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Abstract   

      In this work, gold nanoparticles (AuNPs) were created utilizing a plasma jet method and 0.5 

gm/mol of gold salts (4H2O•HAuCl4) with varied flow diameters (0.6 mm, 0.8 mm, 1 mm, and 1.2 

mm). The gas flow changes according to the system diameter (2,2.4,3.4, and 3.6 L/min, respectively). 

X-ray diffraction, ultraviolet, visible spectra, and FESEM were each used to investigate the 

nanoparticles. The XRD pattern revealed that the film's extreme peaks reflect crystallinity, with an 

average crystallite size of (18–26) nm and a face-centered cubic structure. The surface plasmon 

resonance for colloidal AuNPs produced in the UV was at 536–540 nm.A field emission scanning 

electron microscope (FESEM) was used to look at the morphology of the Au NPs. The round particles 

ranged in size from (38-65) nm. The findings of this work provide encouraging evidence for the 

straightforward and inexpensive production of nanomaterials with various dimensions. 
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1. Introduction 

      The nano-science and its techniques have been categorized as interdisciplinary sciences of 

substantial relevance in numerous disciplines because of their large surface area, perfect comparative 

characteristics with low density, strong surface contact, and diversified methodology [1]. One 

definition of a nanoparticle is an extremely tiny particle with a size between 1 and 100 nm [2]. 

Through biological, physical, and chemical processes, these nanoparticles can be created. One of the 

distinctive characteristics of metallic nanoparticles is surface Plasmon resonance [3–6]. Because of 

characteristics like its excellent thermal conductivity, amazing resistance to oxidation, and 

antimicrobial activity, nanotechnology is viewed as an essential and future-proof technology. It could 

advance the study of biology, engineering, medicine, and physics [7–8]. Magnetic, optical, electrical, 

and storage technologies can all benefit from the use of nanoparticles [9]. Due to its unique properties 

of being inert, biocompatible, and notably low toxicity, gold (AuNPs), one of the most significant 

nanoparticles, has been extensively employed for both medical and non-medical reasons [10]. As a 

result, they have been applied to implants, cosmetics, medical device coatings, food preservatives, 

medical equipment, and dental resin composites. Gold (Au) and other noble metal NPs have 

demonstrated potent and long-lasting antibacterial activity against a variety of microbes [11]. As a 

quasi-neutral gas made up of charged and neutral particles that interact with one another, plasma, the 
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fourth state of matter, can also be considered. 99% of the substance in the cosmos is made up of 

plasma, which is made up of electrified gases made of separated positive ions and negative electrons 

of atoms. Gaseous nebulae, star interiors, interstellar hydrogen, and atmospheres all include plasma 

[12]. Based on the temperature of the electrons with respect to the other particles (ions and neutral 

particles), there are two forms of plasma: thermal and non-thermal. In thermal plasma, the electron 

temperature and the temperature of the heavier particles are practically equal (they are in thermal 

equilibrium). In non-thermal plasma, however, the electron temperature is significantly higher and 

the heavier particles are essentially at room temperature. The goal temperature of conventional 

thermal plasma is greater than 3000 °C, making it ideal for mineralogy but unsuitable for treating 

live tissue [13]. The application site temperature of cold plasma, also known as non-thermal plasma, 

is less than 40 °C, making it appropriate for treating live tissue [14–16]. Due to its inherent benefits 

over methods for producing solid, liquid, and gas phases, plasma technology is now exploited as a 

generation method for nanomaterials. The use of plasmas and nanoparticles in biological applications 

reveals several synergistic effects and effective therapeutic results [17–20].  The aim of this study is 

to examine how the diameters of plasma jets affect the prepared nanoparticle properties to choose the 

best outcomes for additional applications. 
 

2.  Materials and Methods 

2.1 Preparation of the Solution 

  In this investigation, 99% pure gold salts (4H2O•HAuCl4) with a molecular weight of 0.5 g/mol 

were used. Equation (1) below is then used to get the required weight:  

Concentration (mole) = (mass( g))/(Molecular weight (g/mol)*volume (litter))  [18]                      (1)  

2.2 Preparation of nanoparticles  

     The following steps are taken to prepare the AuNPs: The solution will be created with a 0.5 mM 

concentration of (4H2O•HAuCl4) gold salts in the desired sizes, and the prepared form will be put 

on a holder within the metal tube as instructed in the details. For the flow of Ar gas, the metal tube is 

placed vertically in the catcher at [0.6 mm, 0.8 mm, 1 mm, 1.2 mm]. Depending on the system's 

diameter, the gas flow varies (2,2.4, 3.4.6, and L/min, respectively). A 1cm gap existed between the 

liquid surface and the circular metal tube's tip on the beaker; such that there was a 1mm separation 

between the liquid surface and the nozzle. Furthermore, the 5-minute plasma exposure duration with 

a sample gas flow was used to regulate the Argon gas supplied in metal tubes. As seen in Figure 1, 

the value corresponding to the system's provided voltage quickly increased as plasma developed 

between the liquid's surface and the tube (1). The purpose of this study was to determine the effect 

of the diameters of the system. To obtain the best results, all diameters produced plasma, where 1mm 

was more efficient to produce nanomaterials: 

 

 

 

 

 

 

Figure 1. Illustrates the plasma jet system syntheses AuNPs as a different diameter 
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3.  Results  

3.1 Absorption Spectra 

In Figure 2, the absorption spectra of AuNPs for different diameters (0.6, 0.8, 1, and 1.2) mm are 

displayed. The maximum absorption occurred between 536 and 540 nm, and the crystal size was in 

the range of nanometers (1-100) nm. Compared to other samples, the sample created at 1 mm had the 

lowest particle size, and AuNPs made at this size showed enhanced absorbance and a blue-shifted 

absorbance spectrum. The results show the presence of spherical-shaped Au nanoparticles and are in 

excellent agreement with those discovered in the literature to model the light scattering spectra of Au 

nanoparticles using Mie theory.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustrates the plasma jet system syntheses AuNPs as a different diameter 
 

3.2 The Results of X-Ray Diffraction  

    The crystallinity of artificial AuNPs produced by cold plasma at different diameters (0.6, 0.8, 1, 

and 1.2 mm) was investigated using the X-ray diffraction (XRD) technique. Figure 3 presents the 

results. The best results were obtained at 1 mm, when three peaks appeared at peaks at 2 = 38.1, 44.3, 

and 64.5. The behavior of Au NPs varied depending on the diameter of the probe. All three peaks 

shared the (111), (200), and (220) conventional Bragg reflections of the face center cubic (fcc) lattice. 

The severe diffraction at peak 38.1 shows that the direction (111) was fixed as the preferred growth 

orientation for zero-valent gold if the sample prep is 0.6 mm and there is just one peak at 2 = 38.1. 

This depicts solids that are the size of molecules and are composed of recurring 3D patterns of 

identically spaced atoms or molecules. This XRD pattern is frequently seen in pure Au nanocrystals 

[22]. The Debye-Scherrer equation was used to regulate the sample crystal size. The crystal diameters 

of the generated samples varied between (18 and 26 nm), depending on the diameter of the electrode, 

in agreement with other results [18]. 
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Figure 3. X-ray patterns of AuNPs as a function of probe diameters 

 

3.3 The Results of FE-SEM  

    FESEM was used to analyze the shape of AuNPs generated by atmospheric plasma at an electrode 

diameter of 1 mm. The nanoparticles in Figure 4 are seen in a FESEM picture to have a spherical 

form, along with another particle that resembles a spotlight. It was discovered that the particle sizes 

varied from 30 to 33 nm. It is well known that a nanoparticle's shape has a substantial impact on both 

its optical and electrical capabilities [21]. 

 

 

 

 

 

 

 

 

Figure 4. FESEM of AuNPs prepared using a cold plasma technique plasma jet 

 

4. Conclusion 

High-density data storage is one of the unique skills that gold nanoparticles have found in a 

number of scientific fields. With the use of a UV-vis-NIR spectrophotometer and transmission 

electron microscopy, gold nanoparticles made by a plasma jet have been examined. Growing 

applications of nanoparticles, particularly metallic nanoparticles, show how important this topic is 

today. One of the most useful metallic nanoparticles is the gold particle. The findings of this work 
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provide encouraging evidence for the straightforward and inexpensive production of nanomaterials 

with various dimensions. 
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