

418

© Published by College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad. This

 is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License

Developing a Requirements Model for Software Projects

Haifaa Jassim Muhasin1 , Ali Yahya Gheni2* , Hiba Adil Yousif 3 and

Yusmadi Yah Jusoh4
1,2,3Department of Computer Science, College of Education for Pure Science(Ibn Al-Haitham), University of

 Baghdad, Baghdad, Iraq.
4Department of Information Systems Faculty of Computer Science and Information Technology, Universti

Putra Malaysia.

*Corresponding Author.

Received:8 November 2023 Accepted:16 April 2024 Published:20 July 2024

doi.org/10.30526/37.3.3823

Abstract

 Requirements elicitation is recognized as one of the most critical activities in the software

development process as it has an impact on its success. Studies such as the CHAOS Report, a study

based on The [Standish Group]'s CHAOS Research Project on IT project success rates and project management

best practices report, indicate that about half of the factors associated with project success are related

to requirements. Previous studies showed several problems related to requirements elicitation. This

paper tried to find out the existing requirements models for software projects and how to develop a

new requirements model for software projects. The requirements system was developed by Visual

Studio 2019. Online model verification was conducted with 6 experts from the IT industry. After the

system was developed, it was validated by three developers/programmers from the same industry

(functional test/white-box testing) and eleven developers (non-functional test/black-box testing). The

results of the model verification supported the model of requirements. Additionally, the requirements

system was validated by non-functional test/black-box testing and functional test/white-box testing.

Keywords: Requirements elicitation, System development life cycle (SDLC), Model verification,

Model validation

1. Introduction

 As it directly affects the success of the System development life cycle (SDLC), the new seven

phases of SDLC include planning, analysis, design, development, testing, implementation, and

maintenance. Requirements elicitation is seen as one of the most crucial processes [1]. According to

Bohem [2,3], requirements elicitation is the first and most important phase in the requirements

engineering process. If it is done incorrectly, low-quality products, late deliveries, and large prices

will result. The Standish Group Report [4] states that there were more unsuccessful initiatives in 2006,

2008, and 2010 than there were in those years. A list of project failure-causing factors is defined in

this paper. Additionally, one of the main issues with the most significant percentage (13.1%) is an

incomplete requirement. The report also describes the three main reasons for project success, which

are user involvement, executive management support, and a clear statement of requirements [5].

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6276-1708
mailto:Haifaa.j@ihcoedu.uobaghdad.edu.iq
https://orcid.org/0000-0003-3629-9115
mailto:ali.y.g@ihcoedu.uobaghdad.edu.iq
https://orcid.org/0000-0002-6826-8244
mailto:hiba.a.y@ihcoedu.uobaghdad.edu.iq
https://orcid.org/0000-0002-7767-5001
mailto:yusmadi@upm.edu.my

IHJPAS. 2024, 37(3)

419

The Software Engineering Body of Knowledge (SWEBOK) [6] states that the requirements

collecting, analysis, design, architecture, implementation, and maintenance phases make up the

software development process. The first and most crucial step is gathering requirements [7]. Since

requirements describe what the system should accomplish, the services it should provide, and the

constraints on how it can operate, they reflect user demands [8]. Requirements engineering is the

broad field of activities and methods used to comprehend requirements. It entails identifying the

objectives, demands, and expectations of stakeholders and sharing them with the developers [9].

Loucopoulos et al. [10] define requirements Elicitation as the process of acquiring all relevant

knowledge to produce a requirements model of a problem in a specific domain.

According to Borland [11], elicitation is the ability to work collaboratively with stakeholders to

discover the current product needs and agree upon the vision and goals of the proposed project.

According to the SWEBOK [12], this task is broken down into two activities: Requirements sources

and Elicitation techniques. On the other hand, Pohl [13] defines the requirements elicitation as a core

activity of the requirements engineering, which consists of:

(1) Identify sources of the relevant requirements, (2) Identify the requirements of these sources, and

(3) Develop new requirements. Mulla et al. [14] define the process of requirements elicitation as

follows: (1) Identify requirements sources,

(2) Collect the wish list for each corresponding part, (3) Document and Refine the wish list, (4)

Integrate the wish lists with the various stakeholders, and (5) determine the non-functional

requirements.

According to [4], all projects begin with a statement of requirements. Requirements are descriptions

of how a software product should perform. They typically refer to some aspect of a new or enhanced

product or service.

The widely cited IEEE 610.12-1990 standard [15] defines a requirement as:

(1) A condition or capability needed by a user to solve a problem or achieve an objective,

(2) A condition or capability that must be met or possessed by a system or system component to

satisfy a contract, standard, specification, or other formally imposed documents, A documented

representation of a condition or capability as in (1) or (2).

For a project to be successful, the criteria must be of high quality [16]. However, eliciting

requirements is not a simple task. This work is complex and contradictory due to user and analyst

viewpoints, mental models, and expectation mismatches. The clients' true needs are frequently not

fully understood by them [17]. Others don't have current work processes that match what management

wants. By introducing Athena, it is a serverless, interactive analytics service built on open-source

frameworks that support open-table and file formats. Athena provides a simplified, flexible way to

analyze petabytes of data where it lives. A method based on shared knowledge that builds system

requirements incrementally from a narrative of user stories to the description of use cases, we attempt

to address these issues. Athena is a method for cooperatively gathering requirements. It is built on

group storytelling, in which participants share tales about the present and previous systems that

underpin a particular activity. The stories are merged to form a single story. Stories are then

transformed into scenarios and from scenarios to use cases. My solution consists of a knowledge

model based on stories about the system, a collective construction method, and a tool to support

interactions. We have conducted experimental analyses to show the effectiveness of the proposed

approach [18].

Studies done in the past revealed several issues with needs elicitation. This one is a complicated

IHJPAS. 2024, 37(3)

420

process that involves all available information, including some familiarity with prior systems,

according to Laporti et al. [17]. According to the study by Zhang et al. [19], inadequate and unclear

requirements elicitation was one of the reasons projects failed, along with the wrong project scope.

According to Mulla et al. [14], the work of eliciting requirements is challenging, particularly in large

software projects with an abundance of stakeholders and information overload. However, the existing

methods are not suitable for large projects [20]. Atladottir et al. [21] argue that considering users as

a primary source of information leads to a favorable product. Whereby Meth et al. [22] argue that

"Automation" is at the top of the wish list of most software developers and that "Identifying user

needs" is not performed efficiently.

As a result, numerous literature reviews have been conducted in light of the significance of the impact

of requirements elicitation on the success of software projects, including the work of Pacheco et al.

[23], who reviewed methods to identify stakeholders, Carrillo et al. [24], and Meth et al. [22], who

reviewed tools supports the requirements elicitation process.

The following is how the paper is structured: The first section is an introduction, which includes the

related work as documented in the literature. The research technique and process are presented in

section 2; the main contribution of this paper is to develop a new requirements model for software

projects. The requirements system was developed by Visual Studio 2019. The system development

is presented in section 3, and the results and discussions are explored in section 4. Section 5 concludes

with a summary of the findings and recommendations for future research.

2. Research Method

 The stages were modified to meet the research issues posed in the study. The method for choosing

the papers was to review the literature, which listed the articles used in this study. The second stage

involved identifying the theoretical frameworks that had been used in the literature to establish the

current requirements model for software projects. In the third stage, the models that already existed

were filtered before being used for classification in the fourth stage.

Figure 1 shows how the procedure for choosing papers involved leveraging five databases to compile

studies on requirements models for software projects. The selection process was carried out in

accordance with related advancements in the literature. To gather the research papers used for this

study, it was necessary to use the top internet databases (Scopus, Science Direct, IEEE Xplore,

Springer, and Emerald).

We filed the research papers according to qualification criteria, such as publication period and the

context of the paper.

Because of the selection approach and context they followed, the researchers were able to locate

numerous study publications without encountering the problem of duplication. This can help

academic scholars understand the significance of high-quality papers even more. For example, papers

that did not meet the eligibility requirements were not given further consideration.

 These articles include reports, white papers, survey studies, short papers, and papers for conferences.

Figure 2 provides a more detailed description of the search and selection procedure and the query

used during it.

IHJPAS. 2024, 37(3)

421

Figure 1. Paper selection methodology

IHJPAS. 2024, 37(3)

422

Figure 2. Papers search results

2.1. Requirement model verification

 Six IT industry professionals conducted a professional evaluation of the model to confirm its

validity. According to [25], three expert reviews are the required minimum. Two experts received a

draft of the expert review (the first one in English and the second in questionnaire form). The expert

evaluation was finished, and the findings were reviewed. Expert input enhanced the model.

2.2. Requirement model validation

 Black-box testing, also known as non-functional testing, is carried out by software companies to

evaluate a system's utility and usability (can I operate it?), as well as its dependability (is it

consistently accurate? and how long it takes to fix), performance (does it meet its constraints with

regard to response time or space requirements), robustness (does the system inform the user with a

message if data do not comply to what was expected?), and correctness (does it do what I want?)

After using the Requirements system, 11 developers were given a questionnaire [26,27]. Some of the

questionnaires' questions, which were modified from [28] and originally from [29], questioned

developers on how simple it was to complete activities using the system. The survey uses a Likert

scale as its foundation (strongly agree, agree, neither agree or disagree, disagree, strongly disagree).

The assessment measures the system's utility/usability, reliability, resilience, performance, and

correctness using 10 questions and a five-point Likert-type rating scale (ranging from "strongly

disagree" to "strongly agree"). In the same organization, three other developers/programmers examine

the system's functionality through "white-box" testing, which involves looking at the system's

implementation-related code, internal logic, conditions, and loop structures.

3. Requirement Model Design

 This system was created with Visual Studio 2019. The essential elements that will influence how

the requirements system and user interact are entering the requirements system, entering project-

related keywords, selecting the associated project, and then departing the system.

3.1. The component diagram

 Models are defined by the unified modeling language (UML), which includes analysis, design,

and implementation models. However, you are not required to establish or keep up with three models

for a single application. A component diagram is an example of a diagram you might find in an

implementation model; the component diagram is a diagram used in UML. Here, the author uses this

diagram as the others did in other research papers [30,31]. An illustration of the component parts is a

IHJPAS. 2024, 37(3)

423

component diagram (think symbols). A component schematic is shown in Figure 3. It is crucial to

list all necessary system users together with the duties they carry out.

Figure 3. Requirements system component diagram

3.2. The sequence diagrams

 A sequence diagram, which models a single flow across the system's objects, displays the classes

along the top and the messages sent between those classes [30]. It shows the communications that

take place between users and requirements management systems. By following the order of the

messages from top left to bottom right, as illustrated above in Figure 4, a sequence diagram suggests

a temporal ordering [31].

IHJPAS. 2024, 37(3)

424

Figure 4. Requirements system sequence diagram

4. Requirement Model Implementation

 The analysis and design processes determined which shape and design was chosen and

implemented for the requirements system, which is available in a range of sizes and configurations.

Users were asked to test out the system and give input on accessibility testing so that they could

provide reasonable assistance. Figure 5 shows a requirements system user interface and a

requirements system sequence diagram.

Figure 5. Requirements system user interface

IHJPAS. 2024, 37(3)

425

5. Results And Discussion

5.1. Results of requirement model verification

 The draft of an expert questionnaire interview was amended after being forwarded to two experts

in questionnaire design and the English language. Six IT sector professionals were sent the model

and the expert questionnaire interview for verification. The results were studied. The data support

experts' opinion that the proposed paradigm is applicable. The experts also concur that the suggested

model is applicable, thorough, understandable, accurate, and coherent.

5.2. Results of requirement validation

 Non-functional/black-box testing is carried out at a software company. After using the

requirements system, 11 developers were asked to complete an online survey. The facts discovered.

After reviewing the data, 81.2 percent of respondents said they would want to use the requirements

system in response to item 1, which is related to usability. Item 2, with 81.2 percent of respondents

strongly agreeing, states that the requirements system is correct and takes little time to repair, which

is related to system efficiency." Because this is a negative issue, users' responses to "strongly

disagree" (81.2%) and "disagree" (18.8%) are high ("The requirements system does not provide the

user with a message if data do not comply to what was intended"). “Strongly disagree” (81.8 percent)

and “disagree” (81.2 percent) were similarly used by respondents for question 6, which is related to

system correctness (“The requirements system do not do what I want”) (18.8 percent).

In conclusion, does the system notify the user when the data does not match what was anticipated.

Users commended the robustness of the system. The system satisfies its reaction time or space

demands limits, as shown in Item 10 of the list. The system is useful/usable, dependable, resilient,

performs well, and is correctness, according to the results of the ten non-functional test/black-boxing

aspects. The functional test/white-box testing was carried out by three developers/programmers from

the same company, who verified the code, the software's basic logic, conditions, and loop structures.

6. Conclusion

 A literature review was lastly conducted to underline the requirements and challenges associated

with software projects. The requirements system was also created to raise the success rate of software

projects. Literature reviews have been conducted considering the significance of the impact of

requirements elicitation on the success of software projects. Finally, the requirements system was

developed by Visual Studio 2019. More research is required to add functionality to the requirements

management system and add more features to the existing system.

Acknowledgements

First, we would like to express our sincere gratitude to the University of Baghdad for continuously

supporting research in my academic environment. Second, many thanks to Universit Putra Malaysia

(UPM) for all the knowledge we gained during my Ph.D. and research journey.

Conflicts of Interest

The authors declare no conflict of interest.

Funding

Non

IHJPAS. 2024, 37(3)

426

References

1. Maznevski, M.L.; Chui, C. Leading global teams. In Global leadership; Routledge. 2017, 273-301.

https://doi.org/10.4324/9781315232904.

2. Marchewka, J.T. Information technology project management: Providing measurable organizational

value; John Wiley & Sons. 2016, ISBN 13:978-1118911013.

3. Boehm, B.; Grunbacher, P.; Briggs, R.O. Developing groupware for requirements negotiation: lessons

learned. IEEE Software. 2001, 18(3), 46-55. https://doi.org/10.1109/52.922725.

4. Hussain, A.; Mkpojiogu, E.O.; Kamal, F.M. The role of requirements in the success or failure of software

projects. International Review of Management and Marketing. 2016, 6(7), 306-311.

https://doi.org/306 - 311, 01.08.2016.

5. Savolainen, P.; Ahonen, J.J.; Richardson, I. Software development project success and failure from the

supplier's perspective: A systematic literature review. International Journal of Project Management. 2012,

30(4), 458-469. https://doi.org/10.1016/j.ijproman.2011.07.002.

6. Sedelmaier, Y.; Landes, D. Software engineering body of skills (SWEBOS). In Proceedings of the 2014

IEEE Global Engineering Education Conference (EDUCON). 2014, 395-401.

https://doi.org/10.1109/EDUCON.2014.6826125.

7. Gillani, M.; Niaz, H.A.; Ullah, A. Integration of software architecture in requirements elicitation for rapid

software development. IEEE Access 2022, 10, 56158-56178.

https://doi.org/10.1109/ACCESS.2022.3177659.

8. Kasauli, R.; Knauss, E.; Horkoff, J.; Liebel, G.; de Oliveira Neto, F.G. Requirements engineering

challenges and practices in large-scale agile system development. Journal of Systems and Software. 2021,

172, 110851. https://doi.org/10.1016/j.jss.2020.110851.

9. Nuseibeh, B.; Easterbrook, S. Requirements engineering: a roadmap. In Proceedings of the Proceedings

of the Conference on the Future of Software Engineering. 2000, 35-46.

https://doi.org/10.1145/336512.336523.

10. Loucopoulos, P.; Karakostas, V. System requirements engineering; McGraw-Hill, Inc. 1995; ISBN 978-

0-07-707843-0.

11. Coplien, J.O. Borland software craftsmanship: A new look at process, quality and productivity. In

Proceedings of the 5th Annual Borland International Conference. 1994, 5.

12. Abran, A.; Moore, J.W.; Bourque, P.; Dupuis, R.; Tripp, L. Software engineering body of knowledge.

IEEE Computer Society, Angela Burgess. 2004, 25, 1235, ISBN 0-7695-2330-7.

13. Pohl, K. Requirements engineering fundamentals: a study guide for the certified professional for

requirements engineering exam-foundation level-IREB compliant; Rocky Nook, Inc. 2016, ISBN 978-1-

937538-77-4.

14. Mulla, N.; Girase, S. A new approach to requirement elicitation based on stakeholder recommendation and

collaborative filtering. International Journal of Software Engineering & Applications. 2012, 3(3), 51.

https://doi.org/10.5121/ijsea.2012.3305.

15. Wahono, R.S. Analyzing requirements engineering problems. In Proceedings of the IECI Japan Workshop,

2003.

16. Frefer, A.; Mahmoud, M.; Haleema, H.; Almamlook, R. Overview success criteria and critical success

factors in project management. Industrial engineering & management. 2018, 7(1), 1-6.

https://doi.org/10.4172/2169-0316.1000244.

17. Laporti, V.; Borges, M.R.; Braganholo, V. Athena: A collaborative approach to requirements elicitation.

Computers in Industry. 2009, 60(6), 367-380. https://doi.org/10.1109/CSCWD.2007.4281527.

18. Sommerville, I. Software Engineering, 9/E; Pearson Education India 2011.

19. Zhang, Y.; Harman, M.; Finkelstein, A.; Mansouri, S.A. Comparing the performance of metaheuristics for

the analysis of multi-stakeholder tradeoffs in requirements optimisation. Information and software

technology. 2011, 53(7), 761-773. https://doi.org/10.1016/j.infsof.2011.02.001.

https://doi.org/10.4324/9781315232904
https://doi.org/10.1109/52.922725
https://doi.org/10.1016/j.ijproman.2011.07.002
https://doi.org/10.1109/EDUCON.2014.6826125
https://doi.org/10.1109/ACCESS.2022.3177659
https://doi.org/10.1016/j.jss.2020.110851
https://doi.org/10.1145/336512.336523
https://doi.org/10.1109/CSCWD.2007.4281527
https://doi.org/10.1016/j.infsof.2011.02.001

IHJPAS. 2024, 37(3)

427

20. Krane, H.P.; Rolstadås, A.; Olsson, N.O. Categorizing risks in seven large projects—Which risks do the

projects focus on? Project management journal. 2010, 41(1), 81-86. https://doi.org/10.1002/pmj.20154.

21. Atladottir, G.; Hvannberg, E.T.; Gunnarsdottir, S. Comparing task practicing and prototype fidelities when

applying scenario acting to elicit requirements. Requirements Engineering. 2012, 17, 157-170.

https://doi.org/10.1007/s00766-011-0131-2.

22. Meth, H.; Brhel, M.; Maedche, A. The state of the art in automated requirements elicitation. Information

and Software Technology. 2013, 55(10), 1695-1709. https://doi.org/10.1016/j.infsof.2013.03.008.

23. Pacheco, C.; Garcia, I. A systematic literature review of stakeholder identification methods in requirements

elicitation. Journal of Systems and Software. 2012, 85(9), 2171-2181.

https://doi.org/10.1016/j.jss.2012.04.075.

24. De Gea, J.M.C.; Nicolás, J.; Alemán, J.L.F.; Toval, A.; Ebert, C.; Vizcaíno, A. Requirements engineering

tools: Capabilities, survey and assessment. Information and Software Technology. 2012, 54(10), 1142-

1157. https://doi.org/10.1016/j.infsof.2012.04.005.

25. Asarani, N.A.M.; Ab Rahim, N.Z. Preliminary study of online training implementation from multiple

perspectives in malaysian public sectors. Journal of Theoretical and Applied Information Technology

2016, 90(1), 77.

26. Albert, B.; Tullis, T. Measuring the user experience: collecting, analyzing, and presenting usability

metrics; Newnes: 2013, ISBN 978-0124157811.

27. Gheni, A.Y.; Yousif, H.A.; Jusoh, Y.Y. Online medical consultation: covid-19 system using software

object-oriented approach. Bulletin of Electrical Engineering and Informatics. 2021, 10(6), 3471-3480.

https://doi.org/10.11591/eei.v10i6.3189.

28. Harrati, N.; Bouchrika, I.; Tari, A.; Ladjailia, A. Exploring user satisfaction for e-learning systems via

usage-based metrics and system usability scale analysis. Computers in Human Behavior. 2016, 61, 463-

471. https://doi.org/10.1016/j.chb.2016.03.051.

29. Brooke, J. SUS-A quick and dirty usability scale. Usability evaluation in industry. 1996, 189-194, 4-7,

ISBN 9780429157011.

30. Lano, K. Advanced systems design with Java, UML and MDA; Elsevier: 2005; ISBN 9780080456911.

31. Gemino, A.; Parker, D. Use case diagrams in support of use case modeling: Deriving understanding from

the picture. Journal of Database Management (JDM). 2009, 20(1), 1-24.

https://doi.org/10.4018/jdm.2009010101.

https://doi.org/10.1002/pmj.20154
https://doi.org/10.1016/j.infsof.2013.03.008
https://doi.org/10.1016/j.jss.2012.04.075
https://doi.org/10.1016/j.infsof.2012.04.005
https://doi.org/10.11591/eei.v10i6.3189
https://doi.org/10.1016/j.chb.2016.03.051

