Synthesis and antimicrobial evaluation of new 1,3,4 – Thiadiazole Derivatives

Iman F. Mustafa

Eman M. Hussain

Dept. of Chemistry / College of Education for Pure Science (Ibn Al-Haitham) / University of Baghdad

Received in : 20 October 2013, Accepted in : 2 February 2014

Abstract

The amino thiadiazole [I] on treatment with aromatic aldehydes yielded Schiff bases $[II_{a\text{-}c}]$, which cyclized to thiazolidinone $[III_{a\text{-}c}]$ derivatives by reaction with thioglycolic acid .Reaction of carbon disulfide and methyl iodide with [I] gavedithiomethyl[IV] which on treatment with o-phenylenediamine gave the condensed N-Imidazolythiadiazolylamine [V], However, reaction of [I] with phenylisocyanate and phenylisothiocyanate afforded the carbamideand carbothiamide derivatives[VI.VII]_a-c.

The structure of these compounds was characterized from their melting point, FTIR spectroscopy and elementalanalysis.

Kew words : antimicrobial 1,3,4–Thiadiazole, thiazolidinone , imidazoly , thiadiazolylamine .

Introduction

The recent literature is enriched with progressive findings about the synthesis and pharmacological activity of fused heterocycles. Heterocycles bearing atriazole or 1,3,4 – thiadiazole moiety are reported to show biological properties such as antibacterial [1-2] antiaggregatory agent [3], antiviral [4], antiinflammatory activities [5-6], anticonvulsant [7], and antihypertensive [8]. 1,3,4 – thiadiazoles exhibit broad spectrum of biological activities, possibly due to the presence of toxophoric N-C-S moiety [9]. They found applications as antibacterial, antitumor, antiinflammatory agents, pesticides, herbicides, dyes, lubricants and analytical reagents [10].

Experimental

All melting points, were determined by using "Electro thermal melting point apparatus mettle and are uncorrected . FTIR spectrophotometer (8300), by using KBr disc, C.H.N-Elemental Analysis (Elmer 240 B – perken).

• Starting material : 2- amino -5 - mercapto - 1,3,4 - thiadiazole [I] was prepared from thiosemicarbazide and carbondisulfide as previously described by [11].

• Schiff Bases [II_{a-c}] : A mixture of [I] (0.01 mol) and aromatic aldehydes (0.01mol) was dissolved in ethanol containing few drops Et3N, and heated under reflux for 4hr. After cooling the precipitated solid was collected by filtration and crystaillazed [12] from ethanol , see scheme 1

• N – Benzylidene – 5 – mercapto – 1,3,4 – thiadiazole -2- amine [II a] .

• N – (4- chlorobenzylidene) 5 – mercapto -1,3,4 –thiadiazole – 2 – amino [II $_{b}$] .

 \bullet N – (4- methoxybenzylidene) -5- mercapto – 1,3,4 – thiadiazole -2- amine $[II_c]$: see physical properties in table 1.

• 3- [5- mercapto – 1,3,4 – thiadiazole – 2 – yl) – 2- aryl thiazolidin – 4 – one [III_{a-c}] [13]: A mixture of individual derivative [II_a-II_c] (0.01 mol) and thioglycolicacid (0.01mol) was refluxed in absolute ethanol (30 ml) for 4hr .After cooling the reaction mixture , the precipitated solid was filtered off and crystallized from ethanol.

• 3 - [5- mercapto – 1,3,4 – thiadiazole -2- yl] -2- phenyl thiazolidin -4- one [III _a] .

• 3 - [5- mercapto – 1,3,4 – thiadiazole -2- yl] -2- (4-chlorophenyl) thiazolidin -5- one [III b] .

• 3 - [5- mercapto – 1,3,4 – thiadiazole -2- yl] -2- (4- methoxy phenyl) thiazolidin -5- one [III c] . see physical properties in (table 1, 2).

• N – Di (methyl thio) methylene [5- thio methyl -1,3,4 – thiadiazole – 2 – yl] – amino [IV] : To stirred cold solution of [I] (0.05 mol) in DMF (25ml), 20 M- NaOH (5 ml) , carbondisulfide (8 ml) , and methyl iodide (0.1 mol) were added and the stirring was continued for additional 4hr . The mixture was poured into cold water and the formed solid was crystallized from benzene . see physical properties in (table 1,2) .

• N – [5- thio methyl – 1,3,4 – thiadiazole -2- yl] – 1H – benzo [d] imidazole – 2 – yl – amine [V] : A mixture of [IV] (0.04 mol) and o- phenylenediamine(0.04 mol) in DMF (30 ml) was refluxed for 8hr. After cooling the formed solid crystallized from ethanol. see physical properties in (table 1, 2).

• 1 - [5- mercapto – 1,3,4 – thiadiazole – 2 – yl] – 3 – phenyl urea $[VI_a]$: A mixture of [I] (0.01 mol) and phenylisocyanate (0.01mol)) was refluxed in ethanol (30 ml) for 8hr . The separated solid was filtered off and crystallized from benzene , see physical properties in table 1.

• 1- [5- mercapto -1,3,4 – thiadiazole -2- yl] -3- phenyl thio urea [VI_b] [14]: A mixture of [I] (0.01mol) and phenylisothiocyanate (0.01mol) was refluxed in ethanol (30ml) for 8hr.

Vol. 27 (1) 2014

The separated solid was filtered off and crystallized from benzene , see physical properties in (table 1, 2) .

• 1 – [5-mercapto – 1,3,4 – thiadiazole -2- yl] -3- phenyl dihydropyrimidne–2,4,6– trione [$\rm VII_a$] .

A mixture of $[VI_a]$ (0.01mol) and malonic acid (0.01mol) was refluxed in acetyl chloride (30 ml) for 3hr . After cooling the obtained solid was filtered off and crystallized from benzene. see physical properties in (table 1, 2).

\bullet 3- [5- mercapto – 1,3,4 – thiadiazole – 2-yl] -1- phenyl -2- thioxodihydropyrimidine -4 , 6 – dione [VII_b] .

A mixture of $[VI_b]$ (0.01mol) and malonic acide (0.01mol) was refluxed in acetyl chloride ($30\ ml$) for 3hr . After cooling the obtained solid was filtered off and crystallized from benzene.

Discussion

The reaction of 2- Amino -5- mercapto -1,3,4 – thiadiazole [I] with aromatic aldehydes in refluxing ethanol afforded schiffbases [II_{a-c}], the IR spectra of Schiff bases showed the stretching bands at (1670 – 1675) cm⁻¹ for (C = N) groups and disappeared at ($3450 - 3300 \text{ cm}^{-1}$), ($3290 - 3250 \text{ cm}^{-1}$) due to (NH₂). Schiff bases which on condensation with thioglycolic acid yielded 3- [5- mercapto – 1,3,4 – thiadiazole -2- yl] -2- aryl thiazolidin – 4- ones [III _{a-c}] (scheme 1) in the first route the thiadiazole [I] reacted with disulfide and methyliodide in the presence of concentrated aqueous sodium hydroxide leading to the formation of N- di (methyl thio) methylene [5- thiomethyl – 1,3,4 – thiadiazole -2- yl] – amine [IV],the IR spectra showed the stretching bands at (1620) cm⁻¹ for (C = N) group and (1415cm⁻¹) due to (CH₃- S) then the compound [IV] on treatment with nucleophilic reagent such as o-phenylenediamine afforded N- [5- thio methyl – 1,3,4 – thiadiazole -2- yl] -1 H- benzo [d] imidazole -2- yl –amine [V] the IR spectrum showed the following characteristic absorption bands (3340 - 3350 cm⁻¹) (NH), (1615 – cm⁻¹) (C = N).

Finally in the second one $[VI_a] [VI_b]$ was obtained by direct refluxing of [I] with phenyl isocyanate in ethanolic solution . Similarly [I] was converted to 1- [5- mercapto -1,3,4 – thiadiazole -2-yl] -3- phenyl thiourea $[VI_b]$ by the reaction with phenylisothiocyanate . The IR spectra of these compounds revealed the absence of the stretching bands of (NH₂) groups and appearance of stretching of (N –H amide) at $(3200 - 3300 \text{ cm}^{-1})$ for compound $[VI_a]$ and at $(3247-3217 \text{ cm}^{-1})$ for compound $[VI_b]$, and also showed the appearance of two stretching bands at (1670 cm⁻¹) due to (C = O) amide and (1625 cm⁻¹) due to (C = N) group for compound [VI_a] and at (1240 cm^{-1}) due to (C = S) and (1658 cm⁻¹) due to (C = N) group for compound [VI_b].

The urea derivatives [VI $_a$] and thio urea derivatives [VI $_b$] on reaction malonic acid in the presence of acetyl chloride under went intermolecular cyclization and yielded 1- [5-mercapto -1,3,4 – thiadiazole -2-yl] -3- phenyl dihydro pyrimidine -2,4,6 – trione [VII $_a$] and 3- [5-mercapto -1,3,4 – thiadiazole -2- yl] 1- phenyl – 2- thioxodihydropyrimidine – 4,6- dione [VII $_b$].

The IR spectra which showed stretching bands at $(1670 - 1680 \text{ cm}^{-1})$ of (C = O amide) ($1610 - 1620 \text{ cm}^{-1}$) of (C = N) and $(3116, 3031 \text{ cm}^{-1})$ of (C - H aromatic) of the benzene ring for compound [VII_a], compound [VII_b] gave diagnostic IR stretching bands at (1255 cm⁻¹) of (C = S), (1600 -1610) of (C=N) and (3110,3025 cm⁻¹) of (C-H) aromatic of the benzene ring.

Antimicrobial Activites

The antimicrobial activites of the synthesized compounds were determined in vitro using hole plate and filter paper disc method [15].

Different species of gram-positive and gram-negative bacteria in addition to some fungal plant pathogens were used (see table 3).

The considered compounds were dissolved in 10% acetone , different concentrations have been chosen (125 , 250 , 500 Mg cm⁻³).

Agar plates were surface inoculated uniformly from fresh broth culture of microorganisms . The discs were incubated at $28 C^\circ$ to 24 hr, the formed inhibition Zones were measured in mm.

References

- 1. ElSayed,R.A.; Shamroukh, A.H.;Hegab,M.I.and Awad, H .M.(2005) Synthesis of some Biologically Active pyrazoles and C-Nucleosides , Acta Chim.Slov. 52: 429-434
- **2.** Vanadma, S. and Sharma , K.V.(2006) " Synthesis and Biological some 3,5 Diaryl -1benzothiazolopyrazoline Derivatives : Reaction of chalcones with 2-Hyrazinobenzothiazoles ", E- Journal of chemistry , 6 (2) , 356 – 384 .
- **3.** Czarnocka , J. A. ; Foks , H.; Nasal , A. ; Petrusewi, CZ , J. ; Damasicwicz , B. ; Radwanska , A. and Kaliszan , R. (1991) Pharmazie 46: 109 .
- 4. Srivastava , J. ; Swarup , S. ; Saxena , V. K. and Chowdhury , B. L. (1991) Indian chem. , Soc . 68: 103 .
- 5. Unangst, P. C.; Shrum, G. P.; Connor, D. T. and Dyer, R. D. (1992) Novel 1,2,4 oxiadiazoles and 1,2,4- thiadiazoles as dual 5- lipoxygenaseinhibtars ", J. Med. Chem. 35: 3691.
- 6. Alagrsmay ,V ; Vmuthukumar , N. Paralarani and Revathi, R. (2003) Synthesis , Analagesic and anti – inflammatory Activities of some Novel 2,3 – DisubstitutedQuinazolin -4 (3H) – ones "Biol . Pharma . Bull , 26 (4): 557 – 559 .
- 7. Akbar Zadeh , T.; Tabatabai , S. A.; Khoshnoud , M.J. ; shafaghi , D. and Shafiee , A. (2003) Bioorg Med . Chem . 11: 769 .
- 8. Tyagi, M.and Kumar, A. Orient(2002) J. Chem. 18: 125.
- 9. Heng- Sham, D. and Bin, W. (2005) "Synthesis of some novel 3,6-bis, 1,2,3- triazolyl triazolo [3,4-b] 1,3,4- thiadiazole derivatives ", Journal of the Chinese chemical society, 52: 103-108.
- 10. Kurtzer, F.; Katritzky, A. R. and Boulton, A. J. (1965) "Advances in Heterocyclic chemistry", Academic press; New York, 165.
- **11.** Petrow, V. ; Stephenson, O. and Thomas , A. J. (1958) "preparation and hydrolysis of some derivatives of 1,3,4 thiadiazole ", J. Chem .Soc . 1508-1513 .
- **12.** I kabl , S. ; Al-shibani , N. K.E. and Al-Dujaili, A. H. (2006) "Synthesis and characterization of some new 1,3,4-thiadiazole Derivatives " National journal of chemistry , 21 : 94-101 .
- **13.** Pratibha , S . and Vikas , K. (2010) "Synthesized some thiadiazole derivatives by in coporating azetidinyl and thiazolidinyl moieties " Asian journal of chemistry , 22(9) : 6829-6839.
- 14. Desai , N.C. ; Bhavsar, A.M.; Shah, M.D. and Saxena, A.K . (2008) " Synthesis and QsAR studies of thioemicarbazides , 1,2,4 – triazole , 1,3,4,- thiadiazoles and 1,3,4oxadiazoles derivatives as potential antibacterial a gents ", Indian journal of chemistry , 47b : 579 – 589.
- **15.** Leifert , C. ; Chidbouree , S. ; Hampson , S. ; Workman , S. ; Sigee , D. ; Epton , H. A. and Harbour , A. (1995) J. Appl . Bacteriol . 78: 97.

Com			Elemental Analysis %						
Com. No .	Formula	M.W.		Calc. %	, 0		found%		
			С	Н	N	С	Н	N	
IIa	$C_9H_7N_3S_2$	221	48.88	3.16	19.00	48.75	3.10	18.85	
II _b	$C_9H_6CLN_3S_2$	255.5	42.27	2.34	16.43	42.15	2.31	16.33	
IIc	$C_{10}H_9N_3OS_2$	251	47.80	3.58	16.73	47.61	3.45	16.66	
III _a	$C_{11}H_{10}N_3OS_3$	296	44.59	3.37	14.18	44.50	3.30	14.11	
III _b	C ₁₁ H ₉ CLN ₃ O ₃ S	330.5	39.93	2.72	12.70	39.85	2.60	12.55	
III _c	$C_{12}H_{12}N_3O_2S_3$	326	36.80	3.68	12.88	36.68	3.61	12.71	
IV	$C_6H_9N_3S_4$	251	28.68	3.58	16.73	28.52	3.41	16.66	
V	$C_{10}H_9N_5S_2$	263	45.62	3.42	26.61	45.53	3.40	26.55	
VIa	$C_9H_8N_4S_2O$	252	42.85	3.17	22.22	42.77	3.11	22.15	
VI _b	$C_9H_8N_4S_3$	268	40.29	2.98	20.89	40.12	2.82	20.81	
VIIa	$C_{12}H_8N_4O_3S_2$	320	45.10	2.50	17.50	45.02	2.44	17.47	
VII _b	$C_{12}H_8N_4O_2S_3$	336	42.85	2.38	16.66	42.79	2.29	16.58	

Table ((1):	Physical	propert	ies of	prepared	compounds
I GOIC		1 II y SICUI	propert	105 01	propurou	compounds

303 | Chemistry

Vol. 27 (1) 2014

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Table (2). I hysical properties of prepared compounds							
Com. No .	Colour	m.p. c°	Yield %	Infrared data(V max Cm ⁻¹)			
IIa	Pale yellow	170-172	65	(C=N)1670;(C=S)1310;(C-H arom)3000–3100			
IIb	Yellow	185-187	62	(C=N)1670;(C=S)1325;(C-H arom)3020-3100			
IIc	Yellow	157-159	66	(C=N)1645;(C=S)1290;(C-H arom)3000–3080			
III _a	Brown	130-132	63	(C=N)1650;(C=S)1315;(C = O) 1680			
III _b	Reddish-yellow	144-146	50	(C = N) 1665; (C = S) 1315; (C = O) 1675			
III _c	Reddish-yellow	151-153	56	(C = N) 1645; (C = S) 1305; (C = O) 1670			
IV	Pale-yellow	177-179	62	(C=N)1620;(CH ₃ -S)1415;(C-H alph)2920–2980			
V	Brown	230-232	55	$(C = N) 1615; (CH_3-S)1415; (N-H)3340-3350$			
VIa	Brown	191-193	45	(C = N) 1625;(C=O) 1670 ; (N–H) 3200 – 3300			
VI _b	Reddish yellow	188-190	59	(C = N) 1658;(C=S) 1240 ; (N–H) 3247 – 3217			
VIIa	Brown	210-212	71	(C = N) 1620;(C=O) 1680 ; (C=S) 1265			
VII _b	Brown	220-222	63	(C = N)1610 ; (C=S) 1255			

Table (2): Physical properties of prepared compounds

Table(3): Response of various microorganisms to synthesized Denivatives in vitro

Compo	Bacillus cereus		Escherichacoli		Aspergillusniger		Peniciliumnotatum	
und	Α	(MIC)	Α	(MIC)	Α	(MIC)	Α	(MIC)
IIa	++	125	+	250	++	125	+	250
II _b	++	250	++	250	++	250	++	125
IIc	++	125	+	250	+	250	+	250
IVa	++	250	++	250	+	250	++	250
IV _b	+	250	+	250	+	250	+	125
IV _c	+	250	+	250	+	250	+	250
VI	++	125	++	250	+++	125	++	125
VII	+	250	+	250	+	250	+	250
VIII _a	++	125	+	250	++	125	+	250
VIII _b	+	250	++	250	+	125	+	125
IV	+++	125	++	250	++	125	+++	250
V	++	125	++	250	+++	125	++	125

A : antimicrobial activity of tested compounds ; the width of the zone of inhibition indicates the potency of antimicrobial activity , no

antimicrobial activity, + weak activity width diameter equal to 0.5-0.7cm, ++ moderate activity with the diameter zone equal to 1.0-1.2cm.

+++ marked activity with the diameter zone equal to 1.6-1.8cm.

MIC : minimum inhibition concentration / ($Mg \text{ cm}^3$).

Vol. 27 (1) 2014

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

تحضير وتقييم الفعالية البايلوجية لمشتقات جديدة من مركبات 1,3,4 ثايادايازول

ايمان فيصل مصطفى

ايمان محمد حسين قسم الكيمياء / كلية التربية للعلوم الصرفة (ابن الهيثم) / جامعة بغداد

استلم البحث في : 20 تشرين ألاول 2013 ، قبل البحث : 2 شباط 2014

الخلاصة

تم في هذا البحث معاملة المركب امينوثايادايازول[I] مع الالديهايدات الاروماتية للحصول على قواعد شف ، بعدها غلقت للحصول على مشتقات تحوي على حلقات الثايازوليدايون من خلال مفاعلتها مع الحامض ــثايوكلايكولك .

ثم فوعل المركب [I] مع كاربون ثنائي الكبريت ويوديد المثيل للحصول على مركب ثنائي مثيل ثايو الذي تم معاملته مع الاورثوفنيلين ثنائي الامين ،حيث اعطى الناتج N - اميدازو ثايازوليل امين .

فيماً بعد حضرت سلسلةً اخرى من مفاعلة المركب [I] مع فنيل ايزوسيانيت أو مع فنيل ايزو ثايوسيانيت للحصول على المشتقات كاربامايدوكارباثايامايد على التوالي ، شخصت هذه المركبات من خلال درجات الانصهار وتقنية FTIR وتحليل العناصر .

الكلمات المفتاحية : الدراسة البايلوجية لمركبات 1 ، 3 ، 4 – ثايودايازول ، ثايوزوليدون ، اميدوزول ثايوزويل امين .