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Abstract   

In statistics theory, adding a new parameter is considered one of the important things that 

help in producing statistical distributions more flexible and appropriate in data analysis. 

Alpha-power transformations are considered a modern technique that involves adding a shape 

parameter to generate new statistical distributions. In this paper, a new life continuous 

distribution of three parameters is presented by fitting the alpha power transformations family 

distribution with two parameters lifetime exponential Weibull distribution. The new model 

named alpha-power exponential Weibull distribution (APEWD) with three parameters(    

     ), where   and   are classified as scale parameters and   parameter is classified as a 

shape parameter. The cumulative, probability density, survival, hazard functions, and 

statistical properties of the proposed new model distribution were discussed and studied such 

as quantile function, moment about origin, moment generating function, Skewness, Kurtosis, 

factorial moments generating function, and characteristic function. To expand the probability 

density function for the new distribution, we took advantage of expanding the exponential 

function for ease of dealing with finding statistical properties. 

Keywords: alpha power family, exponential Weibull distribution, survival function, 

moments about the origin, moment generating function 

 

1. Introduction 

Statistics distributions play a crucial role in analyzing data and making more accurate 

decisions. However, the world is constantly evolving, conditions change and new types of 

data and statistical challenges emerge. For this reason, discovering new statistical 

distributions represents a vital area of research. In this article, we will take a look at the 

importance of this process and how it can contribute to the development of the field of 

statistics. The idea of producing new distributions has gone through many stages over the 

past decades. The most important of these stages are combining distributions and creating 

families of distributions.  The basic idea of this research is to apply the alpha power family to 

a statistical distribution resulting from mixing two distributions. (1) invented a new way to 
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create statistical distributions through the survival function and applied it to find the three 

parameters of exponential–Weibull lifetime distribution.  (2) used the survival mixed method 

to present  Serial Weibull Rayleigh distribution. (3) and (4) involved the same technique with 

two stages to get three parameters of the new mixture distribution. (5) and (6) produced the 

inverse exponential Rayleigh distribution and estimated the distribution parameters with 

application. (7) created an exponential Weibull distribution with shape parameter   and scale 

parameter  , the cumulative distribution and probability density functions were as follows:  

 ( )      (     )                                                                                                                  (1) 

 ( )  (       )  (     )        (2) 

Adding a parameter to distributions is considered one of the important things to produce new 

distributions that are more suitable for data analysis. Weighting, generalization, and 

exponentiated are among the common methods of adding a parameter to distributions that 

researchers have used to produce new distributions over the past decades (8-14) introduced a 

new method for generating a family of distributions by adding a scale parameter, which is 

called the alpha power transformation method (   ), and the cumulative distribution (CDF) 

and probability density (PDF) functions of (APT) family distribution are considered as the 

following formals:  

 ( )  {
  ( )  

   
                

 ( )                                             
       (3) 

 ( )  {

    ( )

   
  ( ) ( )                

 ( )                                                               
      (4) 

(15) applied (   ) to introduce                               distribution. (16) 

Employed the α- power technique to presenter Alpha-Power Pareto distribution. (17, (18), 

and (19) proposed a new family of generating lifetime distributions by extending the alpha 

power transformation method. (20) Presented a new alpha-power Teissier distribution. (21) 

Used the proposed method to produce             transformed Aradhana Distributions. 

(22) Explored a new probability distribution called          exponentiated inverse 

Rayleigh. (23) Proposed a newly generated family known as G-alpha power transformation 

distributions. (24) Came out with a new class called discrete alpha-power distribution. The 

technique of generalization was applied to output with a new collection of distribution alpha-

power families (25), (26), (27), (28), (29), and (30). Statistically, power transformations can 

be considered one of the processes applied to create transformations of data so that they are 

monotonic by using the properties of power functions, which are common methods used 

through which the variance of the data is stabilized so that it is more similar to a normal 

distribution. The following movements in this paper include the mathematical construction of 

the basic functions of the new APEWD, each cdf, pdf, survival, and hazard functions, and the 

derivation of the statistical properties of the distribution is appended next. 

 

2. Structure of New APEWD 

For a random variable      and       is the scale parameter,       are shape 

parameters. 

The (cdf) and (pdf) of the new (     ) are: 

 ( )  {
    

 (     )

  

   
                    

 ( )                                                                       

 (5) 
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(       )    ( )

   
    

 (     )

  (     )                    

 ( )                                                                                                                       

 

 

(6) 

 ( ) is actually a probability density function, since,                   , which 

implies that  ( )   . 

Now, to prove that ∫  ( )     
 

 
,  

∫  ( )   ∫
(       )    ( )

   
    

 (     )

  (     )   

 

 

 

 

 
    

 (     )

  

   
 
 
 
 

 (
   

   
 

   

   
)    

 

Based on what was stated above, the survival and hazard functions can be defined as follows: 

 ( )     ( )  

{
 

 
  (

    
 (     )

  

   
)                     

   ( )                                                                             

 (7) 

 ( )  
 ( )

 ( )
 

{
 
 

 
 (       )    ( )     

 (     )

  (     )

      
 (     )

           

 ( )

   ( )
                                                                                        

 (8) 

 

2.1. The shapes of (APEWD)  

Knowing the shape of the (APEWD) helps us understand the behavior and approach of 

distribution functions in dealing with data, in order to understand this mathematically, 

especially through the limit values of the probability density and hazard functions when 

(        ). 

   
   

 ( )     
   

(
(       )    ( )

   
    

 (     )

  (     ))  
     ( )

   
  

   
   

 ( )  
    ( )

   
   
   

(
(       )

  
 (     )

 (     )
)  

Applied L'Hospital's Rule and as we continue to derive for   the result of the numerator will 

be equal constant as considered an integer value for   and as contained to derive the 

denominator is always contains the exponential part which equal to      (   ). The final 

result of the limit is a constant divide by    which equal to zero          ( )    (Figures 

1-4). 
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Figure 1. Plots of cdf for different values of         Figure 2. Plots of pdf for different values of         

  

  
Figure 3. Plots of S(x) for different values of         Figure 4. Plots of h(x) for different values of         

 

2.2 Expanding the probability density and cumulative functions 

In order to easily deal with the cumulative and probability density functions, we use some 

mathematical formulas to expand the two functions to facilitate the process of finding the 

statistical properties of APEWD  distribution. 

          ( )          
 (     )

 (    ( ))
   

 (     )

     ( )    ( )  
 (     )
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        ( )  
 (     )
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3.  Mathematical and statistical properties of (APEWD) 

3.1. The Mode 

This is done by finding the point that the probability density function reaches its maximum 

value; therefore, the mode is calculated as follows: 

 ( )       (        (   )  )   (   )(  ) 

  (   )(  )  ∑
(  ) ((   ) ) 

  

 

   

    

 ( )  ∑
(  ) ((   ) ) 

  

 

   

      (            (   )  ) 
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 ∑

(  ) ((   ) ) 

  

 

   

    (  (   )          (       )        )    

Divided both sides of the above equation by (       ) 
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3.2. The Quantile function 

The quantile function is considered very important from a theoretical and applied perspective. 

Theoretically, it is possible to find some statistical properties, such as Skewness and Kurtosis, 

and in application to generate data that is used in simulation. 

 ( )  
    

 (     )

  

   
 

 ( )     ( ) 

  
    

 (     )

  

   
 

 (   )      
 (     )

   

 (   )        
 (     )

 

   ( (   )   )  (    (     ))     ( ) 

  (     )    (
   ( (   )   )

   ( )
) 

(     )      (  (
   ( (   )   )

   ( )
)) 

         (  (
   ( (   )   )

   ( )
))    

To find the roots of the above nonlinear equation, which is represented by the values of x, 

special numerical methods are needed to find a solution to this nonlinear equation. Command 

syntax  <fsolve> in MATLAB 2018a was used to find x with initial values of parameters 

(         ), and in order to understand the issue thoroughly, we assume some values for 

the parameter (     ). 

Let    , then we have 

        (  (
   ( (   )   )

   ( )
))    

 (   )      (  (
   ( (   )   )

   ( )
)) 

  

    (  (
   ( (   )   )

   ( )
))

(   )
 

Let    , then we have: 

         (  (
   ( (   )   )

   ( )
))    

 ( )    

   √       (  (
   ( (   )   )

   ( )
))

 
 

 

The median point at which the cumulative distribution function equal to 0.5 (     ) is 

called the median and the median of (APEWD) is defined as: 

 ( )      
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         (  (
   (        )
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Let    , then we have 

  

    (  (
   (        )

   ( )
))

(   )
 

Let    , then we have: 

 ( )    

   √       (  (
   (        )

   ( )
))

 
 

3.3. Moments about the origin  

One of the most important distribution properties is moments because of their role in 

determining many other distribution properties, such as mean, variance, skewness, and 

kurtosis. 

The moments of (APEWD) could be obtained as given: 
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Direct applied of (  
 ), it could be found   ( )    

 ,   (  )    
 , and    ( ) as follows: 

     
        (    )        (   (   )) 

   ( )    
  (  
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3.4. Coefficients of Skewness and Kurtosis 

The Coefficients skewness (   ) and kurtosis (   )(Table 1) could be given through the 

following formulas: 

  
        (    )        (   (   )) 

    
  

 

(  
 )

 
 

 (13) 

  
        (    )        (   (   )) 

    
  

 

(  
 ) 

                       (14) 

 

Table 1. The first - fourth moments, variance, skewness, and kurtosis for the distribution 

        
    

    
    

          

2 
1.5 2.5 0.3631 0.2222 0.1848 0.1918 0.8861 1.7645 0.0904 

0.5 1.5 0.4211 0.4233 0.6675 1.4417 5.0443 2.4234 0.2460 

2.5 
0.9 0.5 0.8354 1.3298 3.1145 9.6950 2.4825 2.0310 0.6320 

1.2 0.7 0.7261 0.8656 1.3971 2.8235 0.7686 1.7350 0.3383 

3.5 
0.2 0.8 0.7403 1.6480 5.6832 26.4787 6.7500 2.6864 1.0999 

1.4 2.8 0.3707 0.2230 0.1802 0.1814 0.6490 1.7113 0.0855 

 

3.5. Characteristic Function 
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3.6. Moment Generating Function 
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3.7. Factorial Moments Generating Function 
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(17) 

4. Conclusion 

Adding a new parameter, whether it is a shape or measurement parameter, gives 

convenience and flexibility to the distribution in terms of analysis and processing of the data. 

Based on the alpha-power family method for generating distributions, a new distribution 

called APEWD was presented. All the basic functions including cdf, pdf, survival, and 

hazard, statistical properties of this distribution such as moments, moment generating, 

factorial moments skewness, kurtosis … etc were presented and demonstrated using some 

mathematical formulas to facilitate dealing with the complexity in finding and discussing 

some properties. 
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