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Abstract  

The aim of this paper is to design fast neural networks to approximate periodic 
functions, that is, design a fully connected networks contains links between all nodes in 
adjacent layers which can speed up the approximation times, reduce approximation failures, 
and increase possibility of obtaining the globally optimal approximation. We training 
suggested network by Levenberg-Marquardt training algorithm then speeding suggested 
networks by choosing most activation function (transfer function) which having a very fast 
convergence rate for reasonable size networks.  
           In all algorithms, the gradient of the performance function (energy function) is used to 
determine how to adjust the weights such that the performance function is minimized, where 
the back propagation algorithm has been used to increase the speed of training.  
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Introduction 

An Artificial neural network (Ann) is a simplified  mathematical model of the human 
brain, It can be implemented by both electric elements and computer software. It is a parallel 
distributed processor with large numbers of connections, it is an information processing 
system that has certain performance characters in common with biological neural networks. 
[1]  Ann have been developed as generalizations of mathematical models of human cognition 
or neural biology, based on the assumptions that:  
1- Information processing occurs at many simple elements called neurons that is fundamental 
to the operation of Ann's. 
2- Signals are passed between neurons over connection links. 
3- Each connection link has an associated weight which, in a typical neural net, multiplies the 
signal transmitted. 
4- Each neuron applies an action function (usually nonlinear) to its net input (sum of weighted 
input signals) to determine its output sign.  
       The units in a network are organized into a given topology by a set of connections, or 
weights, shown as lines in a diagram . 
      Ann is Characterized by [2] : 
1- Architecture: its pattern of connections between the neurons. 
2- Training Algorithm : its method of determining the weights on the connections.  
3- Activation function.  
           Ann are often classified as single layer or multilayer. In determining the number of 
layers, the input units are not counted as a layer, because they perform no computation. 
Equivalently, the number of layers in the net can be defined to be the number of layers of 
weighted interconnects links between the slabs of neurons. This view is motivated by the fact 
that the weights in a net contain extremely important information [3]. 
           Ann have been exploited to approximate function to overcome the limitations of 
traditional classical methods . A number of researcher used Ann's in approximation problems 
say:[4],[5],[6],[7], [8]. In this paper we try to determine the optimal network architecture for 
approximation periodic functions. 
 
A Framework for Distributed Representation[9] 
         A set of major aspects of a parallel distributed model can be distinguished : 
• A set of processing units ( 'neurons' or 'cells' ) ; 
• A state of activation yk for every unit, which is equivalent to the output of the unit  
• Connections between the units. Generally each connection is defined by a weight wjk 
which determines the effect which the signal of unit j has on unit k ; 
• A propagation rule, which determines the effective input sk of a unit from its external 
inputs ; 
• An activation function Fk, which determines the new level of activation based on the 
effective input sk(x) and the current activation yk(x) (i.e., the update ) ; 
• An external input ( bias ) bi  for each unit ; 
• A method for information gathering ( the training rule ) ; 
• An environment within which the system must operate, providing input signals and if 
necessary error signals. 
 
Activation Function  
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        The activation function (sometimes called a transfer function) can be a linear or 
nonlinear function. There are many different types of activation functions. Selection of one 
type over another depends on the particular problem that the neuron (or Ann) is to solve .  
          The activation function, denoted by φ : R→R defines the output of a neuron, which is 
bounded monotonically increasing, differentiable and satisfies : Limx→+∞ φ(x) = 1 and Limx→ -

∞ φ(x) = 0  . 
          The sigmoid function, is by far the most common form of activation function used in 
construction of Ann's. An example of the sigmoid function is the logistic function defined the 
range from 0 to +1, an important feature of the sigmoid function that it is differentiable [4].  
           It is sometimes desirable to have the activation function range from –1 to +1 allowing 
an activation function of the sigmoid type to assume negative values, in which case the 
activation function assumes an anti-symmetric form with respect to the origin, i.e., one that 
satisfies f(–x) = –f(x),, for example ,the hyperbolic tangent function which has a particularly 
simple derivative: φ(x) = tanh(x)   ,  f′(x) = 1 – f(x)2 . 
          In this paper, we study suitable activation function, depending on the results of training 
many Ann to approximate periodic functions with different activation function .  
 
Training Ann[10] 
           Training is the process of adjusting connection weights w and biases b. In the first step, 
the network outputs and the difference between the actual (obtained) output and the desired 
(target) output (i.e., the error) is calculated for the initialized weights and biases (arbitrary 
values). During the second stage, the initialized weights in all links and biases in all neurons 
are adjusted to minimize the error by propagating the error backwards (the back propagation 
algorithm). The network outputs and the error are calculated again with the adapted weights 
and biases, and the process (the training of the Ann) is repeated at each epoch (The number of 
iterations of training process) until satisfied output y

k 
(corresponding to the values of the input 

variables x) is obtained and the error is acceptably small.  
          There are three types of training in which the weights organize themselves according 
to the task to be learnt, these types are : supervised, semi - supervised (or reinforcement) and 
unsupervised training. 
             In this paper an supervised training algorithm is used.   
 
Supervised Training [10] 
          In which a “teacher” provides output targets for each input pattern, and corrects the 
network’s errors explicitly, that is,  there is a set of training samples and neural network 
adjusts its connection weights according to the difference between the given outputs and the 
actual outputs. 
 
Back Propagation Training Algorithm 
          Back propagation can train Ann with differentiable transfer functions to perform 
function approximation, other types of networks can be trained as well, although the 
multilayer network is most commonly used. The term back propagation refers to the process 
by which derivatives of network error, with respect to network weights and biases, can be 
computed, that is,  during training an error must be propagated from the output layer back to 
the hidden layer in order to perform the training of the input-to-hidden weights. This process 
can be used with a number of different optimization strategies. 
          Standard back propagation is a gradient descent algorithm, as is the 
Widrow - Hoff training rule, in which the network weights are moved along the negative of 
the gradient of the performance function. [11]  
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Back propagation algorithm is summarized as : 
•Select a network architecture. 
•Initialize the weights to small random values. 
•Present the network with training examples from training set in some order. It helps to 
randomize the order of presentation of examples in each pass of the training set, for each 
training example . 
•Forward pass: compute the net activations and outputs of each of the neurons in the network, 
e.g. yj , Fk or φk  
•Backward pass: compute the errors for each of the neurons in the network, e.g., Ek, Ej  
•Update weights 
•If the total error E falls below some threshold, then stop 
 
Levenberg-Marquardt Algorithm (trainlm)  
The Levenberg - Marquardt algorithm was designed to approach second order training speed 
without having to compute the Hessian matrix. When the performance function has the form 
of a sum of squares, then the Hessian matrix can be approximated as H = JTJ and the gradient 
can be computed as g =JTe, where J is the Jacobian matrix, which contains first derivatives of 
the network errors with respect to the weights and biases, and e is a vector of network errors. 
The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the 
following Newton update:     Wk+1 = Wk − [JTJ + µI]−1 JT e  
when the scalar µ = 0, this is just Newton’s method. When µ is large, this becomes gradient 
descent with a small step size. [10] 
 
Approximation by Ann 
          For the general problem of function approximation, the universal approximation 
theorem proved in [5], [6] states that: 
Theorem 1  
          Standard Ann with only one hidden layer can approximate any continuous function 
uniformly on any compact set and any measurable function to any desired degree of accuracy. 
         An immediate implication of the above theorem is that any lack of success in 
applications must arise from inadequate learning, insufficient number of hidden units, or the 
lack of a deterministic relationship between the input and the target. A second theorem proved 
in [12]  provides an upper bound for the architecture of an Ann destined to approximate a 
continuous function defined on the hypercube in Rn . 
Theorem 2  
          On the unit cube in Rn any continuous function can be uniformly approximated, to 
within any error by using a two hidden layer network having 2n+1 units in the first layer and 
4n+3 units in the second layer. 
         Eqhaar [6] provides the architecture of an Ann destined to approximate any continuous 
function in Rn as follows : 
Theorem 3  
          Any bounded continuous function in Rn can be uniformly approximated, to within any 
error by using one hidden layer network having 2n+1 units in the hidden layer and the 
architecture of Ann with multi hidden layer having double units which contained in the 
previous layer plus one . 
 
Applications  
         We applied multilayer Ann with ridge basis function that have linear output unit and a 
single hidden layer with different sigmoid transfer functions. The number of hidden nodes in 
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all problems is 2N+1, where N is the number of the input nodes. The training problems used 
problem domains periodic function approximation and we training each problems 10 different 
times and the weights of the networks are computed by back propagation algorithm with 
Levenberg - Marquardt training algorithm:   trainlm . 
Problem 1 
          Consider a function :  F(x) = 3 Sin(- 2x)    ;        where    0 ≤ x ≤ 2 π  
The numerical results of Ann with network structure 1–5–1,are introduced in table (1), while 
table (2) gives initial weight and bias for the designer network .  
Problem 2 
          Consider a function :  F(x) = Cos(x+5) – 10     ;        where    0 ≤ x ≤ 2 π  
The numerical results of Ann with network structure 1–5–1, are introduced in table 3, and 
table 4 gives initial weight and bias for the designer network .  
 
Conclusions  
It is very difficult to know which activation functions will be the fastest for a given problem. 
It will depend on many factors including the complexity of the problem, the number of data 
points in the training set, the number of weights and biases in the Ann, and the error goal, 
whether the Ann . 
In general, the practical results on Ann showed the tansig activation function will have the 
fastest convergence, Then the logsig . 
           The performance of the various algorithms can be affected by the accuracy required of 
the approximation.             
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Table 1: Training results after several independent trials for problem 1 algorithms 
The training Epochs and Performance   

NO. ActivationFunction Perf. Test Time/S Epochs  
1 tansig. 0.00033561 0.032 9  
2 logsig. 0.00047319 0.172 69  The parameters 
3 satlins 0.0082778 0.047 7  Time Time 
4 radbas 0.19392 0.562 245  Show Show 
5 hardlim 0.85046 0.032 3  Epochs Epochs 
6 satlin 2.3777 0.047 9  Goal Goal 
7 tribas 2.9771 0.047 10   
8 purelin 3.8175 0.031 3  
9 softmax 4.2142 0.094 4  

10 traincgr     
 

Table 2 : The initial Weight and Bias value for problem 1 

net.IW{1,1} net.LW{2,1
} 

net.B{1,1
} net.B{2,1} 

2.228169203 -0.86937099 -14 0.99906335 
2.228169203 -0.53140053 -10.5   
-2.228169203 0.86619684 7  
2.228169203 -0.87374421 - 3.5  

- 2.228169203 - 
0.47156467 0  

 
Table 3: Training results after several independent trials for problem 2 
The training Epochs and Performance    

NO
. 

Activation
Function Perf. Test Time/S Epochs    

1 tansig. 0.00015586 0.046 10    
2 logsig. 0.00045284 0.047 8  The parameters 
3 satlins 0.011864 0.047 13  Time Time 
4 radbas 0.00027366 0.046 10  Show Show 
5 hardlim 0.094551 0.015 3  Epochs Epochs 
6 satlin 0.011963 0.047 17  Goal Goal 
7 tribas 0.00040426 0.032 7    
8 purelin 0.22308 0.046 4    
9 softmax 0.24979 0.031 3    
10 traincgr       
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Table 4 : The initial Weight and Bias value for problem 2 
net.IW{1,1} net.LW{2,1} net.B{1,1} net.B{2,1} 

2.228169203 -0. 65523339 -14 0.1748828 
2.228169203 -0.92603403 -10.5   
-2.228169203 -0.374891 7  
-2.228169203 0.63456135 3.5  
2.228169203 - 0.5307266 0  
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  باستخدام الشبكات العصبیةتأثیر دالة الاستثارة في تقریب الدوال الدوریة 
 

 لمى ناجي محمد توفیق 
 علاء كامل جابر

 ) / جامعة بغدادابن الھیثمللعلوم الصرفة ( كلیة التربیة/  قسم الریاضیات
 

 2012كانون الأول  9، قبل البحث  2012أیلول  30أستلم البحث في 
 

 المستخلص 
الھدف من ھذا البحث ھو تصمیم شبكات عصبیة مسرعة كطریقة لتقریب الدوال الدوریة  وھذا یعني تصمیم  

تقلیل  ،شبكات مرتبطة بالكامل تتضمن روابط بین كل العقد في الطبقات المتجاورة و التي تستطیع تعجیل زمن التقریب 
زیادة احتمالیة الحصول على التقریب المثالي الرئیسي ، دربنا الشبكات المقترحة بطریقة  والفشل  ،حالات الإخفاق 

أن بعضھا  إذ ماركواردت و من ثم تسریع الشبكات المقترحة من خلال اختیار أفضل دالة استثارة ( دالة انتقال ) -كنبرلیڤ
لخوارزمیات استخدمنا میلَ دالةِ الأداءَ (دالة الطاقةِ) إحجام معقولة، في كل تلك ا يیمتلك نسبة تقارب سریعة جدا لشبكات ذ

 استخدمت خوارزمیةِ الانتشار المرتد لزیَادَْة سرعةِ التدریب. إذلتحَدید كیفیة تَعدیل الأوزانِ من خلال تصغیر دالةِ الأداءَ ، 
 

 : الشبكات العصبیة الصناعیة ، تدریب الشبكات ، دوال الاستثارة . الكلمات المفتاحیة
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