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Abstract  

In the present study, we intend to evaluate the effect of temperature on the structural, 

morphological, and optical properties of tin oxide. For this purpose, tin oxide micro-flowers were 

prepared by the hydrothermal method at two different hydrothermal temperatures of 130 and 150°C. 

The synthesized samples were investigated and characterized using X-Ray Diffraction (XRD), Field 

Emission Scanning Electron Microscopy (FESEM), Ultraviolet–Visible Spectroscopy (UV-Vis). The 

XRD results showed that the synthesized samples have single-phase crystallinity with a rutile 

structure. The mean crystallite size for synthesized Micro- flowers was calculated by the Debby-

Scherrer equation and the values were 21 and 28 nm for 130 and 150°C respectively. The results of 

FESEM showed the morphology of tin oxide is Micro-flower for both temperatures and increasing 

the temperature from 130 to 150°C caused the morphology of tin oxide samples to change from 

Micro-flowers consisting of nanoparticles to Micro-flowers consisting of nanoplates. The optical 

bandgap was increased, whereas the refractive index decreased by increasing temperature from 130 

to 150°C. 
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1. Introduction 

Transition metal oxide semiconductors have been the subject of much research because of their 

applications and properties, such as optical, electrical, magnetic, and electrochemical. Among them, 

tin oxide is more usable with its unique properties. So, tin oxide (SnO2) is one of the important metal 

oxide semiconductors, with a wide energy gap of about 3.6 eV. It is widely used in many fields, such 

as dye-sensitized solar cells, optical waveguides, gas sensors, transparent conductive electrodes, 

transistors, and lithium-ion batteries, due to its good chemical stability and excellent electrical and 

optical properties [1]. The unique structure of this oxide can offer new and promising properties and 

applications in many fields [2]. Although in all applications, the synthesis of materials with specific 

morphology and small size, especially in the nanometer dimension, can be an essential factor, so far, 

physical and chemical methods such as the laser chemical method, chemical precipitation, 

hydrothermal, and sol-gel have been used to obtain different structures of tin oxide [3-5]. However, 

the hydrothermal method is a desirable way for the synthesis of tin oxide due to the simplicity of the 

process, reliability, low cost, as well as the control of morphology and size. 
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   The optical properties of metal oxides are important for many applications, including interference 

devices such as antireflection coatings, laser mirrors, and monochromatic filters, as well as 

optoelectronics, optics, solar energy engineering, microelectronics, and optical sensor technology. 

Therefore, the precise determination of the optical parameters of synthesized products is important in 

order to understand the mechanism and improve their technology. 

So far, nanoparticles of SnO2 and doped SnO2 nanostructures have been synthesized by researchers 

in order to study their structural, morphological, and optical properties. Kumar et al. [6] synthesized 

tin oxide nanoparticles with different solvent media (water and ethanol) using the co-precipitation 

method and investigated their optical properties. [7] synthesized tin oxide nanoparticles with the sol-

gel method and studied the structural, morphological, and optical properties of the as-synthesized tin 

oxide nanoparticles calcined at different calcinating temperatures.[8]synthesized tin oxide 

nanoparticles via the green synthesis method and studied their structural, morphological, and optical 

properties.[9] synthesized pure and Cd-doped SnO2 nanostructures with various concentrations of Cd 

by the hydrothermal method and studied their structural, morphological, and optical properties.  

In this research, tin oxide Micro-flowers were synthesized by the hydrothermal method at two 

different temperatures of 130 and 150 ℃, and characterized by XRD, FESEM, and UV-Vis analysis. 

Then the optical parameters of two samples, such as absorption, transmission percentage, optical 

bandgap, and refractive index, were investigated and compared. 

 

2. Materials and Methods 

For the synthesis of tin oxide first, we dissolved 0.7 grams of Tin (IV) Chloride Pentahydrate 

(Sn(Cl4).5H2O) in 20 ml of deionized water (solution 1). In another container, we dissolved 0.63 

grams of sodium hydroxide in 20 ml of deionized water (solution 2). Under rotation, solution 1 was 

added to solution 2, and the resulting mixture was added to 20 ml of 0.1 M CTAB solution. Then, the 

solution was transferred to a 100-ml autoclave and put in the furnace at 130 and 150 °C for 32 hours 

to accomplish hydrothermal procedures. After the natural cooling of the autoclave to room 

temperature, the precipitate was separated by a centrifuge and washed several times with deionized 

water and ethanol to remove impurities. Then, it was dried in the oven at 60 °C for 13 hours. Finally, 

it was calcinated at 400 °C for 4 hours. 

 

3. Results and Discussion 

Figure 1 shows the XRD diagram (taken in Beam Gostar Taban Laboratory) of the synthesized 

samples of tin oxide, which has a rutile structure. The specified peaks are completely consistent with 

the corresponding reference card number (JCPDS file No. 96-153-4786). The Miller indices related 

to each angle are specified in Figure 1. The sharp and narrow peaks indicate the excellent crystallinity 

of the two samples. The maximum peak for both samples belongs to the plates with Miller's index 

(101). With increasing temperature, slight changes in the width and angles of the peaks are observed, 

as shown in Figure 2 for three peaks. 

The mean crystallite size has been obtained using the Debye-Scherrer formula 𝐷ℎ𝑘𝑙 =
0/9 𝜆

𝛽ℎ𝑘𝑙 cos 𝜃ℎ𝑘𝑙
. In 

this relation,  𝐷ℎ𝑘𝑙 is the diameter of the nanocrystal, λ is 𝑋 –ray wavelength (Cu − Kαλ = 1/54 Å) ،

𝛽ℎ𝑘𝑙  is full width at half maximum of the diffraction peak in radians, and 𝜃ℎ𝑘𝑙   the Bragg angle. The 

mean size of the nanocrystal for tin oxide synthesized at 130 and 150 ℃ is 21 and 28 nm, respectively.  
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Figure 1. XRD patterns of tin oxide sample synthesized at two temperatures of 130 and 150 oC. 
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Figure 2. Comparison of XRD peaks of two samples synthesized at 130 and 150 oC. 

FESEM analysis was used to check the morphology of the synthesized samples. Figure 3 shows the 

FESEM images of tin oxide synthesized at two hydrothermal temperatures of 130 and 150 ℃. At both 

temperatures, the morphology includes Micro-flowers. However, the difference is that at the 

temperature of 130 ℃, tin oxide Micro-flowers contain nanoparticles, whereas when the hydrothermal 

temperature increases to 150 ℃, the Micro-flowers contain nanoplates. 

  

Figure 3. FESEM image of tin oxide synthesized at hydrothermal temperature (a) 130℃ (b) 150℃. 
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The absorption and transmittance spectra are shown in Figures 4, 5. As can be observed, for both 

samples, the highest value of absorption is in the ultraviolet region. The transmission percentage of 

the samples is following their absorbance spectra. 
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Figure 4. Absorption spectrum of synthesized tin oxide at two temperatures of 130 and 150 ℃. 
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Figure 5. Transmittance spectra of tin oxide passage synthesized at two temperatures of 130 and 150 ℃. 

The direct optical bandgap is obtained using Tauc equation [10]: 

𝒂𝒉𝝂 = 𝑨(𝒉𝝂 − 𝑬𝒈)
𝟏/𝟐

                                                                                                                       (1) 

Where α is the absorption coefficient, 𝒉𝝂 is the energy of the incident photon, Eg is the direct optical 

bandgap, and A is the energy independent constant. (αh𝝂)2 is plotted against h𝝂 in Figure 6. The 

extrapolation of the linear portion of the curve to absorption equal to zero gives the values of the 

direct band gap. The calculated optical bandgap for tin oxide Micro-flowers is estimated to be around 

3.24 and 3.3 eV, which were obtained for temperatures of 130 and 150 ℃, respectively. Considering 

the temperature difference between the two synthesizes, the optical gap difference is significant at the 

value of 0.6 electron volts.  
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Figure 6. Direct optical bandgap of tin oxide structure synthesized at temperature (a) 130 and (b) 150 ℃. 

Absorption, transmittance, reflectivity, and refractive index are examples of optical parameters that 

quantify how a substance interacts with light. We have applied the following relations for calculating 

some of the optical parameters, such as reflectivity (𝑹), absorption coefficient (A), extinction 

coefficient (𝒌) and refractive index (𝒏). A is absorption an T is transmittance. 

𝑅 = 1 − 𝐴 − 𝑇                                                                                                                                   (2) 

α =
(1−𝑅)2

2𝑅
                                                                                                                                           (3) 
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𝑘 =
𝛼𝜆

4π
                                                                                                                                                 (4) 

𝑅(𝜆) =
(𝑛−1)2+𝑘2

(𝑛+1)2+𝑘2                                                                                                                               (5) 

 

Figure 7 shows the changes in refractive index as a function of wavelength for synthesized tin oxides. 

The value of the refractive index for both samples increases with increasing wavelength, for instance, 

at the characteristic wavelength of 550 nm, the refractive index has a value of 2.4 and 2.2 for the 

synthesis temperatures of 130 and 150 ℃, respectively. 
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Figure 7. Refractive index diagram (n) of synthesized samples as a function of wavelength. 

Refractive index changes in nanostructures depend on the properties of the nanostructures, such as 

permeability, size, morphology, and distribution of the particles. Since all these factors influence the 

interaction of incident light with matter, and since this interaction is different from one case to another, 

different values will be obtained for the refractive index. 

4. Conclusion 

In this research, tin oxide Micro-flowers were synthesized by the hydrothermal method at two 

temperatures of 130 and 150 ℃. By increasing the temperature from 130 to 150 ℃, the morphology 

has changed from Micro-flowers composed of nanoparticles to Micro-flowers composed of 

nanoplates. While increasing the temperature from 130 to 150 ℃ the mean size of nanocrystals 

increased, the optical bandgap of tin oxide Micro-flowers increased from 3.24 eV to 3.3 eV, and the 

refractive index decreased with increasing temperature. 
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