a
parameter d, = d,. If condition (13) not satisfied then.

By substituting T3 in equation (4) we get:

E,(As.dy)(TBLTELTEN = (W), (16)
- 3 2 3 2R
W, =6 (t?[)?)]) [( a0,0, _ 927a3°Ry
(1+a1R1)(1+a2R2)2 (1+a2R2)3
Rpa,%0,° a;0,°8, ) B1 (@, — K1R10, ) 7’11(12@22]
(1+a1R1)3 (1+a1R1)2(1+a2R2) (1+a1R1)(1+a2R2) 1 (1+K1R2) (1+K1R2)3 !
3 2 2 2@.3
T [3]) ( __K3Ry ) r;K; _ B1a2°Rq Rpa1°04
W21 6 (t3 [ ¢2 (1+K2R3) (1+K2R3)3 (1+a1R1)(1+a2R2)4 + ((1+31R1)3
a,0,°9, _ 20,0, R1022®23) Ly ( a9,
(1+31R1)2(1+32R2) (1+31R1)(1+32R2)2 (1+32R2)3 (1+a1R1)(1+a2R2) (1+a3R2)(1+a4R3)2
a48,° _ R3a32®23) B2I ]
(1+33R2)(1+34R3)2 (1+a3R2)3 (1+a3R2)2(1+a4R3) !
3
Wy = 6(t£3]) L2 R3a3?0,° Rpas® as0; _ asz@,”
31— (1+33R2)(1+34R3) (1+33R2)3 (1+a4R3)3 (1+a3R2)(1+a4R3)2 (1+a3R2)2(1+a4R3) '

Hence,

T - 3 - A
(M3 [D3F,(45.d,) (T8 TBRLTEN] = 6 (e) m(Z5 - 2,) # 0.
By condition (14). Which grantee that there is pitch fork bifurcation at A; where d, = d,.
B1Ry (14K,

R
2) , has a transcritical

Theorem (4): System (1) with the parameter value 7, = r; =
(1+azR3)

and pitchfork bifurcation at A, = (0. R,. R5), if the next conditions hold:

7, # Z,. (17)
Zs # Zs. (18)
Where:

5 _ 1K1 21, * Birazli? B1Rza1

17 (1+K,R)3 ' (1+aiRy)(1+ayR2)3 | (1+aiRy)(1+ayRz)3’
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5 _ Kyl Bilx
Zy = (my + _+ £ ),
(1+K1R2) (1+a1R1) (1+a2R2)
5 _ ( 1K 2 Bias + Biaz 2 B1Rza;?
3 (1+K1R2)3 1 (1+a1R1)3(1+a2R2)2 1 (1+a1R1)2(1+a2R2)3 1 (1+a1R1)4(1+32R2) !
f _ ( B1Rza4? r1K13Ry 3 B1a2*Rq )
4 (1+a1R1)4(1+a2R2) (1+K1R2)4 1 (1+a1R1)(1+a2R2)4 1 '

Proof: By using the Jacobian matrix from equation (1.10) in (20) J, = J,(4,.7) = [Eij]3x3,
where &;; = e;; . except'e;; = 0.Then, the characterising equation for J, has an eigenvalue of
zero, whichisA,g, =0 at#y = ry.

Now, let T4 = (¢!, ¢}, ¢I*T be the eigenvector associated with an eigenvalue A,g, = 0.
Thus,(Ja — Agr,J)T™! = 0. this gives:

el = el e = el

where:

I, = €21€33 _ €32€21
| =

ez3esz-e32e33 ' X egzers—ezes;
and tf’] any real number that is not zero.
Let M4 = (mg‘”.mg‘].mgﬂ)T be the eigenvector associated with an eigenvalue A,g, = 0 of
the matrix /7. Then. (JF — Ay, /) M™* =0,

T
By solving this equation for . M!4! = (mg‘”. 0. O) and mg‘” any real number that is not zero.

Now consider this: :_:1 =fr,(X.1y) = (Z_Q'Z_ﬁ'g_i)T = (ﬁ.o.o)é

So. f;, (A4.7;) = (0.0.0)"and hence (M*)Tf. (44.7,) = 0.

Using Sotomayor's theorem, it is impossible to satisfy the saddle-node bifurcation condition.
The first condition for transcritical bifurcation is therefore satisfied. Now

1
1+ KR 00
Dﬂl(X.rl) = 0 12 0 0 .
0 0 O

where, Df;. (X.r;) represents the derivative of £, (X.r;) with respect to X = (Ry.R,.R3)".
Furthermore, it is observed that:

(14

0 0 b :]
Df;, (Ag. )T = 1+K1R2 = 1+K1R2
0
0 Izt[4 J

0
0

o it
(M¥) [Df,, (4,.7)TH] = (m}*. 0.0) m 0-0) REETY A
By substituting T in equatlon (3) we get:

F,(A,. 7)) (T T = (7)), (19)
S [4] 2 Rpaq142 . 111 azR, 1,2 B1 . 2
Yll_z(tl ) [((1+a2R2)2 (1+a1R1)(1+a2R2)+(1+a2R2)2) (1+a1R1)(1+azR5) mly "+

K1R1112 _ 7'11(1
((1+K1R2) 1112)(1+K1R2)2]’
= _ [4] 2 1112 _ R2a1112 _ R1a2122 ll KZRZ _
Y21 - 2 (tl ) [((1+a1R1)(1+a2R2) (1+31R1)2 (1+32R2)2) (1+a1R1)(1+a2R2) + ((1+K2R3)

r2Ks azRslp? I 4R, B2 _ 2
2)(1+K2R3)2 ((1+a3R2)2 (1+a3R,)(1+a4R3) (1+a4R3)2) (1+a3R;)(1+a4R3) malz"],
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7 Z(f[4])2 I R3asl,? Rpa,
31 = (1+azRp)(1+a4R3) “(1+a3Rz)(1+a4R3)  (1+a3Rz)?  (1+a4R3)?7"

Hence, it was obtained
T _ 2
(M) [D2E, (4. 7)) (T TH)] = 2 () ml¥(z, - 2,) = 0.
This indicates that the system (1) exhibits a transcritical bifurcation at A, with a parameter

r, = 1, and no pitch fork bifurcation at A, where 7, = r;.
By substituting 7! in equation (4) we get:

E (A R (T TH. T = (W), (20)
W11 — 6( ) [( azlyIp? I;°az?Ry  Rpaq?Iy?
(1+a1R1)(1+a2R2)2 (1+azRz)® (1+aqRq)3
a1l KiR114 1K1 %152
(1+a1R1)2(1+a2R2)) (1+a1R1)(1+a2R2) +(h - (1+K1R2)) (1+K1R2)3]’
W21 — 6( ) [( K2R ) K2 B1a2*Ry + (R2a12113
(1+K3R3)/ (1+K3R3)3  (1+a1R1)(1+ayRp)* (1+a;Ry)3
ail; %, ayli1,? Rya,21,3 L aqlp
(1+a;R1)2(1+a3Ry) N (1+a;Rq)(1+azRy)? (1+a2R2)3) (1+a;R1)(1+azR;) ((1+a3R2)(1+a4R3)2
ayly? Rzaz’ly° B2l
(1+a3R;)(1+a4R3)2 (1+a3R2)3) (1+a3R2)2(1+a4R3)]’
I/T/31 =6 (t[4])3 I (R3a32123 + Rya,? _ aqul; _
1 (1+a3R;)(1+a4R3) “(1+a3R)3  (1+a4R3)3  (1+azRy)(1+a4R3)?
aslp?
(1+a3R2)2(1+a4R3))'
Hence,

3 - =
(M) [D3E,(A,. 7)) (TH. T T = 6 (1) ml(Z, - Zp) # 0
If condition (17). Which grantee that there is pitch fork bifurcation at A, where r; = 7.

Theorem (5): Suppose that conditions (1.11b), (1.11e) and, reverse condition (1.11c) in (17)
with the following conditions are satisfied:

T11722 < T12721- (21)
7, # 7Z,. (22)
Where,

~ = R 2 R —7

Z1= (1‘*'6131‘2;22](/21+34R3)2 2y = ((1+a;2RSZzﬁa4R3) (1+a31i2)(21?a4R3)3)‘ V2= 7’33;3 <0

Then the system near As = (R;. R,. R3). has a saddle-node bifurcation at

dz =d, = 711732723

F11f22—T12f21
Proof: By using the Jacobian matrix in equation (1.11) in (20) Js = J5(4s.d,) = [ﬁ-j]3x3,
LR,
(1+a3zRy)(1+aysR3)?
has an eigenvalue of zero, which is (say Asg, = 0) if and if p; = 0.

where 7;; = 1;; . except 33 = — d, .Then, the characterising equation for J5

Now, let T15! = (t{s]. t;"]. tgs])T be the eigenvector associated with an eigenvalue Asg, = 0.
Thus,(Js — Asp,[)T™! = 0. this gives: t°) = ;¥ el = y,¢1> . and ¢l any real number

that is not zero. And y; = T12T33
T11T32
Let M5 = (m1 m£ .m3 T be the eigenvector associated with an eigenvalue Asg, = 0 of

the matrix J& . Then. (J& — Asg,/) MBI =0.

T
By solving this equation for . M!5] = (y ml, y4m£5].m£5]) .where m’*! any real number that

is not zero, and y; = 222 > 0, y, = 2 <0,

F11723 723

324



IHIPAS. 2025, 38(2)
ider this: 2L = _ (2 35 35\ _ _RT
Now consider this: o = fa,(X.dp) = (adz'adz '6d2) = (0.0.—R3)".
So. fu,(As.d;) = (0.0.—R;) and hence (M) £, (4s.d,) = —Rym!™ = 0.
By substituting 75! in equation (3) we get:

D?F,(As.dy) (TN T = (7). (23)
v _ [51\? [( K1Riv1? _ K, 2 Ryaiyi® Y1¥2
=2 (t3 ) [((1+K1R2) }’1}/2) (rkorye vt ((1+a2R2)2 (1+a1R)(1+azRy)
azRzy2° ) B1
(1+a2R2)2 (1+a1R1)(1+a2R2) !
5 _ (512 Viy2 _ Raaiyi®  Riapy,? Ly K2Ry
Y21 - 2 (t3 ) [((1+a1R1)(1+a2R2) (1+31R1)2 (1+32R2)2) (1+a1R1)(1+a2R2) + ((1+K2R3)

;K5 azRzy,? V2 asR; B2 _ 2
Vz) (1+KzR3)? ((1+33R2)2 (1+a3Rz)(1+a4R3) (1+a4R3)2) (1+a3Ry)(1+a4R3) ma¥2°],

2

% 2(t£5]) L2 Y2 _ _Rzazyy®  Raay )

31 - (1+33R2)(1+34R3) (1+33R2)(1+34R3) (1+33R2)2 (1+a4_R3)2
Hence, it was obtained.

. 2 o~
(M=) [D2E,(As. ) (T TILTIN] = 2 (¢8) ml™(Z, - Z,) = .

So, by condition (21) system (1) exhibits a saddle-node bifurcation at Ag for any value of the
parameter d, = d, but no pitch fork bifurcation at As where d, = d,.

3. Numerical simulation

In this section, the dynamical behavior of the system (1) was investigated. Calculations may
be performed for a one set of parameters with a different starting point to examine the analytical results
and understand how the parameters impact the dynamic model. Figure 1. (a-d), shows that system (1)
has positive solution.
1, = 0.5.m; = 0.5.K; = 0.003.8;, = 0.3.]; = 0.3.a; = 0.1.a, = 0.02.d; = 0.1.7, = 0.5.
m, = 0.4.K, = 0.07.5, =0.7.1l, = 0.7.a; = 0.01.a, = 0.02.d, = 0.4. (24)

T T T T T T T T

—pey
07~ — intermediate predtor
— toppredator

(050807)

04050 8\4/\\

[ [ [ [ [ [ [ [ [

Figure 1. (a — d). Time series of system solution (1) begin with different starting points (0.5.0.6.0.7).
(0.4.0.5.0.8). and (0.2.0.9.0.1) . (b) Path of R; depending on time, (c) Path of R, depending on time,(d)
Path of R; depending on time.
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Now, to study the effect of parameters on the dynamic behavior of the system (1), the system
(1) was numerically solved to the data in (24) by changing a single parameter each time the
results are given in Table (2).

The result of changing the wvalue of the parameter r; in the range
0.15 < r; < 3.7 solution approaches A,, as described in Figure 2 ,(a)for typical value r; = 2
. in the range 0.1 < r; < 0.15 the solution approaches to Ag, as described in Figure 2,(b) for
typical value r; = 0.14 .

T T T

Figure 2. (a).(T.S.) of system solution (1) for the given values in the equation (24) withr; =2  ,which
approaches to A, = (0.0.5716.0.2356). (b). (T.S.) of system solution (1) for the given values in the
equation (24) with r, = 0.14, which approaches to Ag = (2.25226.0.5627.1.0574) .

The impact of varying the parameter d; in the range 0.001 < d; < 0.475 the solution
approaches to As, as shown in Figure 3, (a) for typical value d; = 0.2 . inthe range 0.475 <
d, < 0.799 solution approaches As, as described in figure 3, (b) for typical value d; =
0.4799 . in the range 0.799 < d; < 1 solution approaches A, as shown in Figure 3, (c) for
typical value d; = 0.18.

Figure 3. (a),(T.S.) of system solution (1) for the given values in the equation (24) with
d, = 0.2 ,which approaches to As = (0.6981.0.53.0.19). (b) (T.S.) of system solution (1) for the given values
in the equation (24) with d, = 0.4799 ,which approaches to A; = (0.6932.0.5383.0). (c) (T.S.) of system
solution (1) for the given values in the equation (24) with d; = 0.81 ,which approaches to A; = (0.999.0.0).
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For the parameter d, in the range 0.1 < d, < 0.869 solution approaches Az, as shown in
Figure 4,(a) for typical value d, = 0.5 ,the range growing further 0.869 < d, < 1 solution
approaches A as described in Figure 4,(b) for typical value d, = 0.921, in the range

Figure 4. (a) (T.S.) of system solution (1) for the given values in the equation (24) with d, = 0.5,which
approaches to Az = (0.5875.0.7139.0.3857). (b) (T.S.) of system solution (1) for the given values in the

equation (24) with d, = 0.921 ,which approachesto A; = (0.2753.1.2058.0).

Table 2. The numerical result.

Range of parameter Stable The bifurcation point
0.1<r <0.15 A, r, = 0.15
015<n <37 As

0.0001 <r,<0.1 A, r, = 0.1
01<€r<05 As

0.003 < K; <0.999 As K, =0.999
0999 <K, <1 A,

0.00007 < K, < 0.07 A
0.0009 < m,; < 0.001 A m,; = 0.001

0.001 <m; < 0.5 As
0.4 <m, <12 As
03 <p;, <099 As B, =0.99
099 <p; <2 Ay
07<p, <25 As

0.0001 <1, <03 As
01<1,<07 As

0.0001 <a; < 1.6 A
0.008<a, <2 A

0.0006 <a; < 1.2 As
0.0002<a, <3 As

0.001 <d, <0475 As d, = 0.475

0.475 <d; <0.799 Ay d, = 0.799
0799<d; <1 A,

0.01 < d, < 0.869 As d; = 0.869
0869<d,<1 As

5. Conclusion

In this work, the occurrence of local bifurcation have been discussed with an appropriate
conditions of food chain which contains a prey—intermediate predator-top predator model with
fear and Crowley-Martin-type of functional response have been studied, transcritical and pitch
fork bifurcation occurrence near A;.A,.A; and A,, while a saddle-node bifurcation occurs
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near As.Finally, in order to demonstrate how local bifurcation occurs in this system, numerical
simulations are employed. The results of these simulations are as follows:

*System (1) has no periodic dynamics

*The parameters r;.d;.i = 1.2, K;.my. B, have a significant impact in the system dynamics
(1), as opposed to other parameters K,.m,. ,.1;.i = 1.2 and a;.i = 1.2.3.4 the solution
continues to approach the equilibrium point.
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