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Abstract    

This present study focuses on the analysis of peristaltic transport involving hybrid 

nanomaterial fluid through a tapered channel. Peristalsis of hybrid nanomaterial with variable 

viscosity is studied here. Thermal heat and velocity  with no-slip conditions are considered in 

the investigation. In order to simplify governing equations small Reynolds number and large 

wavelength assumptions are used, the exact solution for formulation of stream function , axial 

velocity and temperature are determined based on the perturbation technique . In the present 

study, water is used as a head liquid while nanoparticle contains polystyrene and grapheme 

oxid. Additionally, main purpose is to explain impacts of  various physical parameter and 

porosity parameter.  Here, we are concerned with studying the influences of heat transfer  and 

porous medium on MHD of hybrid nanomaterial which translates through a two, dimensional 

asymmetric, tapered, channel. Finally, the plot of expressions of velocity curve, temperature 

distribution and streamlines with trapping phenomena are obtained via Mathematica 11 

software. 
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1.Introduction 

Peristaltic transport of fluid is an essential tool of almost biological and industrial 

procedures. On the other hand various studies associated with this phenomenon, because of 

its excellent importance as well as the distinctive aspects .We can  be observed peristalsis 

significant  in the flow processes; for detail, the transport of  kidneys urine, chyme motion  

with tract of gastrointestinal and activity of motion of the food through digestive tract . After 

the basis work when appeared wide application of peristalsis flow and pulled researchers 

attention as shown in (1) . In (2) displayed the peristaltic transport of a Newtonian fluid with 

variable viscosity in an asymmetric channel. Authors in (3) analyzed the effect of variable 

viscosity on hydro magnetic boundary layer . 

The flow of peristaltic has been taken activit  interest through magnetic fields and considered 

via students and researchers when observe the thickening of viscosity of liquid depend on 

magnetic field )4-6( . Furthermore,  )7( studied peristaltic transport with heat and mass 

transfer of MHD through a complaint porous channel .)8( examined  the impact of induced 
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magnetic  on mixed heat transfer through peristalsis movement .Via )9-13( discuss that the 

idea , under effects of heat source  the peristaltic flow with nanofluid in an inclined, channel 

with two walls for non-Newtonian fluid. )14( Sheriff et al. dealt with different forms of 

nanoparticles in a non-uniform channel . The mechanism of peristalsis has been proven to be 

very helpful in transportation of liquid. Authors in )15( considered  the influences of heat 

source, and inclined magnetic field in the tapered asymmetric channel through a porous 

medium. 

The phenomenon of peristaltic transport of hybrid nanomaterial through  the activity of 

viscous looked at by )16( . 

In Non-Newtonian fluids, which have variable viscosity of  fluid,  in which particle size is 

taken into account and studied via )17(. Also, )18( had modeled the peristaltic flow of 

bingham plastic fluid with variable viscosity in an inclined tapered asymmetric channel. 

Recently, researchers have been seen at  a magnetic field and influence of mass and heat 

transfer for the motion of peristaltic due to their wide range between industrial and 

engineering . For more elements , We have theoretically analyzed the problem of peristaltic 

transport of a viscoelastic fluid in the tapered micro channel with variable viscosity. Almost 

of above citied studies deal with constant viscosity but extremely attractive to obtain impact 

of changeable viscosity .In addition, )19-22( the authors discussed influence of variable 

viscosity on peristaltic motion through various channel. )23( examined the impact of couple 

stress on peristaltic transport of a Powell-Eyring fluid in an inclined asymmetric channel.  

Hybrid nanomaterials are considered as unique chemical combination  of organic and\or 

inorganic materials. Various researchers groups are continuously presenting new studies a 

round the world about hybrid nanomaterial with application of it  . Almost studies have been 

interested in role of this kind of nanomaterial with peristalsis flow investigated via )24-27( . 

the Influence of a rotation and heat transform in an inclined asymmetric channel with effect 

of different parameters studied by )29(. (30)  and (31( considered impacts of Magnetic Force, 

heat transfer and non-uniform  channel for Peristaltic Transport of Non-Newtonian, Fluid 

.Influence of some fluid mechanic parameters caused from heat transport have discussed by 

)32( .On the other hand study of entropy generation can be very useful in different studies of 

nanomaterial flow of peristaltic disclosed by (33, 43). Many researchers analysis the 

combined influences of hybrid nanoliquid in the efficiency of engineering  systems for more 

details see (34,35,38,39,40). In (36) , authors explain utilization of modified Darcy’s law in 

peristalsis with a compliant channel through applications to thermal science . (37) considered 

inclined magnetic field, heat transfer and Porous Medium of asymmetric Channel on 

hyperbolic tangent peristaltic flow. The study of MHD   features in peristaltic motion having 

impactful role in fluid flow . In (41), analysis effect of MHD and porous media, on peristaltic 

transport for nanofluids in an asymmetric channel for different types of walls. Analysis for 

variable viscous couple stress fluid flow through a channel with non-uniform wall 

temperature examined via (42). Here, we share in this investigations the reader through (44-

47) to describe effect of analysis for varying of  viscous through  peristaltic tube or channel . 

Furthermore,, various studies (48-52) accounted tapered, channel duo to peristaltic transport 

with fluid flow . 

The aim, focus in this paper  displayed analytical exxpessions for  base fluid (water) and nanoparticles  

flow behavior  in tapered channel where  porous, medium  existing .  Through a quick look at the 

changes that have been represented, by graphs . This research is designed to determine  and explain 

the effects of magnetic field , Harttmann number , porosityi parameter and various boundaries on 

temperature, axial velocity, pressure gradient profiles respectively, The exact solution is calculated 

by Mathematica (11) software . 
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2. Materials and Methods  

2.1. A mathematical formulation for  tapered asymmetric flow  

Establish the MHD fluid transport through tapered asymmetric channel with  variable 

viscosity, two dimensions with porous medium and width of (d1+d2) . peristaltic motion 

considered by sinusoidal waves with constant speed (c) ialong the walls of channel .  

 

 
Figure 1. Geometric diagram of the tapered asymmetric channel. 

 

The channel walls equations  are presented as  

       ̅  ̅       *
  

 
  ̅     ̅+,                   Lower wall                                              (1) 

        ̅  ̅       *
  

 
  ̅     ̅   +          Upper wall,                                             (2)                             

Where (  ) and (  ) display wave amplitudes of the lower and upper walls, respectively. ( ) 

represent  the velocity of peristaltic wave,  ̅ is the time ,   is the wave length, the phase 

difference  ( ) at range      , and (  ̅     is a non- uniform parameter. Cartesian 

coordinates are  represented by  YX ,  , where the transverse axis is Y which is perpendicular 

to X ,  and the axis of channel is X . ,1d and 
2d   denoted to the fixed top of the higher and 

lesser walls of from center line respectively. Moreover,   ,   ,   ,    and   satisfy the 

following relation at inlet of divergent channel: 

  
    

                     
                                                                                   (3) 

2.2. Governing equations of Problem 

The mastering governing, equations of hybrid nanomaterial fluid example with varying 

viscosity from one side to the other in tapered channel through laboratory frame are. 

The Continuity Equations: 
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The Energy Equation 
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Where u  represents the axial velocity along x - directions, v  represents the transverse 

velocity along y - directions, and the temperature is T . 

,hnf hnf ,
hnfpc , oB , o and hnfk  denoted to the effective density, electrical 

conductivity, heat capacitance, magnetic strength, heat absorption coefficient  and thermal 

conductivity for hybrid nanomaterials ,respectively.  

However, the relationship between the two frames is displayed for stable flow by the 

following form and it can be treated as steady flow in a coordinate system ( x , y ), where we 

switch from aboratory frame to wave frame. 

tcXx   , cUu  , Pp  ,  Yy  , Vv                                                                (8) 

2.3.Solution of the problem  

Let us introduce the next dimensionless quantities and variables as follows to simplify the 

governing equations: 

 

Here eRDkptbavuyx ,,,,,,,,,,,,,  are designate components of the dimensionless 

coordinates, dimensionless axial velocity, dimensionless transverse velocity, number of 

wave, amplitudes of lower wall, amplitudes of upper wall, dimensionless time, dimensionless 

pressure,  temperature, non-uniform parameter, heat sink/source parameter, porosity 

parameter, the Reynolds number. 0  is refer to constant viscosity, 01 TTT   is the 

temperature,difference, where 0T  and 1T  are refer to the temperature in the lower and upper 

wall, respectively. 

As          and         refer to the components of velocity along   direction and    

direction respectively. 

Now, By applying the dimensionless variables in Equation (9), with  flow being steady, 

Equations  (4-7) become as follow . 
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Implementing via long-wavelength (ᵟ<<1)  and approximating of small Reynolds number 

which are simplest way . In addition, by using  the relation ship between stream function    

and velocity components that is defined down in  Equation (13). 
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Then we obtain Equation (11) and Equation (12) become:
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The system that appear above will be solved analytically to get dimensionally format for 

velocity )(u , and temperature denoted via    of nonlinear peristalsis transport with 

temperature disposed viscosity parameters . 

In the implied paper, the exponential dependence of viscosity on temperature is  named (20, 

28) as the next expression : 
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Where ( ) is  viscosity parameter which is a constant for  ( 1 )  .by using Taylor expansion, and 

neglecting  square and higher power of  ,  then we obtain, 

 1)(                                                                                                                          (20) 

,)1)1 (
2

2

2

( 





















































y
D

y
M

yyx

p 
                                                                (21) 

yyyy
D

y
D

y
M

yyy 















 

































 



2

2

(
2

2
2

2

2

3

3

2
4

4

(0 )1)1
2

2

                 (22) 

The suitable boundary conditions in non-dimensional wave frame are as follows: 

Part 
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Where above (  ) present thermal slip parameter and   is the non- dimensional mean flow 

rate in the wave frame.  
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The non-dimensional forms of the lower and upper walls are:  

 

                                                                                                                (24) 

 

                                                                                                        (25) 

2.4. Perturbation solutions and Analytical 

2.4.1. Zero-order system: 

Identified zero –order system by the following.. 
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The solution for first-order problem Eq.( 30) subjected to conditions in Eq.(31 ) has been 

consistent as:  
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2.4.2. Solution of temperature: 

the solution of temperature Eq.(18) is obtained from system subject to  

the boundary conditions of non- dimensional temperature   in the wave frame as follows:
  

At  1hy  ,                0




y


, 

At 2hy  ,                0





y


   . 

The exact solution of temperature, that satisfies the boundary conditions (33), can be obtained 

as: 
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                                                                                                            (34) 

Where, 
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(35) 

,12 hc 
 

In addition, the momentum equation (22) is non-linear. Then, the perturbation method is used 

for a small fluid parameter ( ) and to identify approximate series solutions of Eq.(22).The 

stream function is expanded in powers of ( ) as follows: 

...2

2

10                                                                                                           (36) 

By substituting Eq.(28) & (32) into Eq. (36)and the coefficients are compare of the same 

power of up to the first order, we obtain the next equation .. 
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The amounts of various coefficients   43216543 ,,,,,,, sssscccc  are long non-constant and their 

values can be determined with boundary conditions(no-slip) in Eq. (26)&(30)via using 

Mathematica 11  software.  

 

3. Results and Discussions  

In this section of paper, we discussed  the graphical illustraion  for the variable 

viscosity(    of hybrid nanomaterials, temperature ( ), the variation  of pressure gradient 

(
  

  
), and streamlines contours . The plotted outcomes of almost various  physical variables 

that produced   by Mathematica software version -11.  

3.1. Velocity Profile. 

The graphs of velocity curve show that the behavior of distribution is parabolic in nature. The curve 

was drawn for fixed values of {           }, Figure (2) shows the impact of  non-uniform 

   (33) 

 

   (37) 
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parameter ( ) on velocity distribution .As we seen in  Figure (2) and Figure 3. the increasing in the 

value of   &  lead to increase of velocity curve ,while as shown in Figure (3) and Figure 

(5) the decreasing of the velocity distribution due to increase the rang of   & . 

 

  
Figure 2. Impact of   on velocity profile     . Figure 3. Impact of   on velocity profile     . 

  
Figure 4. Impact of    on velocity profile     . Figure 5. Impact of   on velocity profile     . 

 

3.2. Temperature Profile 

The effect of various variables that explain in the temperature profile  through Figures (6-9). 

A parabolic behavior is determined via current temperature distribution against y-axis.  As we 

observe in Figures,(6) and (7),  the decreasing in temperature   distribution return to increase 

of different values of a & b. Additionally, this profile as examined by Figures (8) and (9) the 

rise in distribution of( ) due to increasing in ( ) and (  ) . 

  

  
Figure 6. Impact of      on profile of temperature  

denoted by (ϑ) . 

Figure 7. Impact of      on  profile of temperature  

denoted by(ϑ) . 
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Figure 8. Impact of    )on profile of temperature  

denoted by (ϑ) . 

Figure 9. Impact of      profile of temperature  

denoted by (ϑ) . 

  
Figure 10. Impact of     on profile of temperature  

denoted by     . 

Figure 11.  Impact of     on profile of temperature  

denoted by (ϑ) . 

 

3.3.  Pressure Gradient Profile 

Figures (12-15) show the variation of  the pressure gradient profile  with respect to various physical 

parameters . Almost Figures, these are  illustrated  that the profile of pressure gradient distribution that 

increases with the increase in  values  of parameter  . we noticed that oscillatory  behavior for     ⁄ . 

It can be observed from  Figures (12) and (13) increasing for different values of porosity parameter  

( )  and values of non-uniform parameter ( )  respectively, led to increased in pressure gradient as  

shown in model. Also, In Figures (14) and (15) displayed that , the impact of variations in pressure 

gradient with respect to increases in  different values of ( ) ,and Hartmann number   ) . 

 

  
Figure 12. Impact of    on Pressure gradient 

profile (
  

  
) . 

Figure 13. Impact of    on Pressure gradient 

profile (
  

  
) . 
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Figure 14. Impact of    on Pressure gradient  

profile (
  

  
) . 

Figure 15. Impact of    on Pressure gradient    

profile (
  

  
) . 

 

3.4. Trapping Phenomenon 

In this subsection we will discuss and analyze the impact of some parameters on it . Formation of 

trapping via the disconnecting of streamlines , where the closed streamlines of the bolus are formed 

with respect to the peristaltic motion of the wall of the transport  that apply on  fluid flow within the 

channel .In order to explain effects of trapping phenomenon at different values of porosity parameter 

(D) , Hartmann number (M) , and viscosity parameter respectively . It can be observed from Figure 

(16)  that when increases in value of  M , the rises of trapped bolus. As Figure (17) illustrated the 

trapped bolus of tapered channel increases in size with the increase in porosity parameter. 

 

  
Figure 16. The impact of Hartmann ( ) on streamlines  

  
Figure 17. The impact of  porosity parameter ( ) on streamlines. 
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Figure 18. The impact of viscosity parameter (  ) on streamlines  

 

4.Conclusion 

In this section, we present the influences of variable viscosity and porous medium of 

hybrid nanomaterial fluid in tapered channel. The study is formulated by incorporating 

boundary condition, Coupled nonlinear equations are simplified by adopting large 

wavelength and small Reynolds number approach. Here, essential findings through numerical 

representation, due to the exhibited analysis the next  outcomes  are the main lines we 

obtained. 

- It can be observed that, the velocity curve is parabolic path and increase near middle of 

channel , But at the walls part of the channel we note the distribution of velocity 

emanation due to increasing amount of parameters. 

- Note that , The temperature    versus y-axis as shown in  above Figs. , Where profile of 

it  diminishes upon decreasing almost parameters and increasing with others . 

- For instance , Both of velocity and temperature profile  respectively announced  the same  

behavior toward various  parameters .  

- Pressure gradient diverges and increases with Hartmann number as well as the amount of 

( ) on  tapered channel . 

- Generally, in the phenomenon of trapping that observes peristaltic motion of hybrid 

nanomaterial fluid under certain conditions , where the size of the trapped bolus 

increases as the values of ( ) and ( ). 
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