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 Abstract   

     A time series is a sequence of observations recorded at regular intervals. Time series 

analysis has applications in diverse fields such as finance, stock prices, economics, 

environmental science, and social network data analysis. The recorded series is used to 

represent a measurable quantity or attribute, such as temperature readings, economic 

indicators, or other variables, depending on the context of the analysis. The idea of time 

series analysis is to identify patterns, trends, or underlying structures within the data, as well 

as to make predictions or forecasts about future values based on previous observations. 

Autoregressive (AR) models are widely used in modeling and forecasting data from time 

series. This work focuses on AR model parameter estimation, emphasizing the significance 

of the likelihood function by defining the marginal distribution of the AR process, which is 

getting  by representing the AR process with random shocks and assuming the error terms in 

a time series have a normal distribution with a zero mean and variance   . Some of the 

simulated experiments are designed to fit the model for different model orders and sample 

size to find model  parameter estimation by likelihood function with marginal distribution.  

The results of Mean Squares Errors (MSE) and Mean Percentage Errors (MPE) indicate the 

significance and robust estimation of the AR –models parameters estimators that are 

computed theoretically.  

Keywords: Autoregressive Time series Models, Marginal distribution of    time series, 

Maximum likelihood Estimation. 

 

1. Introduction  

     A time series is a collection of data points produced successively over time. If the set is 

continuous, the time series is considered continuous and discrete if the set it belongs to is also 

discrete (1). In the early      century, time series analysis heavily relied on an autoregressive 

model, as researched by Yule in 1927 (1). The autoregressive model utilized regression 

analysis to estimate the values of the series at a particular time by applying a linear function 

of past values (2). Time series analysis employs this model to illustrate the relationship 

among time series data; refer to (2) for further details. 
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Generalized autoregressive (GAS) models are a type of observational time series model that 

is proposed in (3). This novel method offers a unified and consistent framework for adding 

time-varying parameters to a wide range of nonlinear models. Using multivariate point 

processes with time-varying parameters and novel model requirements, this method can result 

in a new formulation of observational models. We present detailed studies of the models 

along with experimental and simulation evidence. In (4), an optimal power spectrum 

estimator using the mixed ARMA (1,1) model for time series data that adheres to a normal 

distribution was conducted. 

An extensively used model for analyzing time series data is the autoregressive (AR) model. 

The innovation noise in AR was traditionally described as a Gaussian in (5). But since many 

time series applications, like financial time series data, for example, are not Gaussian, the AR 

model with more broadly applicable substantial improvements is recommended. For the first 

time, an effective framework based on stochastic approximation expectation maximization 

(SAEM) combined with a Markov chain Monte Carlo (MCMC) approach is proposed to 

handle the problem of missing values in incomplete time series. 

Authors in (6) constructed an autoregressive model incorporating an exogenous variable. 

They use two methods: the first method employed was the threshold approach, utilizing two 

proposed approaches to identify the optimal cut-off point for future forecasting and 

predictability in the time series; their goal was achieved through the threshold point indicator; 

and the second method involved using seasonal B-J models, which relied on the principles of 

the two approaches above to determine the most suitable seasonal model. 

The enhancement of the estimate of a third-order autoregressive model by employing the 

LDR and WLSE estimation techniques was studied by researchers in (7). By creating a time 

series for the AR(3) model with normally and non-normally distributed error terms, the 

researcher in (7) found that enhancing the estimation of the autoregressive model using the 

LDR and WLSE methods is contingent upon the sample size for all considered error 

distributions. In (8), the best and most efficient artificial neural network models for solving 

linear and nonlinear time series behavior were considered. The researchers concluded that the 

ideal neural networks are the backpropagation network (BP) and the recurrent neural network 

(RNN) for solving time series, whether linear, quasi-linear, or nonlinear. The results showed 

an improvement over the modern methods of time series forecasting. Furthermore, the author 

in (9) combined ARMA models with EGARCH models to create a hybrid model: 

ARMA     –EGARCH     . This hybrid model was used to analyze time series data on 

average temperatures. He determined that the optimal model is ARMA     –EGARCH     ; 

see (9). In (10), researchers presented the fundamental genetic algorithm (CGA) to estimate 

the log-likelihood parameter function of a first-order moving average model. After comparing 

it based on mean squared error (MSE) with the intraday technique, they determined that CGA 

could yield more dependable outcomes. In (11), researchers presented a new ARIMA model 

and applied it to a monthly chemical sales dataset in the United States. After comparing it 

with other models, they found that the updated ARIMA model is more accurate. In (12) they 

conducted the first study with a small sample size that focused on predicting errors based on 

the concept of the Gaussian noise process. In (13), researchers studied monthly rainfall data 

from the Baghdad Meteorological Station to study the temporal behavior of the data series for 

many ARIMA models that have been tested. They verified the adequacy of the best one. 

They concluded that the seasonal ARIMA model for orders SARIMA(2,1,3)x(0,1,1) is the 

best. 
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The idea of this work is finding theoretically the estimation of the autoregressive model by 

likelihood function by defining the marginal distribution of the AR process when the error 

terms of the series are normal distribution with zero mean and constant variance. The rest of 

the paper is section 2 gives the theatrical properties of the AR model; section 3 presents the 

details of the maximum likelihood function for the AR model, at least the simulation and 

results given in section 4. 

 

2. Autoregressive Time Series Model  

The autoregressive time series model of order p may be written as (14-19): 

                                                   (1) 

Where p is called the order of the AR model.    of the linear combination are the model 

parameters and          
  . By using the backward shift operator, B, which is (     

      . Then the       in Equation 1 can be written as the following: 

            
                 Which is simplified as below:  

           
              . Hence, 

                                  (2) 

where                
        . By dividing both sides of Equation 2 on 

    ,we get:    
 

    
                         , where             . 

The parameters            of an AR (p) process must satisfy certain conditions for the 

process to be stationary. 

 

3. Likelihood Function of       Model 

As in (19-23), we suppose that the     order stationary autoregressive model is considered 

as follows: 

                            . That is  

                                                 (3) 

The formula for the exact likelihood function is: 
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Where                 are the theoretical covariance of the process and |  
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| 

In our work, we have three cases for the likelihood functions. Therefore, for Equation 4, we 

have three cases as follows: 

Maximum Likelihood for AR (1) 

The general  likelihood function is        
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    As a result, the exact likelihood function is 
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The log likelihood of Equation 6 is : 
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Differentiate both sides of Equation 7 with respect to   : 
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Maximum Likelihood for AR(2) 

For    , the exact likelihood function is  
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Then, Equation 5 be          
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Substitute Equations 11 and 12 in Equation 10   
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The log likelihood of Equation 13 is  

          
  

 
       

   
 

 
         

   
∑    

 
                   

   
               (14) 

Differentiate both sides of Equation 14 with respect to   : 

          

    
  

∑       
 
      ∑     

  
      ∑         

 
   

  
  .Set 

          

    
   

∑       
 
      ∑     

  
      ∑         

 
   

  
   . Therefore,  

   
∑       

 
      ∑         

 
   

∑     
  

   
                  (15) 

Differentiate both sides of Equation 14 with respect to   : 
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Substitute Equation 15 in Equation 16. 
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After simplification , 
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. Substitute Equation 17 in Equation 

15. Then:  
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Maximum Likelihood for AR (3) 

For      the exact likelihood function will be: 
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The Equation 5 will be  
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By substitute Equations 19 and 20 in Equation 18, the exact likelihood function will be 
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The log likelihood of Equation 21 is  
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Differentiate both sides of Equation 22 with respect to   : 
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Differentiate both sides of Equation 22 with respect to   : 
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Differentiate both sides of Equation 22 with respect to   . Then  
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Substitute Equation 23 in Equation 24 to get that  
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. Substitute Equations 26 and 27 in Equation 

23 to consider the following: 
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3.1. Marginal distribution of AR time series in case known error distribution 

In (23-26), the general form for the random shock form is 

                                        (28) 

where     is a random error, 

               
   ,  

and   is a back shift operator that is (                     )  
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Using back shift operator, give us                             
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Substituting Equation 28 in Equation 29, we get 
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Assuming that      represents random errors that are uniformly distributed. It received a 

mean of zero and a variance of   
  that is                

     

It finds the marginal distribution for {    by using the characteristic function if the data 

follow the autoregressive model      .  

The       model can be written in terms of random errors according to Equations 30, 31, 
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When {           
                                for errors is  
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3.2 Maximum likelihood function with marginal distribution 

The Normal distribution function is  
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distribution by mean zero and variance   
 (27-30). 
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The log likelihood of Equation 38 is: 
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Differentiate both sides of Equation 39 with respect to    . 
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Make Equation 40 equals to zero. 
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Then,   
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The log likelihood of Equation 41 is 
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Differentiate both sides of Equation 42 with respect to    .  
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By simplification, 

             

    
 

      
           

    
 
     (          

  )∑   
  

   

   
          

     
              (43) 

Make Equation 43 equals to zero. 
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The log likelihood of Equation 41 is 

                
  

 
  .   

(  
           )  

 

    
/  

∑   
  

   

 (  
           )  

 

    

 

   (          )  
  

 
       

 

 
  (

(  
           )  

 

    
)  

∑   
  

   

.
 (  

           )  
 

    
/

  

    (          )  
  

 
       

 

 
  ((  

           )  
 ) 

 

                                      
 

 
         

∑   
  

   

.
 (  

           )  
 

    
/

               (49) 

Differentiate both sides of Equation 49 with respect to    . 
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Differentiate both sides of Equation 49 with respect to   . Then 
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Make Equation 52 equals to zero ,  
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Differentiate both sides of Equation (49) with respect to   . Then 
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Make Equation 54 equals to zero , 

    
   

           
       

        ∑  
 

 

   

   

    
   

       
        ∑  

  

 

   

         
  

   
    

   
       

        ∑   
  

   

      
                  (55) 

Substitute Equation 55 in Equation 54; 

   
     

        ∑   
        ∑   

  
   

 
   

    
 

 

After simplification,  

   
   ∑   

   ∑   
  

   
 
   

   
                  (56) 

Substitute Equation 56 in Equation 55;  

   
    

   
    ∑   

  
     ∑   

  
    ∑   

  
      ∑   

  
   

      
 

 

   
    

   
     ∑   

  
     ∑   

  
   

      
                 (57) 

Substitute Equation 57 in Equation 55;  

     
   

 ∑  
 

 

   

       
 ∑  

 

 

   

            
          

 ∑  
 

 

   

     
   

 ∑  
 

 

   

    

By simplification,  

    
   

 ∑   
  

          
 ∑   

  
               

       
   ∑   

  
     ∑   

  
   

   
   

Hence,    
     

   ∑   
  

   

 ∑   
  

   

                  (58)  

Substitute Equation 58 in Equation 56;  

   
      

 ∑   
    ∑   

  
       ∑   

  
   

 
   

   
 

 

      
         

 ∑   
     ∑   

  
       ∑   
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  (∑   

  
   )

 
  ∑   

  
   

   
     ∑   

  
    

                 (59) 

Therefore,  ̂  
  (∑   

  
   )

 
  ∑   

  
   

   
     ∑   

  
    

 

Substitute Equation 59 in Equation 58;  

   

   
 (

  (∑   
  

   )
 
  ∑   

  
   

   
     ∑   

  
    

)  ∑   
  

   

 ∑   
  

   

     
  

   ∑   
  

   

                         (60)  

 

Hence ,  ̂  
  

   ∑   
  

   

 

Substitute Equation 60 in Equation 57;  

   

    
 .

  
   ∑   

  
   

/

 

  ∑   
  

   .
  

   ∑   
  

   

/   ∑   
  

   

    
 .

  
   ∑   

  
   

/

 

By simplification,  

   
    

   ∑   
  

       ∑   
  

     

     
     ∑   

  
     

 

Hence, 

 ̂  
    

   ∑   
  

       ∑   
  

     

     
     ∑   

  
     

 

 

4. Simulation and Results. 

This study presents AR model estimation via  maximum likelihood methods by defining 

marginal distribution of the given time series, for this  some of simulated  experiments 

designed                 and      . Different initial values for the parameters   were 

assumed for each experiment. The results of these experiments are given in Tables 1-9 for 

some statistical criteria,   mean square error (MSE), and the absolute mean percentage error 

(MPE).  

The first experiment was designed to calculate MLE and MAR for time series values for  

      , with (                 and     ), sample size (          and    ), and 

number of replicate (             and     ), the results of this experiment are given  by 

Tables 1, 2, and 3. Regarding the MSE and MPE criteria, we can see from the given tables , 

the values of MSE and MPE decrease with increasing sample size n for each value of    for 

MLE and MAR. The values of MPE of both methods become closer as the sample size 

increases for different values of   . The MSE and MPE values decrease with decreasing 

replication for each value of   . The values of  MPE indicate  MAR is  better than  MLE 

where most of the different model parameters and sample size     Moreover, Figures 1, 2, 

and 3 represent the estimated model for the time series       when   

                , respectively, the red graph refers to the generated simulated        

model,  the blue graph refers to the model estimated via exact likelihood, and the green graph 

refers to the estimated model by using the likelihood function via the marginal distribution of 

the time series. In Figures 1, 2, and 3, we notice that all-time series are stable at different 

values of the sample size   and each  number of replication  . 
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Table 1.       Model for MLE and MAR with       . 

 

The results of Table 1; as shown in Figure 1. 

 

 
  

           ,r =100            ,r =100            ,r =100 

   
            ,r=100            ,r =100            ,r =100 

   
           ,r=100             ,r=100             ,r =100 

   
            ,r =100             ,r =100              ,r =100 

Figure 1.     ) Model for MLE and MAR with r =100. 

 

For number of replication       , the results are given in Table 2 and Figure 2. 

 

 

 

 

 

 

 

 

n    
MLE MAR 

MSE MPE MSE MPE 

30 

       1.5065e-32 46.9825 9.4843e-30 26.2206 

       1.1237e-32 50.6085 9.6416e-31 30.6140 

       1.9921e-33 48.6619 3.1081e-30 30.4533 

        4.9416e-31 40.1620 4.1241e-30 31.8221 

50 

       1.9921e-33 22.2352 1.6181e-30 11.9847 

       0 21.6314 3.9045e-31 15.3154 

       1.1205e-31 18.3909 1.0085e-30 14.0371 

        2.1041e-32 16.3906 8.3717e-31 13.4952 

100 

       1.2450e-34 7.3882 1.3466e-30 4.3022 

       5.4907e-32 7.5252 7.9683e-33 4.6729 

       2.8014e-32 7.7938 8.4165e-32 5.0796 

        7.1715e-32 5.7299 1.9921e-31 4.8566 
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Table 2.       Model for MLE and MAR with        . 

n    MLE MAR 

MSE MPE MSE MPE 

30 

       1.9921e-33 249.0715 6.3367e-28 156.3922 

       2.5817e-30 240.5369 1.3884e-28 142.6665 

       3.3487e-30 249.4303 5.0201e-28   159.3458 

        

 

 

8.6808e-31 

 

189.4300 

 

1.9144e-30 

 

154.6298 

 

50 

       7.1715e-32 105.8937 2.9528e-28 62.9162 

       8.4165e-30 109.3878 6.6348e-29 62.0760 

       1.1506e-29 104.1844 6.2410e-29 64.2770 

        2.9407e-29 79.9037 5.6593e-28 59.7555 

100 

       2.4359e-30 

 

 

mse_mar = 

 

   2.6394e-28 

 

 

mpe_mle = 

 

   39.9870 

 

39.9870 2.6394e-28 21.2546 

       1.9328e-29 38.2339 2.4543e-28 21.6598 

       1.9574e-29 34.3012 4.8790e-29 22.1899 

        6.7627e-29 28.4785 1.0327e-29 20.5642 

 

The plot of the results in Table 2, as show in Figure 2. 

   

           ,r =500            ,r =500            ,r =500 

   

            ,r =500            ,r =500            ,r =500 

   

           ,r =500             ,r =500             ,r =500 

   
            ,r =500             ,r =500              ,r =500 
Figure 2.       Model for MLE and MAR with         

 

For the number of replication,          see the following Table 3 and Figure 3:  
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Table 3.       Model for MLE and MAR with r =1000. 

n    
MLE MAR 

MSE MPE MSE MPE 

30 

       2.8766e-30 478.8193 2.3028e-28 290.8784 

       3.1873e-30 494.8485 2.9650e-29 291.8135 

       3.3537e-29 457.6450 2.3573e-28 290.2070 

        

 

7.6527e-29 386.0229 2.2490e-28 317.8166 

50 

       8.9955e-31 233.6525 5.7334e-27 124.4451 

       7.5749e-31 226.1102 1.3022e-27 124.1611 

       2.2024e-30 210.4893 2.6904e-28 139.5043 

        

 

8.5978e-29 171.0632 5.4177e-28 127.1026 

100 

       1.3466e-30 79.4712 1.3466e-30 42.9843 

       1.5779e-29 76.0834 9.3883e-28 42.8568 

       1.9623e-29 69.6642 2.3150e-27 43.1488 

        1.1461e-27 59.9664 3.1794e-28 43.9696 

 

Draw the results in Table 3, as shown in Figure 3. 

   
           ,r =1000            ,r =1000            ,r =1000 

   

            ,r =1000            ,r =1000            ,r =1000 

   

           ,r =1000             ,r =1000             ,r =1000 

   

            ,r =1000             ,r =1000              ,r =1000 

Figure 3.       Model for MLE and MAR with        . 

 

The second experiment was designed to calculate MLE and MAR for time series values for 

      with (                  and    ), and (                  and    ), sample 

size (          and    ), and number of replicate (             and     ). The results 

of this experiment are given  by Tables 4, 5, and 6. Regarding the MSE and MPE criteria, we 

can see from the given tables that the values of MSE and MPE decrease with increasing 
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sample size n for each value of    for MLE and MAR. The values of  MPE of both methods 

become closer as the sample size increases for different values of   . The MSE and MPE 

values decrease with decreasing replication for each value of   . The values of  MPE 

indicate  MAR is  better than  MLE where most of the different model parameters and sample 

size  .  Moreover, Figures 4, 5, and 6 represent the estimated model for the time series 

      when                     , respectively, the red graph refers to the generated 

simulated        model, the blue graph refers to the model estimated via exact likelihood, 

and the green graph refers to the estimated model by using the likelihood function via the 

marginal distribution of the time series. In Figures 4, 5, and 6, we notice that all-time series 

are stable at different values of the sample size   and each number of replication  . 

The following table, as well as the figure that is related to it, represents the information for 

the second experiment in this paper. 

For the number of replication       , the results are given in Table 4 and Figure 4.  

Table 4.       Model for MLE and MAR with       . 

n    
MLE MAR 

MSE MPE MSE MPE 

30 

       

       

7.4211e-40 

6.6789e-41 

0.0030 

0.0016 

1.2450e-34 

1.9921e-33 

1.4253 

4.8494 

        

       

4.2745e-39 

4.7495e-40 

0.0111 

0.0096 

0 

0 

1.4116 

27.5439 

       

        

0 

2.9684e-41 

0.0024 

0.0017 

0 

4.9802e-34 

1.4233 

6.4939 

       

       

 

1.8553e-42 

2.8988e-42 

4.4416e-04 

1.9749e-04 

3.1126e-35 

3.1126e-35 

1.4428 

1.3447 

50 

       

       

2.6716e-40 

7.4211e-42 

0.0023 

0.0013 

1.2450e-34 

1.2450e-34 

0.8658 

1.4350 

        

       

1.8998e-37 

1.2159e-37 

0.0250 

0.0228 

7.0034e-35 

2.0399e-30 

0.8381 

107.9930 

       

        

1.1874e-40 

4.7495e-40 

0.0017 

0.0015 

7.0034e-35 

3.1126e-35 

0.8637 

0.4945 

       

       

2.9684e-41 

1.8553e-42 

6.1100e-04 

2.4482e-04 

7.0034e-35 

3.1126e-33 

0.8769 

3.6684 

100 

       

       

1.8998e-39 

2.9684e-41 

 

0.0015 

8.5164e-04 

7.0034e-35 

7.9683e-3 

0.4533 

7.7977 

        

       

3.0397e-38 

7.5992e-39 

0.0115 

0.0103 

3.1126e-35 

7.9683e-31 

0.4305 

30.1493 

       

        

4.7495e-40 

7.4211e-42 

8.6626e-04 

6.1362e-04 

0 

1.7929e-32 

0.4541 

7.8653 

       

       

0 

2.6090e-43 

3.2966e-04 

2.3317e-05 

3.1126e-35 

3.1873e-32 

 

0.4669 

7.6017 

  

The plot of the results in Table 4, as shown in Figure 4. 
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Figure 4.       for MLE and MAR Model with       . 

 

For the number of replication       ; the results are given in Table 5 and Figure 5. 

 

Table 5.     ) Model for MLE and MAR with         

n    
MLE MAR 

MSE MPE MSE MPE 

30 

       

       

9.6177e-39 

8.5787e-39 

0.0042 

0.0034 

4.9802e-34 

4.9802e-34 

1.4365 

5.1715 

        

       

1.5388e-37 

4.7495e-38 

 

 

mse_ml = 

 

4.7495e-38 

0.0254 

0.0221 

4.4822e-33 

1.4056e-29 

1.4125 

99.4448 

        

        

7.5992e-39 

5.8181e-39 

0.0038 

0.0032 

1.3151e-33 

4.0339e-32 

1.4287 

14.2587 

       

       

 

2.4536e-40 

4.1743e-42 

5.1827e-04 

1.2615e-04 

1.5252e-33 

1.7508e-33 

1.4517 

0.9196 

50 

       

       

2.6716e-40 

2.4536e-40 

8.8243e-04 

3.2758e-04 

3.7663e-33 

6.1007e-33 

0.8814 

3.4285 

        

       

4.8635e-37 

2.0945e-37 

0.0083 

0.0072 

2.8091e-33 

5.0997e-31 

0.8582 

14.0768 

       

        

1.0716e-38 

2.4044e-39 

0.0020 

0.0014 

1.1205e-33 

6.1007e-33 

0.8675 

1.3755 

       

       

7.4211e-42 

4.8991e-42 

8.6381e-04 

4.9186e-05 

1.7508e-33 

1.2450e-32 

 

0.8805 

3.3063 

 

100 

       

       

2.6716e-38 

5.0166e-39 

0.0014 

7.5191e-04 

1.9454e-34 

1.4522e-30 

0.4573 

7.8931 

        

       

7.5992e-39 

0 

0.0099 

0.0085 

7.7815e-36 

1.5618e-30 

 

0.4349 

24.5102 

       

        

2.9684e-41 

1.0686e-39 

9.4607e-04 

4.3304e-04 

0 

5.7571e-31 

0.4552 

7.6444 

       

       

1.8553e-40 

1.0436e-42 

1.8933e-04 

4.1176e-05 

7.7815e-34 

2.8686e-31 

0.4687 

7.7983 
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The plot of the results in Table 5, as shown in Figure 5. 

 

   
                                                                             

                                                

     

                          

                                                                                

  
 

                                                                                

Figure 5.       Model with       . 

 

For the number of replication          the results are given in Table 6 and Figure 6. 

  

Table 6.       Model for MLE and MAR with          

n    
MLE MAR 

MSE MPE MSE MPE 

30 

       

       

7.4211e-38 

1.0686e-39 

0.0046 

0.0025 

4.4822e-33 

7.0034e-31 

1.4337 

9.1800 

        

       

4.0200e-36 

8.3781e-37 

0.0275 

0.0250 

7.0034e-33 

2.4989e-29 

1.4137 

102.4699 

       

        

7.5992e-39 

9.0908e-39 

0.0028 

0.0013 

4.4822e-33 

2.6345e-31 

 

1.4317 

11.8544 

       

       

 

3.7569e-41 

1.2627e-40 

4.9649e-04 

2.3499e-04 

9.5324e-33 

1.0653e-32 

1.4550 

1.2305 

50 

       

       

8.6559e-38 

6.8392e-38 

0.0040 

0.0029 

4.4822e-33 

5.2323e-32 

0.8680 

1.6382 

         

       

8.3781e-37 

2.7357e-37 

0.0196 

0.0176 

1.9921e-33 

6.1706e-29 

0.8484 

72.0161 

       

        

2.1640e-38 

2.0846e-38 

0.0021 

0.0013 

1.7508e-33 

8.9955e-33 

0.8681 

1.5923 

       

       

1.6697e-39 

8.9795e-40 

7.1442e-04 

3.6851e-04 

2.8091e-33 

1.2749e-31 

0.8864 

3.8168 

100 

       

       

1.8998e-37 

2.0067e-38 

0.0015 

0.0011 

1.1237e-32 

1.4522e-30 

0.4588 

7.9779 

        

       

2.7357e-37 

1.0050e-36 

0.0110 

0.0098 

7.9683e-33 

3.2638e-29 

0.4351 

25.8946 

       

        

2.6716e-40 

1.0716e-38 

8.8139e-04 

6.4366e-04 

3.4317e-33 

3.5140e-30 

0.4591 

7.9920 

       

       

8.1817e-40 

2.4536e-40 

2.1775e-04 

6.3309e-05 

3.8130e-34 

0 

0.4734 

7.5106 
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The following Figure helps us show the results in Table 6. 

 

   

                    

      

                     

      

                           

   
                    

      

                    

      

                          

   
                     

      

                    

      

                           

   

                 

         

      

                    

         

      

                    

Figure 6.       Model for MLE and MAR with        . 

 

The third experiment is designed to calculate MLE and MAR for time series values for 

      , with (                 and    ), (                 and    ), and (       

          and     ), sample size (          and    ), and the number replicate (   

          and     ). The results of this experiment are given  by Tables 7, 8, and 9. 

Regarding the MSE and MPE criteria, we can see from the given tables, the values of MSE 

and MPE decrease with increasing sample size n for each value of    for MLE and MAR. 

The values of MPE of both methods become closer as the sample size increases for different 

values of   . The MSE and MPE values decrease with decreasing replication for each value 

of   . The values of  MPE indicate  MAR is  better than  MLE where most of the different 

model parameters and sample size     Moreover, Figures 7, 8, and 9 represent the estimated 

model for the time series       when                     , respectively, the red graph 

refers to the generated simulated        model,  the blue graph refers to the model estimated 

via exact likelihood, and the green graph refers to the estimated model by using the likelihood 

function via the marginal distribution of the time series. In Figures 7, 8, and 9, we notice that 

all-time series are stable at different values of the sample size   and each number of 

replication  . 
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Table 7.       Model for MLE and MAR with       . 

n    
MLE MAR 

MSE MPE MSE MPE 

30 

       

       

       

 

1.7508e-35 

3.1873e-32 

4.9802e-34 

 

0.6308 

56.2287 

6.0444 

 

1.7929e-32 

0 

2.0399e-30 

 

17.1093 

6.3666 

575.9633 

       

        

       

 

0 

3.1873e-32 

4.9802e-34 

 

0.0214 

38.5691 

3.0948 

 

4.9802e-34 

1.2450e-34 

4.5897e-30 

16.2997 

5.1487 

440.9363 

        

       

       

 

4.8635e-37 

2.8686e-31 

1.9921e-33 

 

0.2512 

103.1897 

9.6427 

 

7.9683e-33 

0 

0 

 

16.6317 

5.6625 

496.3091 

       

       

        

 

 

7.7815e-36 

3.1873e-32 

4.9802e-34 

 

0.3762 

35.2640 

3.2239 

4.9802e-34 

1.9921e-33 

4.5897e-30 

 

16.6013 

5.6163 

491.2326 

50 

       

       

       

 

3.1126e-35 

0 

1.9921e-33 

 

0.5560 

26.8586 

3.5300 

 

1.9921e-33 

4.4822e-33 

1.8359e-29 

10.6481 

4.5445 

256.8860 

       

        

       

 

0 

5.0997e-31 

1.2450e-34 

 

0.0089 

61.2589 

4.8212 

7.9683e-33 

4.9802e-34 

5.0997e-31 

 

9.6300 

3.0853 

154.9406 

        

       

       

 

1.9454e-36 

1.1474e-30 

4.4822e-33 

0.1122 

70.7262 

6.7510 

 

4.4822e-33 

1.2450e-34 

4.5897e-30 

 

9.8909 

3.4879 

181.0627 

       

       

        

 

4.3771e-36 

3.1873e-32 

3.1126e-35 

 

0.2402 

20.5466 

2.0373 

1.2450e-32 

4.9802e-34 

5.0997e-31 

9.9961 

3.6442 

191.5910 

100 

 

       

       

       

 

3.1126e-35 

3.1873e-32 

1.9921e-33 

 

0.3113 

12.1245 

1.8428 

 

1.9921e-33 

4.9802e-34 

2.0399e-30 

 

5.5194 

2.6377 

76.1240 

       

        

       

 

3.0397e-38 

3.1873e-32 

0 

 

0.0094 

19.0202 

1.9054 

 

4.4822e-33 

4.4822e-33 

0 

5.0358 

2.0113 

51.8760 

        

       

       

 

1.2159e-37 

5.0997e-31 

4.4822e-33 

 

0.0500 

35.1164 

3.5198 

 

0 

1.2450e-34 

1.2749e-31 

 

4.9543 

1.8936 

47.7893 

       

       

        

 

1.2159e-35 

1.2749e-31 

4.9802e-34 

 

0.1258 

13.6534 

1.5854 

 

4.4822e-33 

4.9802e-34 

1.1474e-30 

 

5.1427 

2.1598 

57.2322 

 

The following Figure shows the information in the table above.  

   
             ,       

 

              ,       

 

              ,       

                ,        

 

             ,       

 

              ,       
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              ,                    ,        

 

             ,       

 

   
              ,                     ,       

 

             ,        

Figure 7.       Model for MLE and MAR with       . 

For the number of replication       , the results are given in Table 8 and Figure 8.  

 

Table 8.       Model for MLE and MAR with       . 

n    
MLE MAR 

MSE MPE MSE MPE 

30 

       

       

       

 

7.7815e-36 

1.1474e-30 

5.4907e-32 

 

1.1129 

41.6021 

6.2432 

2.4104e-31 

4.4946e-32 

2.4683e-28 

 

18.8798 

8.5553 

852.8920 

       

        

       

 

1.1874e-38 

5.0997e-31 

1.2450e-34 

 

0.0151 

71.6615 

5.4075 

 

1.6136e-31 

4.9802e-34 

9.9954e-29 

 

16.2684 

4.9303 

417.3141 

        

       

       

 

7.7815e-36 

3.1873e-30 

1.1205e-31 

0.1940 

115.0466 

10.0319 

 

1.9921e-31 

1.0085e-32 

1.3055e-28 

16.5396 

5.3600 

462.5379 

       

       

        

 

7.0034e-35 

1.2749e-31 

7.0034e-33 

 

0.3779 

35.6797 

3.0645 

0 

6.1007e-33 

9.9954e-29 

 

16.5729 

5.4118 

468.0983 

50 

       

       

       

 

2.8014e-34 

1.5618e-30 

1.7929e-32 

 

0.3748 

33.2431 

3.5554 

3.1873e-32 

2.8014e-32 

9.9954e-29 

10.1978 

3.8494 

205.2482 

       

        

       

 

0 

8.1595e-30 

4.0339e-32 

 

0.0131 

78.4409 

6.7044 

 

2.1963e-31 

2.4403e-32 

1.2749e-29 

 

9.8868 

3.3887 

174.1100 

        

       

       

 

2.8014e-34 

0 

1.2450e-32 

0.2287 

46.7047 

4.6974 

 

4.4822e-31 

3.1873e-32 

5.0997e-29 

 

10.0690 

3.6620 

192.3506 

       

       

        

 

8.2192e-35 

1.2749e-31 

1.1237e-32 

 

0.2531 

19.8713 

1.8715 

 

1.7929e-32 

1.7929e-32 

1.3055e-28 

10.0014 

3.5618 

185.5815 

100 

       

       

       

 

5.6222e-34 

1.3466e-30 

1.0085e-32 

0.2117 

14.8984 

1.7558 

2.4403e-32 

4.9802e-32 

2.4989e-29 

5.1762 

2.1664 

57.2946 

       

        

       

 

1.8998e-39 

1.2749e-31 

4.9802e-34 

 

0.0047 

27.1229 

2.3497 

 

1.9921e-33 

1.2450e-32 

1.0327e-29 

 

4.9021 

1.7712 

43.5548 

        

       

       

 

3.9394e-35 

8.1595e-30 

1.2749e-31 

 

0.0650 

32.7943 

3.2813 

1.4393e-31 

1.2450e-32 

6.2471e-30 

 

4.9854 

1.8957 

47.7256 

       

       

        

 

7.7815e-36 

9.7612e-32 

8.9955e-33 

0.1105 

9.6529 

0.9837 

 

1.7978e-31 

6.1007e-33 

1.8359e-29 

 

5.0245 

1.9529 

49.6866 
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The values in Table 8 via the Figure are shown as follows: 
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 Figure 8.       Model for MLE and MAR with         

 

For the number of replication        , the results are given in Table 9 and Figure 9: 

 

Table 9.     ) Model for MLE and MAR with        . 

n     
MLE MAR 

MSE MPE MSE MPE 

30 

       

       

       

 

7.7815e-34 

8.1595e-30 

6.0260e-32 

0.6687 

55.1572 

5.8641 

 

5.4234e-31 

1.7045e-31 

1.2749e-29 

17.2401 

6.3891 

577.0794 

       

        

       

 

3.0397e-38 

1.4738e-28 

1.6136e-31 

 

0.0045 

240.8549 

21.6782 

1.1957e-30 

6.5863e-32 

7.3436e-29 

16.9682 

5.9919 

 531.7196 

        

       

       

 

2.3831e-35 

6.7444e-29 

6.4543e-31 

 

0.1511 

116.0243 

10.5361 

0 

3.1873e-32 

1.6523e-28 

 

 

mpe_m = 

 

    0.1511 

16.7239 

5.6242 

490.9766 

       

       

        

 

3.5455e-34 

3.8567e-30 

4.9802e-32 

 

0.4434 

30.9070 

3.0517 

 

1.5065e-30 

1.1205e-31 

9.9954e-29 

17.0314 

6.0854 

542.2655 

50 

       

       

       

 

4.8635e-35 

 2.8766e-30 

1.4393e-31 

 

0.5620 

 27.3096 

3.6123 

1.4522e-30 

1.4393e-31 

 7.7567e-28 

 

10.7926 

4.6473 

263.9899 

       

        

       

 

2.0689e-36 

1.2749e-29 

1.1957e-30 

 

0.0092 

 84.1834 

6.7660 

3.1126e-31 

0 

1.7454e-28 

9.7663 

3.1902 

161.2271 

        

       

       

 

4.3771e-36 

1.1474e-28 

7.5749e-31 

0.1259 

64.8504 

6.3882 

8.3717e-31 

4.9802e-32 

1.4738e-28 

 

10.0636 

3.6429 

190.9959 
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n     
MLE MAR 

MSE MPE MSE MPE 

       

       

        

 

2.1448e-34 

2.0399e-30 

3.1126e-35 

 

0.2248 

 21.1864 

2.0627 

 

1.6136e-31 

0 

2.4989e-29 

 

10.0493 

3.6217 

189.5649 

100        

       

       

 

5.4646e-33 

8.1595e-30 

7.7815e-32 

 

0.3224 

12.4381 

1.8716 

7.1914e-31 

9.7612e-32 

1.2252e-28 

 

5.5823 

2.6766 

 77.4493 

       

        

       

 

2.8896e-36 

6.4543e-29 

3.5982e-32 

0.0064 

 30.6033 

2.4344 

 

3.3666e-31 

1.7929e-32 

1.1474e-30 

 

4.8274 

1.6496 

39.6038 

        

       

       

 

9.5324e-35 

5.3579e-29 

1.0471e-31 

0.0737 

 26.3076 

2.4699 

4.9802e-32 

 6.0260e-32 

 5.0997e-29 

 

4.9277 

1.8042 

 44.6310 

       

       

        

 

4.9802e-34 

2.3028e-30 

3.1873e-32 

0.1460 

7.9169 

0.9263 

3.6306e-31 

5.4907e-32 

2.4683e-28 

5.2147 

2.2136 

 59.0183 

 

The results in the Table above are shown in the figures below.  
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Figure 9.       Model for MLE and MAR with        . 

 

 

5. Conclusion 

Recently, time series analysis is necessary for many fields and applications with huge and 

complex  data. This paper presents the problem of autoregressive model parameter estimation 

with maximum likelihood function and model selection. The model parameter estimators are 

derived theoretically by defining the marginal distribution of the AR time series, where the  

distribution  is got by random shocks representing the AR process with the assumption of a 
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normal distribution of  the white noise errors term. Here, AR model order is adopted for 

       and  . Exact maximum likelihood function and maximum likelihood with time 

series  marginal  distribution are derived. To show the ability of the theoretical computing of 

the AR parameters, some of the experiments are implemented with simulation for the AR 

parameter estimation and model selection.  

The experiments are designed for different values of model order (p) , sample size (n), and 

number of replications. The results show the efficiency of the model parameter estimation by 

computing mean squares errors, and mean percentage errors.  

For different settings of     and sample size  , the results show the stationarity of the 

predicted model with estimated parameters for different values of   , sample size  , and 

replications. The values of MPE and MSE show the ability of MAR for model parameter 

estimation, where at most (MPE and MSE)-based MAR are better than MLE.  
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