

Some Results on Double Centralizer for Prime and Semiprime Γ- rings

Aya Hussein Khudair ¹[∗], Abdulahman H. Majeed ², Shrooq Bahjat Smeein ³ and Azza I.M.S. Abu-Shams ⁴

 ¹ Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.
 ² Department of Mathematic, Al-Mamoun University College, Baghdad, Iraq.
 ³ Department of Mathematics, An-Najah National University, Nablus P400, Palestine.
 ⁴ Information Department -Section Mathematics, University of Technology and Applied Science -Muscat, Sultanate of Oman.
 *Corresponding Author.

Received: 11 June 2023	Accepted: 10 September 2023	Published: 20 April 2025
doi.org/10.30526/38.2.3594		

Abstract

The goal of this work, is to examine the concept of a double centralizer (T, S), and double Jordan centralizer on prime and semiprime Γ -rings, this is done by studying examples ,remarks and results related to that concepts and looking for the conditions under which T equal S, we prove the results, the first result, let A be a semiprime Γ -ring and T is a left centralizer, S is a right centralizer, and they fulfilling x α T(y) = S (x) α y, for each x \in A, $\alpha \in \Gamma$, thence (T,S) is a double centralizer. The second, let A be a prime Γ -ring, U be a not equal zero ideal of A, such that, T is a left centralizer, S is a right centralizer, and fulfilling x α T(y) = S (x) α y, for each x, y \in U, $\alpha \in \Gamma$, thence (T, S) is a double centralizer. The third, let A be a prime Γ -ring, U be a not equal zero ideal of A and we get, if T=S on U, thence T=S on A.

Keywords: Prime Γ -rings, Semiprime Γ -rings, centralizer, Jordan centralizer, double centralizer, double Jordan centralizer.

1. Introduction

Barnes (1) defined Γ -ring. Let A and Γ be two additive abelian groups. It there is a mapping $(x, \alpha, y) \rightarrow (x \alpha y)$ of $A \times \Gamma \times A \rightarrow A$, satisfying the following, for any $x, y, z \in A$ and $\alpha, \beta \in \Gamma$.

- i. $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)y = x\alpha y + x\beta y$, $x\alpha(y + z) = x\alpha y + x\alpha z$,
- ii. $(x\alpha y)\beta z = x\alpha(y\beta z)$, thence A is named a Γ -ring.

© 2025 The Author(s). Published by College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad. This is an open-access article distributed under the terms of the <u>Creative Commons</u> <u>Attribution 4.0 International License</u>

330

OZDEN et al. (2) defined the subring. A subring of Γ -ring A is additive subgroup S of A such that $S\Gamma S \subset S$. Let A be a Γ -ring, thence A is named a commutative gamma-ring if, $x\alpha y = y\alpha x$, holds for any $x, y \in A$ and $\alpha \in \Gamma$, Kandamar et al. (3). A subset U of the Γ -ring A is a right (left) ideal of A if U is an additive subgroup of A and $U\Gamma A = \{a\alpha x: a \in U, \alpha \in \Gamma, x \in A\}$ (A Γ U) is contained in U. If U is both a left and a right ideal, thence U is a two-sided ideal, or simply is an ideal of A. Barnes (1). A Γ -ring A is named prime if $m\Gamma A\Gamma n = (0)$ with $m, n \in A$ implies m =0 or n = 0 and semiprime if $m\Gamma A\Gamma m = 0$ with $m \in A$ implies m = 0 (4, 5). An ideal P of a gamma-ring A is prime ideal if for any ideals N,M \subseteq A, N Γ M \subseteq P implies N \subseteq P or M \subseteq P, Kyuno (5). A gamma-ring A is said to be prime Γ -ring if the zero ideal is prime ideal, Kyuno (5). Let A be a Γ -ring, thence A is named n-torsion free if n x = 0, yields x = 0, for every $x \in A$, where *n* is positive integer, Chakraborty et al. (6). Let A be a gamma-semiring, an element $1 \in A$, is named unity for any $x \in A$ there are $\alpha \in \Gamma$ such that $x \alpha 1 = 1 \alpha x = x$, RAO (7). Özkum et al. (8) defined the derivation and (Jordan derivation), let A be a gamma-ring and $D: A \rightarrow A$ and additive map. Thence D is derivation (resp. Jordan derivation), if $D(m \alpha n) =$ $D(m) \alpha n + m\alpha D(n)$ (resp. $D(m \alpha m) = D(m)\alpha m + m\alpha D(m)$), for any $m, n \in A$ and $\alpha \in \Gamma$, Özkum et al. (8). Every derivation of A, is Jordan derivation but the converse in general is not true, see Saleh (9). Barnes (1) defined the Γ -homomorphism. Let A and Y both be Γ -rings, and \emptyset a map of A in to A. Thence \emptyset is a Γ -homomorphism, if and only if $\emptyset(x\alpha y) =$ $\phi(x) \alpha \phi(y)$, for all $x, y \in A$ and $\alpha \in \Gamma$. If ϕ is also one-to one and onto thence ϕ is a Γ isomorphism. An additive mapping \emptyset of Γ -ring A into a Γ -ring A' is named Jordan homomorphism if $\phi(x\alpha y + y\alpha x) = \phi(x)\alpha\phi(y) + \phi(y)\alpha\phi(x)$, for each $x, y \in A$ and $\alpha \in \Gamma$, Shaheen (10). Let A be a Γ -ring, a mapping d of A, to itself is named Γ -centralizing on a subset S of A if $[x, d(x)]_{\alpha} \in Z(A)$, for every $x \in S$ and $\alpha \in \Gamma$, in the special case when $[x, d(x)]_{\alpha} =$ 0, hold for any $x \in S$ and $\alpha \in \Gamma$, the mapping d is named Γ -commuting on S, Sameer et al. (11). Many researchers have studied centralizers and derivations in prime and semiprime Γ - rings (12-21) and (22-30). The objective of this paper is to debate, double centralizer (T, S), and double Jordan centralizer on prime and semiprime Γ - rings, with fulfilling certain identities.

2. Preliminaries and Fundamentals

2.1 Definition

Ali et al. (18) Let A be a gamma-ring, for any $x, y \in A$ and $\alpha \in \Gamma$, the symbol $[r, t]_a = r \alpha t - t \alpha r$, to symbolize the commutator. $T(r \circ t) = r \alpha t + t \alpha r$.

2.2 Lemma

Ali et al. (18) If A is a gamma-ring, for any $r, t, s \in A$ and $\alpha, \beta \in \Gamma$ thence:

I.
$$[r, t]_{\alpha} + [t, r]_{\alpha} = 0$$

- II. $[r + t, s]_{\alpha} = [r, s]_{\alpha} + [t, s]_{\alpha}$
- III. $[r, t + s]\alpha = [r, t]\alpha + [r, s]\alpha$
- IV. $[r, t]\alpha + \beta = [r, t]\alpha + [r, t]_{\beta}$
- V. $[r\beta t, s]_{\alpha} = r\beta[t, s]_{\alpha} + [r, s]_{\alpha}\beta t + r\beta s\alpha t r\alpha s\beta t$.

2.3 Definition

Hoque 20(19) An additive mapping $T: A \to A$ is a left (right)centralizer, if $T(r\alpha t) = T(r) \alpha t (T(r\alpha t)) = r \alpha T(t)$ holds for any $r, t \in A$ and $\alpha \in \Gamma$. A centralizer is both a left and right centralizer.

2.4 Example

Let F be a field, and $D_2(F)$ be a diagonal matrices 2 by 2 over F and $\Gamma = \{ \begin{bmatrix} 0 & 0 \\ 0 & n \end{bmatrix}, n \in Z \},\$

define $T: D_2(F) \to D_2(F)$ as $T\left(\begin{bmatrix} a & 0\\ 0 & b \end{bmatrix}\right) = \begin{bmatrix} 0 & 0\\ 0 & b \end{bmatrix}$, for any $a, b \in F$. Thence T is a centralizer.

2 5 D - C-----

2.5 Definition

Hoque (19)An additive mapping $T: A \to A$, is Jordan left (right) centralizer, if $T(x \alpha x) = T(x)\alpha x$ ($T(x\alpha x) = x\alpha T(x)$, for any $x \in A$ and $\alpha \in \Gamma$.

2.6 Definition

Let A be gamma-ring, let $T, S: A \to A$, be an additive mappings, thence a mate (T, S) is named a double centralizer, if T is a left centralizer, S is a right centralizer, and they satisfy a balanced requirement, $x\alpha T(y) = S(x) \alpha y$, for any $x, y \in A$, $\alpha \in \Gamma$.

2.7 Definition

Let A be gamma-ring, and let $T, S: A \to A$, be an additive mapping, thence a mate (T, S) is named a double Jordan centralizer, if T is a left Jordan centralizer, S is a right Jordan centralizer, and they satisfy a balanced requirement, $(x \alpha T(x) = S(x) \alpha x)$, for any $x \in A$, $\alpha \in \Gamma$.

3. Main Results

In the following, we give the definition of commuting double centralizer:

3.1 Definition

Let A be a Γ -ring, and (T, S), be a double centralizer. Thence (T, S), is named commuting double centralizer, if T and S are commuting.

Now, we shall give an example for a commuting double centralizer.

3.2 Example

Let F be a field, and A be a Γ -ring of all triangular matrices of the from

In connection to the frequent process of addition and multiplication and let T, S: $A \rightarrow A$ be additive mappings defined by

 $T(x) = y\alpha x$ and $S(x) = x\alpha y$, for each $x, y \in A$ and $\alpha \in \Gamma$. Where;

It is clear that T and S are commuting double centralizer.

In the following results, we give some certain conditions to obtain (T,S) is a double centralizer, where T and S are from A to A.

3.3 Theorem

Let A be a semiprime Γ -ring and T, S: A \rightarrow A be a mapping fulfilling.

 $x\alpha T(y) = S(x)\alpha y$, for each $x, y \in A$ and $\alpha \in \Gamma$. (1) Thereas (T, S) is a dauble controlizor

Thence (T, S) is a double centralizer.

Proof: We need to show that T, S are additive mapping, and $T(x \alpha y) = T(x) \alpha y$, for all $x, y \in A$ and $\alpha \in \Gamma$. $S(x \alpha y) = x \alpha S(y)$, for all $x, y \in A, \alpha \in \Gamma$. Now replace y by y + z in (1), we imply $x \alpha T(y + z) = S(x)\alpha y + S(x)\alpha z$, for each $x, y, z \in A$ and $\alpha \in \Gamma$. Hence $x\alpha(T(y+z) - T(y) - T(z)) = 0$, for all $x, y, z \in A$ and $\alpha \in \Gamma$. By the semiprimeness of A, we imply T(y+z) = T(y) + T(z), for each $y, z \in A$. Similarly, we can show that S(x + y) = S(x) + S(y), for each $x, y \in A$. Now, replacing y with $y\beta z$ in (1) we obtain $x \alpha (T (y \beta z) - T (y) \beta z) = 0$, for each $x, y, z \in A$ and $\alpha, \beta \in \Gamma$. By the semiprimeness of A, we imply $T(y \beta z) = T(y) \beta z$, for each $y, z \in A$ and $\beta \in \Gamma$. Similarly, we can show $S(x \alpha y) = x \alpha S(y)$, for each $x, y \in A$ and $\alpha \in \Gamma$. Thence (T, S) is a double centralizer.

Now, we give some results which make T=S under different conditions, where (T,S) is double centralizer.

3.4 Theorem

Let A be a prime Γ -ring, U be a not equal zero ideal of A. Let $T, S: A \to A$ be additive mappings such that T is a left centralizer, S is a right centralizer and they gratify $x\alpha T(y) = S(x)\alpha y$, for each $x, y \in U$ and $\alpha \in \Gamma$. Thence (T,S) is a double centralizer.

Proof: We have

 $x \alpha T(y) = S(x) \alpha y$, for each $x, y \in U, \alpha \in \Gamma$. (2)Replace *x* with $x\beta r$ in (2) when $x \in U, \beta \in \Gamma$ and $r \in A$, we imply $x \beta (r \alpha T(y) - S(r) \alpha y) = 0$, for each $r \in A, x, y \in U$ and $\alpha, \beta \in \Gamma$. i.e. $x \gamma A \beta (r \alpha T(y) - S(r)\alpha y) = 0$, for each $r \in A, x, y \in U$ and $\alpha, \beta, \gamma \in \Gamma$. By primeness of A and since U be a not equal zero ideal of A, we imply $r\alpha T(y) = S(r)\alpha y$, for each $r \in A$, $y \in U$ and $\alpha \in \Gamma$. (3) Replacing y with $t\sigma y$ in (3), where $t \in A$, $y \in U$, and $\sigma \in \Gamma$. $(r \alpha T(t) - S(r)\alpha t)\sigma y = 0$, for each $t, r \in A$, $y \in U$ and $\alpha, \sigma \in \Gamma$. Implies that $(r\alpha T(t) - S(r)\alpha t)\sigma U\delta A = 0$, for each $t, r \in A$ and $\alpha, \sigma, \delta \in \Gamma$. By the primeness of A, we imply $r \alpha T(t) = S(r)\alpha t$, for each $t, r \in A$, and $\alpha \in \Gamma$. 3.5 Theorem Let A be a prime gamma-ring, U be a not equal zero ideal of A, and (T,S) be a double centralizer.

Let A be a prime gamma-ring, U be a not equal zero ideal of A, and (T,S) be a double centralizer. If T=S on U, thence T=S on A.

Proof: We have

$$T(x) = S(x), for each \ x \in U.$$
(4)

By replacing x with $r\alpha x$ in (4), when $r \in A$, $x \in U$ and $\alpha \in \Gamma$, we imply

 $T(r)\alpha x = r \alpha S(x) = r\alpha T(x)$, for each $\in A$, $x \in U$ and $\alpha \in \Gamma$. (5) Since (T, S) are a double centralizer, (5) leads to $T(r)\alpha x = S(r)\alpha x$, for each $x \in U, r \in A$, and $\alpha \in \Gamma$.i.e. $(T(r) - S(r))\alpha U\beta A = 0$, for each $r \in A$, and $\alpha, \beta \in \Gamma$. Since A is a prime Γ -ring and U be a not equal zero ideal of A, we imply T = S. From Theorem above, we imply the following: **3.6 Corollary** Let A be a prime gamma-ring, U be an ideal of A and (T, S) be a double centralizer. If, T = S = 0 on U, thence T = S = 0 on A. In the following theorem, we shall prove that T=S in case T acts as a homomorphism on A. 3.7 Theorem Let A be a semiprime gamma-ring and let (T,S) be a double centralizer, if T acts as a homomorphism on A, thence T = S. Proof: We have $T(x\alpha y) = T(x)\alpha y$, for each $x, y \in A$ and $\alpha \in \Gamma$. Since T is acts homomorphism on A, thence $T(x) \alpha T(y) = T(x) \alpha y$, for any $x, y \in A$ and $\alpha \in \Gamma$. (6)On the other hand: $x \alpha T(y) = S(x) \alpha y$, for all $x, y \in A$ and $\alpha \in \Gamma$. (7)The substation T(x) for x in (7), gives $T(x) \alpha T(y) = S(T(x)) \alpha y$, for each $x, y \in A$ and $\alpha \in \Gamma$. (8) By comparing (6) with (8), we arrive at $(S(T(x)) - T(x)) \alpha y = 0$ Multiply from the right by (S(T(x)) - T(x)), we get $(S(T(x)) - T(x))\beta y \alpha (S(T(x)) - (T(x))) = 0$, for each $x, y \in A$ and $\alpha, \beta \in \Gamma$. By semiprimeness of A, we have S(T(x)) = T(x), for each $x \in A$. (9) From (9) and using (7), we imply $T(x)\alpha T(y) = T(x)\alpha S(y)$, for each $x, y \in A$ and $\alpha \in \Gamma$. (10)Replace x by $x\beta z$ and y by $y\sigma w$ in (7) and using (10), we arrive at $x\beta z \alpha T(y)\sigma S(w) = S(x \beta z) \alpha y \sigma w$, for each $x, y, z, w \in A$ and $\alpha, \beta, \sigma, \in \Gamma$. (11)Thence by (11), we imply $x\beta S(z)\alpha \ y \ \sigma S(w) = S(x \ \beta \ z)\alpha y \sigma w$, for all $x, y, z, w \in A$ and $\alpha, \beta, \sigma \in \Gamma$. Whence it follows that $x\beta S(z)\alpha y\sigma(S(w) - w) = 0$, for each $x, y, z, w \in A$ and $\alpha, \beta, \sigma \in \Gamma$. (12)The substitution on S (w) – w for x in (12), gives us $(S(w) - w)\beta S(z)\alpha y\sigma(S(w) - w) = 0$, for each $y, z, w \in A$ and $\alpha, \beta, \sigma \in \Gamma$. Right multiplication the above relation by S(z), yields $(S(w) - w)\beta S(z)\alpha y\sigma(S(w) - w)\gamma S(z) = 0$, for all $y, z, w \in A$ and $\alpha, \beta, \sigma, \gamma \in \Gamma$. By the semiprimeness of A, we obtain $(S(w) - w)\beta S(z) = 0$, for each $w, z \in A$ and $\beta \in \Gamma$. This gives $S(w) \beta S(z) = w \beta S(z)$, for each $w, z \in A$ and $\beta \in \Gamma$. (13)From (7) and (13), we obtain

 $x \alpha T(y) = S(x) \alpha S(y) = x \alpha S(y)$, for each $x, y \in A$ and $\alpha \in \Gamma$. Of course, we have also,

 $x\alpha(T(y) - S(y)) = 0$, for each $x, y \in A$, and $\alpha \in \Gamma$.

By the semiprimeness of A, we imply T=S.

In the following theorem, we gives a relation between T and S, where (T,S) is a double centralizer on prime Γ -ring.

3.8 Theorem

Let A be a prime Γ -ring, and U be a not equal zero ideal of A, we imply (T,S) be a double centralizer. If $T(r \alpha x) = S(r)\alpha x$ for all $r \in A, x \in U$, then T = S.

Proof: We have

 $T(r\alpha x) = T(r)\alpha x = S(r)\alpha x \text{ for each } r, t \in A, x \in U \text{ and } \alpha \in \Gamma.$ This reduces to $(T(r) - S(r))\alpha x = 0, \text{ for each } r \in A, x \in U \text{ and } \alpha \in \Gamma.$ (14) Replacing x with $t\beta x$ in (14), when $t \in A, x \in U, \alpha \in \Gamma$, leads to $(T(r) - S(r))\alpha t\beta x = 0, \text{ for each } r \in A, x \in U \text{ and } \alpha, \beta \in \Gamma.$ i.e.

 $(T(r) - S(r))\alpha A \beta U =$, for each $r \in A$ and $\alpha, \beta \in \Gamma$.

Since A is a prime gamma-ring, and U be a not equal zero ideal, we have T = S.

3.9 Theorem

Let A be a prime Γ -ring, and (T, S) be a double centralizer, if T acts as a not equal zero Jordan homomorphism $(T(x\alpha x) = T(x)\alpha T(x))$ for each $x \in A$ and $\alpha \in \Gamma$. Thence T=S=id.

Proof : We have

 $T(x\alpha x) = T(x)\alpha x$, for each $x \in A$ and $\alpha \in \Gamma$.

Thence from above relation and since T is acts as Jordan homomorphism.

Yields,

 $T(x) \alpha (T(x) - x) = 0, \text{ for each } x \in A \text{ and } \alpha \in \Gamma.$ (15)

Replace x by $x\beta$ y in (15), we imply

 $T(x)\beta \ y \ \alpha \ (T(x)-x)\beta \ y = 0$, for each $x, y \in A$ and $\alpha, \beta \in \Gamma$. (16) Linearization (16), we imply

$$(T(x) \beta y \alpha (T(x) - x)\beta z + T(x) \beta z \alpha (T(x) - x)\beta y = 0$$
(17)

(18)

Now, replacing z by $y\sigma z$ in (17) and using (16), we obtain

 $(T(x) \beta y \alpha A \gamma (T(x) - x)\beta y, for each x, y \in A, \alpha, \beta, \gamma \in \Gamma.$

By the primeness of A, we imply

$$T(x) = x$$
, for each $x \in A$.

Otherwise, T=0. From $x\alpha T(y) = S(x)\alpha y$, and by (18), we imply T = S = id.

4. Conclusion

This work is to discuss double centralizer (T, S), and double Jordan centralizer on prime and semiprime Γ - rings, with fulfilling certain identities. We prove that; when T is a left centralizer, S is a right centralizer, and they fulfilling $x\alpha T(y) = S(x)\alpha y$, for each $x, y \in$ U and $\alpha \in \Gamma$. Then (T,S) is a double centralizer. Also if (T, S) be a double centralizer, T acts as a homomorphism on A, then T=S, and if T acts as a not equal zero Jordan homomorphism $(T(x\alpha x) = T(x)\alpha T(x))$ for each $x \in A$ and $\alpha \in \Gamma$. Then T = S = id.

Acknowledgment

Our researcher extends his Sincere thanks to the editor and members of the preparatory committee of the Ibn AL-Haitham Journal of Pure and Applied Sciences.

Conflict of Interest

There are no conflicts of interest.

Funding

There is no funding for the article.

References

- 1. Barnes WE. On the Γ -rings of Nobusawa. Pacific J Math. 1966;18:411-422.
- 2. Özden D, Öztürk MA, Jun YB. Permuting tri-derivations in prime and semi-prime gamma rings. Kyungpook Math J. 2006; 46(2):153-167.
- 3. Kandamar H, Arslan O. On the commutativity conditions for rings and Γ -rings. Hacettepe J Math Stat. 2020;49(5):1660-1666.
- Kamali Ardakani L, Davvaz B, Huang S. On Derivations of Prime and Semiprime Gamma Rings. Bol Soc Paran Mat. 2019;37(2):157-166.
- 5. Kyuno S. Prime ideals in gamma rings. Pacific J Math. 1982;98(2):375-379.
- Chakraborty S, Paul AC. On Jordan K-derivations of 2-torsion free Prime Γn-rings. Punjab Univ J Math. 2008;40:97-101.
- Marapureddy, M. K. R. On Γ-semiring with identity. Discussiones Mathematicae-General Algebra and Applications, 2017; 37(2), 189-207. <u>http://dx.doi.org/10.7151/dmgaa.1276</u>.
- 8. Özkum G, Soytürk M. Gamma Rings With Derivation. Eur Int J Sci Technol. 2021;10(7):125-138.
- 9. Saleh SM. On prime Γ -rings with derivation. PhD Thesis. Al-Mustansiry University; 2010.
- 10.Shaheen RC. On Higher Homomorphism of Completely Prime Gamma Rings. J Al-Qadisiyah Pure Sci. 2008;13(2):1-9.
- 11.Motashar SK, Majeed AH. Γ-Centralizing Mappings of Semiprime Γ-Rings. Iraqi J Sci. 2012;53(3):657-662.
- 12.Mutlak AT, Majeed AH. On Centralizers of 2-torsion Free Semiprime Gamma Rings. Iraqi J Sci. 2021;(7):2351-2356.
- 13.Majeed AH, Hamil SA. γ-Orthogonal for K-Derivations and K-Reverse Derivations. J Phys. 2020;1530:1-6.
- 14.Majeed AH, Hamil SA. Derivations in Gamma Rings with γ-Lie and γ-Jordan Structures. J Phys Conf Ser. 2020;1530:012049. <u>http://doi.org/10.1088/1742-6596/1530/1/012049</u>
- 15.Majeed AH, Hamil SA. Derivations and reverse derivations on γ-prime and γ-semiprime gamma semirings. J Phys Conf Ser. 2020;1530:012050. <u>http://doi.org/10.1088/1742-6596/1530/1/012050</u>
- 16.Majeed AH, Hamil SA. On commutativity of prime and semiprime gamma rings with reverse derivations. Iraqi J Sci. 2019;60(7):1546-1550.
- 17. Chakraborty S, Rashid MM, Paul AC. Inner derivations on semiprime gamma rings. Ganit J Bangladesh Math Soc. 2019;39:101-110.
- 18.Kadhim AK, Sulaiman H, Majeed ARH. Γ-centralizer and Reverse Γ*-centralizers on Semiprime Γ-ring with Involution. Int Math Forum. 2015;10(8):385-393.
- 19. Hoque MF, Paul AC. On centralizers of semiprime Gamma rings. Int Math Forum. 2011;6(13):627-638.

20. Ibraheem RK, Majeed AH. On Lie Structure in semi-prime inverse semi-rings. Iraqi J Sci.

2019;60(12):2711-2718. http://doi.org/10.24996/ijs.2019.60.12.21

- 21.Dimitrov S. Derivations on semirings. AIP Conf. Proc.2017;1910:060011 http://doi.org/10.1063/1.5014005
- 22. Golan JS. Semirings and their applications. University of Haifa, Haifa, Palestine; 1992.
- 23.Golan JS. The theory of Semirings with Applications Mathematics and Theoretical Computer Science. John Wiley and Sons, New York; 1992.
- 24. Golan JS. Semirings and their applications. University of Haifa, Haifa, Palestine; 1992.
- 25.Joseph HM. Centralizing mapping of prime rings. Can Math Bull. 1984;27(1):122-126. <u>http://doi.org/10.4153/CMB-1984-018-2</u>
- 26.Mary D, Murugensan R, Namasivayam P. Centralizers on Semiprime Semirings. IOSR J Math. 2016;12(3):86-93.
- 27.Sara A, Aslam M. On Li Ideal of Inverse Semirings. Ital J Pure Appl Math. 2020;44:22-29.
- 28. Sultana KA. Some Structural Properties of Semirings. Ann Pure Appl Math. 2014;5(2):158-167.
- 29. Ibrahim RK. On additive mappings of inverse semirings. MSc Thesis. University of Baghdad, College of Science; 2019.
- 30.Zaghir KAD, Majeed AH. (α, β)-Derivations on ideals in prime inverse semi-rings. AIP Conf Proc. 2023;40(1):4031-4110. http://doi.org/10.1063/5.0117578