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Abstract   

     The current study investigated ways temperature affects the structural and Material features of 

ZnO. The temperature varied between 300,500 and 700°C. Zinc oxide's physical characteristics 

were determined using diffraction of x-rays. The patterns of x-ray diffraction revealed the excellent 

purity, crystalline, and nanoscale nature of the ZnO nanoparticles. size was found and computed 

using the Halder-Wagner method, in that order. As the temperature of annealing rises, the size of 

the crystallite grew. Therefore, it was found that the annealing temperature greatly affects 

structural and morphological characteristics. The specimen was examined to compute physical and 

microstructural characteristics like lattice strain, dislocation density, additionally burger vector, 

Results for the dislocation density and Burger vector obtained for 300 °C are (43.7832 * 10-5 

(1/nm)², 3.576 * 10-1), for 500°C are (30.6388 * 10-5 (1/nm²),5.3688* 10-1) and for 700°C are. 

(18.2516* 10-5 (1/nm²),6.263*10-1). 
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1. Introduction 

     An increasingly popular method for testing materials is X-ray diffraction (XRD). To determine 

the material's composition, including crystalline size, strain, stress, density, and energy, diffraction 

data was used. The size of the crystallite is used to measure coherent diffracting patterns. The size 

of a particle's crystallite does not always match its size because of polycrystalline. Separating and 

differentiating broadening caused by measurements and causes from broadening caused by 

crystallite size can be quite difficult. There will always be errors,  can produce more accurate data 

by reducing the errors in the greatest method feasible. A particle contains several nanoscale or 

microscale crystals, making it impossible to calculate the size of the nanoparticles collected from 

XRD patterns. Since information can be obtained by an X-ray passing through the crystal, the size 

computation is related to the crystals rather than the particles (1-3). The atoms' orderly arrangement 
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inside the crystal lattice causes both beneficial and harmful interference for monochromatic 

radiation when they collide with the materials of crystalline. A diffraction pattern is produced by 

the interference and is captured by a detector. then applied to determine the fundamental specifics 

of the specimen(3,4). Bragg's law, n λ = 2d sin θ, applies to when-prepared and annealed 

nanoparticle sample diffraction. Here, n is an integer number, λ is the wavelength of radiation is 

the distance between planes, and θ is the angle of diffraction (5,6). Small crystallite size and 

internal lattice deformation both lead to the x-ray diffraction peaks' widening. Techniques have 

evolved throughout the previous decade or so to distinguish between those two basic impacts and 

further consequences such as twin or planar defects(7). Some techniques for measuring materials 

include the strain-size plot, Williamson-Hall (W-H), Scherrer, and Halder-Wagner (H-W) 

techniques, the approach of Williamson-Hall uses the diffraction peak's FWHM values, whereas 

the Scherrer method employs full-width half-maximum (FWHM) to calculate the size of the 

crystals. is a properly easy and suitable one for calculating average size as well as determining 

various elastic properties, such as strain. The Halder-Wagner technique, conversely, uses an 

assumption that the peak's physical expansion is a function of Voigt and additionally calculates 

the mean dimensions and stress using the XRD data peak expansion(8-15). This work deals with 

a comparison of the values of the crystalline size of ZnO nanoparticles calculated by the Halder-

Wagner method and some of the physical parameters relied upon in the calculation, that were not 

previously calculated, such as the dislocation density and the Burger vector at high temperature 

using X-ray diffraction. 

 

2. Materials and Methods 

2.1. Halder-Wagner Method 

The SSP approach assumes a Gaussian function for strain increasing and a Lorentzian function for 

expansion of the XRD peak profile in size. However,  in reality, The XRD peak does not follow a 

Gaussian or Lorentzian function. Since the XRD peak region corresponds nicely to the Gaussian 

function, its tail drops too fast to match. In contrast, The tails of the profile match the Lorentz 

function. Rather well, nevertheless, they don't line up with the XRD peak zone. , since the 

Broadening of the peak is a convolution of the Lorentzian collaboration, therefore, a symmetric 

Voigt function, the Wagner-Halder method is applied to get around this problem. Thus, employing 

the Halder-Wagner Technique, the entire breadth of the physical profile at its maximal half-width 

may be expressed for the function of Voigt(16- 18). The Halder-Wagner method provides the link 

between the lattice strain and the crystalline size.: 

(βhkl / d hkl)
2= (1/D ). ( βhkl /d

2
hkl)+ (ξ/2)2                                                                                        (1) 

The straight line equation above is now generating a graph of (βhkl /d hkl )
2 vs (βhkl/d

2
hkl), where        

(βhkl /d
2 

hkl)represents the horizontal axis X and a (βhkl/d hkl )
2 represents the vertical axis Y (19,20). 

where The integral width is represented by β and Lattice plane spacing is denoted by d. Let D be 

the size of the crystallites and ξ be a measure of lattice strain (21,22). It should be mentioned that 

different theories involving How to use X-ray diffraction data to calculate the size of crystallite 

have been put forward in the past. The Halder-Wagner approach described here is one of them by: 

 

(β/tan θ)2 = (k λ/D). (β / tan θ sin θ) +16 ξ2                                                                                 (2) 

Whereas D and ξ stand for the size and strain of the Halder-Wagner crystallites, respectively, The 

form factor is K equal to (0.89) and The symbol λ is used to represent the radiation wavelength 
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in the manometer (0.15405nm). To compute the crystallite size (D), the lattice strain (ξ) utilizing 

the formulas : 

 

D =K λ/ slope                                                                                                                                (3) 

ξ= (intercept/16)1/2                                                                                                                        (4) 

 

and to determine dislocation density (ρ) and Burger vector(b) using the equations: 

 

ρ =1 /D2    (1/nm2)                                                                                                                       (5) 

b = (14.4 ξ2 /ρ)1/2                                                                                                            (6)(23-27). 

2.2. Integral Breadth Method 

With the method of integral breadth, which is a one-line technique, Presumably, the strain and size 

related to expansion caused by average crystal size (areas of coherent dispersion) and lattice strains 

(often referred to as lattice defects) caused by, for example, the presence of lattice defects can be 

represented as the Cauchy and Gaussian (Lorentzian) Voigt's integral breadth. The integral width 

could be utilized for calculations of the effects of the size of particles and strain when using it as a 

measure of the peak profile: 

Integral Breadth (β)= Peak Area/Intensity Maxima                                                           (7) (28,29). 

Typically, the diffraction data is represented by the angle (2θ) distribution. The greatest peak 

intensity (Imax) and integrated intensity I (the region beneath the peak) were computed following 

background subtraction. The location of the peak can be determined in several ways. Peak width 

can usually be computed using the full width at half maximum intensity (FWHM) connected to 

the biggest peak width at half maximum intensity, or the integrated width on a rectangular screen 

with the same higher and integrated intensity while the observed peak. distinct peak variables are 

utilized based on the objective of the observations (30). The theoretical basis for the relationship 

between annealing temperature and structural properties is explained in(31). 

 

3. Results and Discussions 

     The ZnO powder was purchased with a purity of 99.9%, and 10 grams were burned at each 

temperature, after examination with an XR diffractometer The x-ray diffraction patterns showed 

several peaks that matched unique ZnO planes after calcination. where The temperatures at which 

the specimens were burnt varied from 300, 400, and 700°C. Cu-k diffractometers made in Japan, 

the SHIMADZU model (6000), was used to obtain intensity data on ZnO nanoparticles for each 

of the seven peaks, as shown in Figures 1, 2, and 3. A program for analysis named Origin Pro Lab 

is used to develop the peak outline using this data. The integral width is computed after the program 

computes the FWHM and area under the curve. The same procedures were followed for the 

surfaces (100), (002), (101), (102), (110), (103), (112). 
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Figure1. XRD pattren of ZnO at 300°C. 

 

Regarding the values of (hkl ) for Figures 1- 3, the values of (hkl ) are (100), (002), (101), 

(102),(110),(103),(112) and the corresponding angles (31.766)°,(34.419)°,(36.251) °,(47.536)°, 

(56.591)°,(62.852)°,(67.942)° are constant for all figures, but there is a change in the intensity 

values calculated for the three figures, which was taken into account in the calculations. 
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Figure 2. XRD pattren of ZnO at 500°C. 
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Figure 3. XRD pattren of ZnO at 700°C. 

 

3.1 The Halder-Wagner Method: 

The form of the peaks in ZnO was examined using an analytical instrument known as Origin Pro 

Lap, Subsequently, each of the peaks in the shape had fittings to obtain the peak's pure line.  

, we will take one of the diffraction lines of x- radiation, which is (002) at 300 °C, 500 °C, and 700 

°C, as a model for analysis (XRD) diffraction, shown in Figure 4, and the same steps will be taken 

to analyze all the other lines at the mentioned temperatures. 
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Figure 4. The Peak(002)  Fit of ZnO nanoparticle. 

 

To obtain the most precise and pure line for each peak in the pattern, 40 steps were taken on the 

peak's fitting line in addition to the high-intensity step for each peak after the peaks were fitted as 

shown in Figure 5. 

 

 
 

Figure 5. After fitting for 40 steps for peak (002) of ZnO. 
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Following the subtraction of intensity to obtain clear Values of background for every peak, the 

area under the curve was computed. The integral of the breadth for each peak was then calculated 

after estimating the full width at a half-maximum derived from the formula (B=A/I˳), whereas A 

is the peak's area under the curve and I˳ is the peak's maximum intensity. shown in Figure 6, the 

result of full width at a half maximum and the integral breadth (IB) for the peak  (002) shown in 

Table 1.  

 

 
 

Figure 6. Identified the full width at half maxima of the peak (002) of ZnO. 

 

Table1. Estimated the high intensity, the region beneath the curve, (FWHM), and the integral breadth. 

hkl 

 

Intensity(I˳) Area under the 

curve (A) 
(FWHM) β = A /I˳ 

(002) 2003.1875 658.6443006 0.2674 0.328798128 

 

After that calculate the values of ( β/ (tan θ sin θ) ) and (β/tan θ)² for the temperature (300,500,700) 

°C listed in Tables 2- 4. We plot a graph with the horizontal axis X representing (β/tan θ sin θ) 

and the vertical axis Y representing (β/tan θ )² appeared in Figures 6-8. 

 

Table 2. The calculation used for (H.W) plot at 300°C. 

(hkl) 2θ(degree) θ(rad.) tan θ Sin θ FWHM*(π/180) β/(tan θ sin 

θ) 

(β/ tan θ)² 

(100) 31.8364 0.277684156 0.285048654 0.274129255 0.004430889 0.056704363 0.000241626 

(002) 34.4831 0.300769261 0.310179321 0.296255022 0.004341922 0.047250181 0.000195947 

(101) 35.8871 0.313015261 0.323655386 0.30792878 0.003952911 0.039662851 0.000149166 

(102) 36.311 0.316712611 0.327744956 0.311444361 0.004830367 0.047322057 0.000217214 

(110) 47.5937 0.415122828 0.440735401 0.403302329 0.005606644 0.031542372 0.000161827 

(103) 56.6398 0.494024922 0.538569322 0.474173388 0.0049769 0.019488577 8.53954E-05 

(112) 63.2733 0.551883783 0.615700107 0.524292272 0.002508511 0.007770936 1.65994E-05 
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Table 3. The calculation used for (H.W) plot at 500°C. 

hkl 2θ(degree) θ(rad.) tan θ sin θ FWHM*(π/180) β/( tan θ sin 

θ) 

(β/ tan θ)² 

(100) 31.7858 0.277242811 0.284571509 0.27370479 0.004504156 0.057828186 0.000250521 

(002) 34.4291 0.300298261 0.309663081 0.295805133 0.0043803 0.047819906 0.000200092 

(101) 35.7372 0.3117078 0.322211574 0.306684586 0.004971667 0.050311691 0.000238079 

(102) 36.2621 0.316286094 0.32727269 0.311039029 0.004922822 0.048360357 0.000226261 

(110) 47.5444 0.414692822 0.440221965 0.402908808 0.005829933 0.032868896 0.000175381 

(103) 56.5967 0.493648994 0.538084452 0.473842375 0.004891422 0.019184514 8.2636E-05 

(112) 63.1733 0.551011561 0.614497882 0.523549342 0.0031714 0.009857641 2.66355E-05 

 

 

Table 4. The calculation used for (H.W) plot at 700°C. 

 

 

 
Figure 6. Plot of connection (β/tan θ ) with (β/tan θ sin θ) at 300 °C. 

 

 

 

 

 

 

 

(hkl) 2θ(degre

e) 
θ(rad.) tan θ sin θ FWHM*(π/180) β/(tan θ sin 

θ) 
(β/ tan θ)² 

(100) 31.8285 0.27761525 0.284974151 0.274062988 0.003890111 0.049808808 0.000186343 

(002) 34.4784 0.300728267 0.310134383 0.296215868 0.003891856 0.042364148 0.000157476 

(101) 36.3099 0.316703017 0.327734331 0.311435243 0.004136078 0.040522759 0.00015927 

(102) 36.6864 0.319986933 0.331374904 0.314554157 0.004280867 0.041069239 0.000166888 

(110) 47.586 0.415055667 0.440655197 0.403240871 0.004556489 0.025642884 0.000106921 

(103) 56.6409 0.494034517 0.5385817 0.474181835 0.003945933 0.015450881 5.3678E-05 

(112) 66.4151 0.579287261 0.654150245 0.547427618 0.004322733 0.012071305 4.36679E-05 
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Figure 7. Plot of connection (β /tan θ) with (β /tan θ sin θ) at 500 °C. 

 

 
Figure 8. Plot of connection (β/ tan θ) with (β /tan θ sin θ) at 700 °C. 

 

This helps us to determine the plot's slope and intercept, Starting from a slope of the graph line the 

size of the crystal was calculated, and based on the intercept, the lattice strain was calculated using 

equations (3) and (4). Then the dislocation density and Burger vector were calculated through 

equations (5) and (6), for all temperatures, and the results were listed in Table 4. 
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Table 4. Estimating crystallite size, lattice strain, dislocation density, and Burger vector for Halder-Wagner method 

at (300,500,700) °C. 

 

T(°C) D (nm) ξ ρ(1/nm2) b 

300 47.791 1.972*10-3 43.7832 * 10-5 3.576 * 10-1 

500 57.13 2.476*10-3 30.6388 * 10-5 5.368* 10-1 

700 74.02 2.23*10-3 18.2516 * 10-5 6.263* 10-1 

 

4. Conclusion 

     The previous table makes it evident that values of crystallite size D rise as temperature rises, 

which makes sense given that x-ray intensity increases as temperature rises from 300 to 700 °C. A 

strong correlation exists between the value of crystallite size and the full width at half maximum 

(FWHM). A decrease in the dislocation density ξ value was observed, by the laws established in 

this piece of writing, as the size of the grains grew.  As the temperature increased, an increase in 

Burger vector b values was seen because of the inverse proportionality between the dislocation 

density and the Burger vector. As the temperature increases (300,500,700)°C, an expansion occurs 

in the sample size, and this means an increase in the grain size, which is shown in Table( 4), where 

the values of the grain size (47.791, 57.13, 74.02) were for the temperatures (300,500,700)°C, 

respectively. Based on the grain size values, the dislocation density was calculated, considering 

the inverse proportionality  Between the dislocation density and the grain size, the results were 

consistent, as listed in the previous table. The Burger vector for the three temperatures 

(300,500,700) °C was calculated based on the strain values calculated from the three Figures 

(6,7,8), and the results of the Burger vector for the three temperatures (300,500,700) °C were as 

shown(3.576 ∗ 10-1, 5.368∗ 10-1, 6.263∗ 10-1) respectively. 
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