

The Construction of Complete (k_n,n) -Arcs in The Projective Plane PG(2,11) by Geometric Method, with the Related Blocking Sets and Projective Codes

Amal SH. Al-Mukhtar Umniyat A. Hassan

Dept. of Mathematics/College of Education for Pure Science(Ibn Al-Haitham)
/University of Baghdad

Received in: 17June 2013, Accepted in: 10October 2013

Abstract

In this paper, we construct complete (k_n,n) -arcs in the projective plane PG(2,11), n=2,3,...,10,11 by geometric method, with the related blocking sets and projective codes.

Keywords: Complete arcs, blocking set, projective cod.

Introduction

A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n+1 of them, are collinear.

A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc.

Let PG(2,q) be the projective plane over Galois field GF(q). The points of PG(2,q) are the non-zero vectors of the vector space V(3,q) with the rule that $X(x_1,x_2,x_3)$ and $Y(\lambda x_1,\lambda x_2,\lambda x_3)$ are the same point, where $\lambda \in GF(q)\setminus\{0\}$.

Similarly, $x[x_1,x_2,x_3]$ and $y[(\lambda x_1,\lambda x_2,\lambda x_3]$ are the same line, where $\lambda \in GF(q) \setminus \{0\}$.

The point $X(x_1,x_2,x_3)$ is on the line $Y[y_1,y_2,y_3]$ if and only if $x_1y_1 + x_2y_2 + x_3y_3 = 0$.

In PG(2,q), there are $q^2 + q + 1$ points and $q^2 + q + 1$ lines, every line contains exactly q + 1 points and every point is on exactly q + 1 lines. Many researcher worked on the construction and classification of the(k,n)-arcs in projective planes PG(2,q),Hirschfeld showed the construction and classification of (k,2)-arcs in PG(2,q),q \leq 9,Brune showed the relation between the (k,n)-arc and the blocking (b, t) set,

1. Definition: [1]

A (k_n,n) -arc K is in PG(2,q) is a set of k_n points such that some lines of the plane meet K in n points but no line meets K in more than n points, where $n \ge 2$.

2. Definition:[2]

A (k,n)-arc is complete if it is not contained in a (k+1,n)-arc. The maximum number of points that (k,2)-arc can have is m(2,q) and this arc is an oval.

3. Theorem:[3]

In PG(2,q), m(2,q) =
$$\begin{cases} q+1 & \text{for q odd} \\ q+2 & \text{for q even} \end{cases}$$

4. Definition:[1]

A line ℓ in PG(2,q) is an i-secant of a (k,n)-arc K if $|\ell \cap K| = i$.

5. Definition:[1]

A variety V(F) of PG(2,q) is a subset of PG(2,q) such that $V(F) = \{P(A) \in PG(2,q) \mid F(A) = 0\}.$

6. Definition:[1]

Let Q(2,q) be the set quadrics in PG(2,q), that is the varieties V(F), where:

$$F = a_{11}x_{1}^{2} + a_{22}x_{2}^{2} + a_{33}x_{3}^{2} + a_{12}x_{1}x_{2} + a_{13}x_{1}x_{3} + a_{23}x_{2}x_{3} \qquad \dots (1)$$

If V(F) is non-singular, then the quadric is a conic, that is, if

$$A = \begin{bmatrix} a_{11} & \frac{a_{12}}{2} & \frac{a_{13}}{2} \\ \frac{a_{12}}{2} & a_{22} & \frac{a_{23}}{2} \\ \frac{a_{13}}{2} & \frac{a_{23}}{2} & a_{33} \end{bmatrix}$$

Is non singular, then the quadric (1) is a conic.

7. Theorem:[3]

In PG(2,q), with q odd, every oval is a conic.

8. Definition:[3]

A point N which is not on a (k,n)-arc has index i if there exactly i(n-secants) of the arc through N, the number of the points N of index i is denoted by N_i .

9. Remark:[3]

The (k,n)-arc is complete if and only if $N_0 = 0$. Thus the arc is complete if and only if every point of PG(2,q) not on the arc lies on some n-secant of the arc.

10. Definition:[4]

An (b,t)-blocking set β in PG(2,q) is a set of b points such that every line of PG(2,q) intersects β in at least t points, and there is a line intersecting β in exactly t points.

If β contains a line, it is called trivial, thus β is a subset of PG(2,q) which meets every line but contains no line completely; that is $t \le |\beta \cap \ell| \le q$ for every line ℓ in PG(2,q). So β is a blocking set if and only if $PG(2,q)\setminus \beta$ is also blocking set. We may note that a blocking set is merely a (k,n)-arc with $n \le q$ and no 0-secants. A blocking set β is minimal if $\beta \setminus \{p\}$ is not blocking set for every $p \in \beta$.

11. The Relation Between the Blocking (b,t)-set and the (k,n)-arc: [4]

The (k,n)-arcs and the (b,t)-blocking sets are each complement to the other in the projective plane PG(2,q), that is, n+t=q+1 and $k+b=q^2+q+1$. Thus the complement of the (b,t)-blocking set is the set of points that intersects every line in at most n points which represents the (k,n)-arc. Also finding minimal (b,t)-blocking set is equivalent to find maximal (k,n)-arc in PG(2,q). Blocking sets were studied in details by Di Paola who determined the minimum size of non-trivial blocking set in PG(2,q), $q \le 9$.

12. Definition:[3]

In PG(2,q), let β contains a line ℓ minus a point P plus a set of q points one on each of the q lines through P other than ℓ but not all collinear; then β is minimal (2q,1)-blocking set. Blocking sets of this kind are called rédéi-type studied by [Bruen, A.A. and Thas, J.A. (1977)] and in [Blockhuis, A.A. and Brouwer, E. and S.Z. "onyi, T. (1995)].

13. **Definition:**[5,6]

Let V(n,q) denote the vector space of all ordered n-tuples over GF(q). A linear code C over GF(q) of length n and dimension k is a k-dimensional subspace of V(n,q). The vectors of C are called codewords. The Hamming distance between two codewords is defined to be the number of coordinate places in which they differ. The minimum distance of a code is the smallest distance between distinct codewords. Such a code is called an $[n,k,d]_q$ code if its minimum hamming distance is d.

There exists a relationship between complete (n,r)-arcs in PG(2,q) and $[n,3,d]_q$ codes, given by the next theorem.

14. Theorem:[5]

There exists a projective $[n,3,d]_q$ code if and only if there exists an (n,n-d)-arc in PG(2,q).

The Projective Plane PG(2,11)

In this paper,we consider the case q=11 and the elements of GF(11) which are denoted by 0,1,2,3,4,5,6,7,8,9,10

A projective plane $\pi = PG(2,11)$ over GF(11) consists of 133 points, 133 lines, each line contains 12 points and through each point there are 12 lines.

Let P_i and L_i be the points and lines of PG(2,11), respectively. $i=1,2,\ldots,133$. Let i stands for the point P_i , and for the line L_i whose coordinates are the same coordinates of the point P_i and by using computer program (2-pl- program) [7] the points and the lines of PG(2,11) are given in table (1).

1. The Constructions of (k,n)-Arcs in PG(2,11)

Let $A = \{1,2,13,25\}$ be the set of reference and unit points in $\pi = PG(2,11)$, where 1 = (1,0,0), 2 = (0,1,0), 13 = (0,0,1), 25 = (1,1,1)

A is a(4,2)-arc since no three points of A are collinear, the points of A are the vertices of a quadrangle whose sides are the lines:

$$L_1 = [2,13] = \{2,13,24,35,46,57,68,79,90,101,112,123\}$$

 $L_2 = [1,13] = \{1,13,14,15,16,17,18,19,20,21,22,23\}$

 $L_3=[1,2]=\{1,2,3,4,5,6,7,8,9,10,11,12\}$

 $L_4 = [1,25] = \{1,24,25,26,27,28,29,30,31,32,33,34\}$

 $L_5 = [2,25] = \{2,14,25,36,47,58,69,80,91,102,113,124\}$

 $L_6 = [13,25] = \{3,13,25,37,49,61,73,85,97,109,121,133\}$

The diagonal points of A are the points 3,14,24 where.

 $L_1 \cap L_4 = 24$

 $L_3 \cap L_6 = 3$

 $L_2 \cap L_5 = 14$

Which are the intersections of the pairs of the opposite sides. Then there are 61 points on the sides of the quadrangle, four of them are the points on the arc A, and three of them are the diagonal points of A. So there are 72 points not on the sides of the quadrangle which are the points of index zero for A, these points are:

{38,39,40,41,42,43,44,45,48,50,51,52,53,54,55,56,59,60,62,63,64,65,66,67,70,71,72,74,75,76,77,

78,81,82,83,84,86,87,88,89,92,93,94,95,96,98,99,100,103,104,105,106,107,108,110,111,114, 115, 116,117,118,119,120,122,125,126,127,128,129,130,131,132}

Hence A is incomplete (4, 2) – arc

2. The Conics in PG (2,11) Through the Reference and Unit Points

The general equation of the conic is

By substituting the points of A in (1), we get:

 $a_{11}=0$, $a_{22}=0$, $a_{33}=0$

 $a_{12}+a_{13}+a_{23}=0$

so the equation (1)becomes:

If a_{12} =0 then the conic is degenerated . therefore $a_{12}\neq 0$

similarly $a_{13} \neq 0$ and $a_{23} \neq 0$

since $a_{12} \neq 0$ we divide equation (2) by a_{12} , we get

$$x_1x_2 + \alpha x_1x_3 + \beta x_2x_3 = 0$$
 ...(3)

where $\alpha = \frac{a_{13}}{a_{12}}$, $\beta = \frac{a_{23}}{a_{12}}$

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

since $1+\alpha+\beta=0 \pmod{11} \rightarrow \beta=-(1+\alpha)$

then (3) can be written as

 $x_1x_2 + \alpha x_1x_3 - (1+\alpha) x_2x_3 = 0...(4)$

where $\alpha \neq 0$ and $\alpha \neq 10$ for if $\alpha = 0$ or $\alpha = 10$, we get degenerated conic,

that is $\alpha = 1,2,3,4,5,6,7,8,9$

3. The Equations and the Points of the Conics of PG(2,11) Through the Reference and Unite Points.

For any value of α , there is a unique conic contains 12 points, four of them are the reference and unit points

1. If $\alpha = 1$ then the equation of the conic C_1 is

 $x_1x_2 + x_1x_3 + 9x_2x_3 = 0$

The points of C_1 are $\{1,2,13,25,40,53,63,77,87,100,104,116\}$

2. If α =2 then the equation of the conic C_2 is

 $x_1x_2 + 2x_1x_3 + 8x_2x_3 = 0$

The points of C_2 are $\{1,2,13,25,42,50,59,78,84,96,110,131\}$

3.If $\alpha = 3$ then the equation of the conic C_3 is

 $x_1x_2 + 3x_1x_3 + 7x_2x_3 = 0$

and the points of C_3 are $\{1,2,13,25,41,48,64,76,89,95,115,132\}$

4.If $\alpha = 4$ then the equation of the conic C₄is

 $x_1x_2 + 4x_1x_3 + 6x_2x_3 = 0$

The points of C_4 are $\{1,2,13,25,44,56,65,72,82,108,118,125\}$

5.If $\alpha = 5$ then the equation of the conic C_5 is

 $x_1x_2 + 5x_1x_3 + 5x_2x_3 = 0$

The points of C_5 are $\{1,2,13,25,43,51,67,71,99,103,119,127\}$

6. If $\alpha = 6$ then the equation of the conic C_6 is

 $x_1x_2 + 6 x_1x_3 + 4x_2x_3 = 0$

The points of C_6 are $\{1,2,13,25,45,52,62,88,98,105,114,126\}$

7. If $\alpha = 7$ then the equation of the conic C_7 is

 $x_1x_2 + 7x_1x_3 + 3x_2x_3 = 0$

The points of C_7 are $\{1,2,13,25,38,55,75,81,94,106,122,129\}$

8.If $\alpha = 8$ then the equation of C_8 is

 $x_1x_2 + 8 x_1x_3 + 2x_2x_3 = 0$

The points of C_8 are $\{1,2,13,25,39,60,74,86,92,111,120,128\}$

9. If $\alpha = 9$ then the equation of C_9 is

 $x_1x_2 + 9x_1x_3 + x_2x_3 = 0$

and the points of C_9 are $\{1,2,13,25,54,66,70,83,93,107,117,130\}$

Thus we found eleven conics, two of them are degenerated and the remaining nine conics $C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8$ and C_9 are non –degenerated ,which are complete (k,2)-arcs.

4. The Construction of Complete (k_n,n) -Arcs in PG(2,11) and the Related Blocking Setsand Projective Codes.

The complete (k,n)-arcs in PG(2,11) can be constructed by eliminating the conics given above from PG(2,11) as follows:

a. The Construction of Complete $(k_{11},11)$ -Arc.

Let $\pi = PG(2,11)$

We take a conic say C_1 , where

 $C_1 = \{1,2,13,25,40,53,63,77,87,100,104,116\}$

Let

 $K = \pi - C_1$

 $= \{3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,$ 37,38,39,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69, 70,71,72,73,74,75,76,78,79,80,81,82,83,84,85,86,88,89,90,91,92,93,94,95,96,97,98,99,101,10 2,

103,105,106,107,108,109,110,111,112,113,114,115,117,118,119,120,121,122,123,124,125,12 6, 127,128,129,130,131,132,133}

This points in table(3.1) represent the elements of the projective plane $PG(2,11)=\pi$, some points of π are deleted to satisfy the definition of the arc which is mentioned in definition 1.1, and some of these deleted points are of index zero therefore we must add them to the remained points in π to make the arc K_{11} complete as mentioned in remark 1.9.

The construction of complete $(k_{11}, 11)$ –arc must satisfy the following:

1. Any line of π must intersect the arc in at most 11 points.

2. Every point not in the arc is on at least one (11-secant) of the arc.

We eliminate twenty points from K which are:

7,8,10,12,17,24,26,27,28,31,35,46,47,57,68,79,90,101,112,124 to satisfy (1)

since the points {1,116,104,100,87,77,63,53,40,25} are of index zero therefore we add them to K to satisfy (2)

Then

4,45,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,74,75,76,77,7 8,80,81,82,83,84,85,86,87,88,89,91,92,93,94,95,96,97,98,99,100,102,103,104,105,106,107,10 8,109,110,111,113,114,115,116,117,118,119,120,121,122,123,125,126,127,128,129,130,131, 132,133}.

 K_{11} is a complete (111,11)-arc.

By theorem 1.14, there exists a projective [111,3,100] code which is equivalent to the complete (111,11)-arc K_{11}

Let $\beta_1 = \boldsymbol{\pi} - K_{11}$

 $\beta_1 = \{2,7,8,10,12,13,17,24,26,27,28,31,35,46,47,57,68,79,90,101,112,124\}$

 β_1 is (22,1)-blocking set of size (2q)which is of Redei-type (figure 1) contains the line L_1 , where $L_1 \setminus \{123\} = \{2,13,24,35,46,57,68,79,90,101,112\}$ and one point on each

Line through the point 123 other than L_1 which are non-collinear points:

7,8,10,12,17,26,27,28,31,47,124.

Note that each line in π intersect β_1 in at least one point.

b. The Construction of Complete $(k_{10},10)$ -Arc

Let $\pi = PG(2,11)$

In this section we construct $(k_{10}, 10)$ -arc by eliminating the union of two conics, say C_1 and C₂where

 $C_1 = \{1,2,13,25,40,53,63,77,87,100,104,116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

Let $K = \pi - C_1 \cup C_2$

={3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,

39,41,43,44,45,46,47,48,49,51,52,54,55,56,57,58,60,61,62,64,65,66,67,68,69,70,71,72,73,74,75,76,

79,80,81,82,83,85,86,88,89,90,91,92,93,94,95,97,98,99,101,102,103,105,106,107,108,109,1112,113,114,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,132,133

The construction of a complete $(k_{10}, 10)$ -arc must satisfy the following:

1. Any line of π intersects K in at most 10 points.

2. Every point not in K is on at least one 10 -secant.

we have to eliminate twenty points of K which are

5,7,21,26,35,46,47,54,57,68,79,83,90,99,101,105,112,115,123,126 to satisfy(1).

there are six points of index zero which are 1,2,50,77,87,116 therefore we add them to K to satisfy (2) then

 $K_{10} = \{1,2,3,4,6,8,9,10,11,12,14,15,16,17,18,19,20,22,23,24,27,28,29,30,31,32,33,34,36,37,38,39,41,43,44,45,48,49,50,51,52,55,56,58,60,61,62,64,65,66,67,69,70,71,72,73,74,75,76,77,80,81,82,85,8687,88,89,91,92,93,94,95,97,98,102,103,106,107,108,109,111,113,114,116,117,118,119,120,121,122,124,125,127,128,129,130,132,133\}$

then K_{10} is a complete (99,10) –arc

By theorem 1.14, there exists a projective [99,3,89] code

which is equivalent to the complete (99,10) –arc K_{10}

Let $\beta_2 = \pi - K_{10}$

={5,7,13,21,25,26,35,40,42,46,47,53,54,57,59,63,68,78,79,83,84,90,96,99,100,101,104,105,1 10, 112,115,123,126,131}

 β_2 is (34,2)-blocking set. Note that each line in π intersects β_2 in at least two points.

c. The Construction of Complete (k9,9)-Arc

In this section, we eliminate the union of three conics, say $C_1.C_2$, and C_3 where

 $C_1 = \{1,2,13,25,40,53,63,77,87,100,104,116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

 $C_3 = \{1,2,13,25,41,48,64,76,89,95,115,132\}$

Let $K = \pi - C_1 \cup C_2 \cup C_3$

 $= \{3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,43,44,45,46,47,49,51,52,54,55,56,57,58,60,61,62,65,66,67,68,69,70,71,72,73,74,75,79,80,81,82,83,85,86,88,90,91,92,93,94,97,98,99,101,102,103,105,106,107,108,109,111,112,113,114,117,118,119,120,121,122,123,124,125,126,127,128,129,130,133\}.$

The construction of a complete $(k_9,9)$ -arc must satisfy the following:

- **1.** Any line in π intersects K in at most 9 point.
- **2.** Every point not on K is on at least one (9-secant).

we eliminate twenty five points of K which are

4,23,24,27,28,33,35,46,52,58,60,61,68,69,74,79,88,90,93,101,106,112,123,126,129, to satisfy (1)

we add the points 50,58 which are of index zero to K to satisfy (2), then

$$\begin{split} K_9 = & \{3,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,26,29,30,31,32,34,36,37,38,39,43,44,45\\ ,47,49,50,51,54,55,56,57,58,62,65,66,67,70,71,72,73,75,80,81,82,83,85,86,91,92,94,97,98,99,\\ 102,103,\ 105,107,108,109,111,113,114,117,118,119,120,121,122,124,125,127,128,130,133\} \\ Then\ K_9\ \ is\ a\ complete\ (82,9)-arc\ . \end{split}$$

By theorem 1.14, there exists a projective [82,3,73] code which is equivalent to the complete (82,9)-arc K_9 .

Let $\beta_3 = \pi - K_9$

= $\{1,2,4,13,23,24,25,27,28,33,35,40,41,42,46,48,52,53,59,60,61,63,64,68,69,74,76,77,78,79,84,87,88,89,90,93,95,96,100,101,104,106,110,112,115,116,123,126,129,131,132\}$ Then β_3 is a(51,3)-blocking set ,note that each line intersects β_3 in at least three points .

d. The Construction of Complete (k8,8)-Arc

In this section ,we take the union of four conics, say C_1 , C_2 , C_3 , and C_4 where

 $C_1 = \{1, 2, 13, 25, 40, 53, 63, 77, 87, 100, 104, 116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

 $C_3 = \{1,2,13,25,41,48,64,76,89,95,115,132\}$

 $C_4 = \{1,2,13,25,44,56,65,72,82,108,118,125\}$

Let $K=\pi-C_1\cup C_2\cup C_3\cup C_4$

 $= \{3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,43,45,46,47,49,51,52,54,55,57,58,60,61,62,66,67.68,69,70,71,73,74,75,79,80,81,83,85,86,88,90,91,92,93,94,97,98,99,101,102,103,105,106,107,109,111,112,113,114,117,119,120,121,122,123,124,126,127,128,129,130,133\}.$

The construction of complete(k_8 ,8)-arc must satisfy the following:

1. Any line in π intersects K in at most 8 points.

2. Every point not in K is on at least one (8-secant).

we eliminate thirty points from K which are

3,5,6,7,17,23,24,27,28,29,35,36,45,46,57,61,68,70,86,88,90,97,101,105,112,113,114,123,126, 129 to satisfy (1).

K is incomplete arc since there are points of index zero which are 7,44 we add them to K to satisfy(2),then

 $K_8 = \{4,7,8,9,10,11,12,14,15,16,18,19,20,21,22,26,30,31,32,33,34,37,38,39,43,44,47,49,51,52,54,55,58,60,62,66,67,69,71,73,74,75,79,80,81,83,85,91,92,93,94,98,99,102,103,106,107,109,111,117,119120,121,122,124,127,128,130,133\}$

 K_8 is a complete (69,8)-arc.

By theorem 1.14 there exists a projective [69,3,61]code which is equivalent to the complete (69,8)-arc K_8

Let $\beta_4 = \pi - K_8$

 $=\{1,2,3,5,6,13,17,23,24,25,27,28,29,35,36,40,41,42,45,46,48,50,53,56,57,59,61,63,64,65,68,70,72,$

76,77,78,82,84,86,87,88,89,90,95,96,97,100,101,104,105,108,110,112,113,114,115,116,118,123,125,126,129,131,132

Then β_4 is a(64,4)-blocking set .Note that each line in π intersects β_4 in at least four points .

e. The Construction of Complete (k7,7)-Arc

In this section ,we take the union of five conics, say C_1 , C_2 , C_3 , C_4 , and C_5 where

 $C_1 = \{1, 2, 13, 25, 40, 53, 63, 77, 87, 100, 104, 116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

 $C_3 = \{1,2,13,25,41,48,64,76,89,95,115,132\}$

 $C_4 = \{1,2,13,25,44,56,65,72,82,108,118,125\}$

 $C_5 = \{1,2,13,25,43,51,67,71,99,103,119,127\}$

Let $K=\pi-C_1\cup C_2\cup C_3\cup C_4\cup C_5$

={3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38}

,39,45,46,47,49,52,54,55,57,58,60,61,62,66,68,69,70,73,74,75,79,80,81,83,85,86,88,90,91,92,93,94

Vol. 27 (1) 2014

,97,98,101,102,105,106,107,109,111,112,113,114,117,120,121,122,123,124,126,128,129,130, 133}

The construction of complete $(k_7,7)$ -arc must satisfy the following:

- **1.** Any line in π intersects K in at most 7 points.
- **2.** Every point not in K is on at least one(7-secant).

We eliminate thirty-seven points of K which are

3,8,12,14,19,20,21,27,31,34,35,38,39,46,49,55,57,58,60,68,69,74,79,86,90,92,93,98,101,109,111,112

,117,120,123,126,128, to satisfy(1)

K is incomplete arc since there are the points 53,56,63,82,87,95 of index zero therefore we add them to K to satisfy (2), then

 $K_7 = \{4,5,6,7,9,10,11,15,16,17,18,22,23,24,26,28,29,30,32,33,36,37,45,47,52,53,54,56,61,62,63,66,70,73,75,80,81,82,83,85,87,88,91,94,95,97,102,105,106,107,113,114,121,122,124,129,130,133\}.$

Then K_7 is a complete (58,7)-arc.

By theorem 1.14, there exists a projective [58,3,51] code which is equivalent to the complete (58,7)-arc K_7

Let $\beta_5 = \pi - K_7$

 $60,64,65,67,68,69,71,72,74,76,77,78,79,84,86,89,90,92,93,96,98,99,100,101,103,104,108,109,\\110,111,112,115,116,117,118,119,120,123,125,126,127,128,131,132\}.$

 β_5 is a (75,5)-blocking set. Note that each line in π intersects β_5 in at least five points.

f. The Construction of Complete (k6,6)-Arc

In this section, we take the union of six conics say C_1, C_2, C_3, C_4, C_5 , and C_6 where

 $C_1 = \{1,2,13,25,40,53,63,77,87,100,104,116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

 $C_3 = \{1,2,13,25,41,48,64,76,89,95,115,132\}$

 $C_4 = \{1,2,13,25,44,56,65,72,82,108,118,125\}$

 $C_5 = \{1,2,13,25,43,51,67,71,99,103,119,127\}$

 $C_6 = \{1,2,13,25,45,52,62,88,98,105,114,126\}$

Let $K = \pi - C_1 \cup C_2 \cup C_3 \cup C_4 \cup C_5 \cup C_6$

38,39,46,47,49,54,55,57,58,60,61,66,68,69,70,73,74,75,79,80,81,83,85,86,90,91,92,93,94,97, 101,102,106,107,109,111,112,113,117,120,121,122,123,124,128,129,130,133}.

The construction of complete $(k_6,6)$ -arc must satisfy the following:

- 1. Any line in π intersects K in at most 6 points.
- **2.** Every point not in K is on at least one (6-secant).

We eliminate thirty seven points from K which are

3,8,10,11,14,17,18,20,24,26,28,29,37,39,46,47,57,60,61,66,68,70,73,79,83,90,91,101,111,112,113,117,120,122,123,129,133 to satisfy(1).

since the points 73,132 of index zero therefore we add them to K to satisfy(2) ,then $K_6 = \{4,5,6,7,9,12,15,16,19,21,22,23,27,30,31,32,33,34,35,36,38,49,54,55,58,69,73,74,75,80,81,85,86,92,93,94,97,102,106,107,109,121,124,128,130,132\}.$

then K_6 is a complete (46,6)-arc.

Let $\beta_6 = \pi - K_6$

57,59,60,61,62,63,64,65,66,67,68,70,71,72,76,77,78,79,82,83,84,87,88,89,90,91,95,96,98,99, 100,

 $101,103,104,105,108,110,111,112,113,114,115,116,117,118,119,120,122,123,125,126,127,129,131,133\}$

then β_6 is a(87,6)-blocking set. Note that each line in π intersects β_6 in at least six points.

g. The Construction of Complete(k5,5)-Arc

In this section, we take the union of seven conics, say $C_1, C_2, C_3, C_4, C_5, C_6$ and C_7

 $C_1 = \{1,2,13,25,40,53,63,77,87,100,104,116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

 $C_3 = \{1,2,13,25,41,48,64,76,89,95,115,132\}$

 $C_4 = \{1, 2, 13, 25, 44, 56, 65, 72, 82, 108, 118, 125\}$

 $C_5 = \{1,2,13,25,43,51,67,71,99,103,119,127\}$

 $C_6 = \{1,2,13,25,45,52,62,88,98,105,114,126\}$

 $C_7 = \{1,2,13,25,38,55,75,81,94,106,122,129\}$

Let $K=\pi-C_1\cup C_2\cup C_3\cup C_4\cup C_5\cup C_6\cup C_7$

={3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,

39,46,47,49,54,57,58,60,61,66,68,69,70,73,74,79,80,83,85,86,90,91,92,93,97,101,102,107,10 9,111,112,113,117,120,121,123,124,128,130,133}

The construction of complete $(k_5,5)$ -must satisfy the following:

- **1.** Any line in π intersects K in at most 5 points.
- **2.** Every point not in K is on at least one (5-secant).

We eliminate forty points from K which are

3,5,10,11,12,14,15,20,22,23,28,29,31,32,33,36,39,46,49,58,60,66,68,70,73,74,86,90,92,111,112,

113,117,120,121,123,124,128,130,133 to satisfy(1)

K is incomplete arc since the points43,45,65 are of index zero, therefore we add themt to K to satisfy(2), then

 $K_5 = \{4,6,7,8,9,16,17,18,19,21,24,26,27,30,34,35,37,43,45,47,54,57,61,65,69,79,80,83,85,91,93,97,101,102,107,109\}$

Then K_5 is a complete (36,5)-arc.

By theorem 1.14, there exists a projective [36,3,31] code which is equivalent to the complete (36,5)-arc K_5

Let $\beta_7 = \pi - K_5$

 $52, 53, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 81, 82, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 98, 99, 100, 103, 104, 105, 106, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133\}$

Then β_7 is a (97,7)-blocking set, which is trivial since β_7 contains some lines completely. Note that each line in π intersects β_7 in at least seven points.

h. The Construction of Complete (k4,4)-Arc

323 | Mathematics

Vol. 27 (1) 2014

In this section, we take the union of eight conics say C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , and C_8 where

 $C_1 = \{1,2,13,25,40,53,63,77,87,100,104,116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

 $C_3 = \{1,2,13,25,41,48,64,76,89,95,115,132\}$

 $C_4 = \{1,2,13,25,44,56,65,72,82,108,118,125\}$

 $C_5 = \{1,2,13,25,43,51,67,71,99,103,119,127\}$

 $C_6 = \{1,2,13,25,45,52,62,88,98,105,114,126\}$

 $C_7 = \{1,2,13,25,38,55,75,81,94,106,122,129\}$

 $C_8 = \{1,2,13,25,39,60,74,86,92,111,120,128\}$

Let $K=\pi-C_1\cup C_2\cup C_3\cup C_4\cup C_5\cup C_6\cup C_7\cup C_8$

 $= \{3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,46,47,49,54,57,58,61,66,68,69,70,73,79,80,83,85,90,91,93,97,101,102,107,109,112,113,117,121,123,124,130,133\}.$

The construction of complete $(k_4,4)$ -arc must satisfy the following:

- **1.** Any line in π intersects K in at least 4 points.
- **2.** Every point not in K is on at least one 4-secant.

We eliminate thirty nine points from K which are

3,5,9,10,11,12,14,15,17,20,22,23,24,27,28,29,32,33,35,36,37,46,47,49,57,66,83,85,91,102,10 7,112,113,117,121,123,124,130,133 to satisfy(1).

K is incomplete arc since the point 82 is of index zero therefore we add it to K to satisfy(2), then

 $K_4 \!\!=\!\! \{4,\!6,\!7,\!8,\!16,\!18,\!19,\!21,\!26,\!30,\!31,\!34,\!54,\!58,\!61,\!68,\!69,\!70,\!73,\!79,\!80,\!82,\!90,\!93,\!97,\!101,\!109\}.$

Then K_4 is a complete (27,4)-arc.

By theorem 1.14, there exists a projective [27,3,23]code which is equivalent to the complete (27,4)-arc K_4

Let $\beta_8 = \pi - K_4$

 $= \{1, 2, 3, 5, 9, 10, 11, 12, 13, 14, 15, 17, 20, 22, 23, 24, 25, 27, 28, 29, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 67, 71, 72, 74, 75, 76, 77, 78, 81, 83, 84, 85, 86, 87, 88, 89, 91, 92, 94, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133\}.$

Then β_8 is a (106,8)-blocking set which is trivial since β_8 contains some lines completely. Note that each line in π intersects β_8 in at least eight points.

i. The Construction of a Complete (k3,3)-Arc

In this section, we take the union of nine conics

 $C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8$ and C_9 , where

 $C_1 = \{1,2,13,25,40,53,63,77,87,100,104,116\}$

 $C_2 = \{1,2,13,25,42,50,59,78,84,96,110,131\}$

 $C_3 = \{1,2,13,25,41,48,64,76,89,95,115,132\}$

 $C_4 = \{1,2,13,25,44,56,65,72,82,108,118,125\}$

 $C_5 = \{1, 2, 13, 25, 43, 51, 67, 71, 99, 103, 119, 127\}$

 $C_6 = \{1,2,13,25,45,52,62,88,98,105,114,126\}$

 $C_7 = \{1,2,13,25,38,55,75,81,94,106,122,129\}$

 $C_8 = \{1,2,13,25,39,60,74,86,92,111,120,128\}$

 $C_9 = \{1,2,13,25,54,66,70,83,93,107,117,130\}$

Let $K=\pi -C_1 \cup C_2 \cup C_3 \cup C_4 \cup C_5 \cup C_6 \cup C_7 \cup C_8 \cup C_9$

 $K = \{3,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,46,47,49,57,58,61,68,69,73,79,80,85,90,91,97,101,102,109,112,113,121,123,124,133\}$ The construction of a complete $(k_3,3)$ -arc must satisfy the following:

- 1. Any line in π intersects the arc in at most three points.
- **2.** Every point not in the arc is on at least one (3-secant).

We eliminate forty two points from K which are

3,5,8,9,10,11,12,14,15,16,17,18,20,22,23,24,27,28,29,30,32,33,35,36,46,47,49,57,58,61,68,73,79,85,90,91,102,112,113, 121,123,133 to satisfy(1).

K is incomplete arc since there are three points of index zero which are 15, 74, 130 therefore we add them to K to satisfy (2).

Then $K_3 = \{4,6,7,15,19,21,26,31,34,37,69,74,80,97,101,109,124,130\}$

 K_3 is a complete (18,3)-arc

By theorem 1.14, there exists a projective [18,3,15] code which is equivalent to the complete (18,3)-arc K_3

Let $\beta_9 = \pi - K_3$

 $= \{1,2,3,5,8,9,10,11,12,13,14,16,17,18,20,22,23,24,25,27,28,29,30,32,33,35,36,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,71,72,73,75,76,77,78,79,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,99,100,102,103,104,105,106,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,125,126,127,128,129,131,132,133\}.$

 β_9 is (115,9)-blocking set which is trivial since β_9 contains some line completely, each line in π intersects β_9 in at least nine points .

j. The Construction of Complete (k2,2)-Arc

In this section, we construct a complete $(k_2,2)$ -arc by using the arc K_3 which is constructed above .

The construction of complete $(k_2,2)$ -arc must satisfies the following:

1. Any line in π intersects the arc in at most 2 points.

2.Every point not in the arc is on at least one (2-secant).

We eliminate seventeen points from K₃ which are

4,6,7,15,19,21,26,31,34,37,69,74,80,97,101,124,130 to satisfy (1)

Let $K_2=K_3\setminus\{4,6,7,15,19,21,26,31,34,37,69,74,80,97,101,124,130\}$.

 $K_2 = \{109\}$

K is incomplete arc since there are eleven points of index zero which are

133,132,122,120,110,95,90,75,35,20,15 , therefore we add them to K to satisfy (2),then $K_2 \! = \! \{15,\!20,\!35,\!75,\!90,\!95,\!109,\!110,\!120,\!122,\!132,\!133\}$

 K_2 is a complete (12,2)-arc.

By theorem 1.14 there exists a projective [12,3,10]code which is equivalent to the complete (12,2)-arc, K_2 .

Let $\beta_{10} = \pi - K_2$

 $= \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,78,79,80,81,82,83,84,85,86,87,88,89,91,92,93,94,96,97,98,99,100,101,102,103,104,105,106,107,108,111,112,113,114,115,116,117,118,119,121,123,124,125,126,127,128,129,130,131\}, then β_{10} is (121,10)-blocking set which is trivial since β_{10} contains some lines completely, we notice that each line in π intersects β_{10} in at least ten points.$

Conclusion

1.We can construct complete(k_n ,n)-arcs by eliminating some conics, wheren=11,10,...,3. **2.**We can construct a complete(k_2 ,2)-arc by eliminating some points from a complete(k_3 ,3)-arc

Table (1): Points and Lines of PG(2,11)

i	Pi		<u> 1 a</u>	bie (1)	<i>)</i> • 1 01.	nis an	u Lilli		G(2,1	1)			
		2	12	24	25	16	57	Li	70	00	101	112	122
1	(1,0,0)	2	13	24	35	46	57	68	79	90	101	112	123
2	(0,1,0)	1	13	14	15	16	17	18	19	20	21	22	23
3	(1,1,0)	12	13	34	44	54	64	74	84	94	104	114	124
4	(2,1,0)	7	13	29	45	50	66	71	87	92	108	113	129
5	(3,1,0)	9	13	31	38	56	63	70	88	95	102	120	127
6	(4,1,0)	10	13	32	40	48	67	75	83	91	110	118	126
7	(5,1,0)	4	13	26	39	52	65	78	80	93	106	119	132
8	(6,1,0)	11	13	33	42	51	60	69	89	98	107	116	125
9	(7,1,0)	5	13	27	41	55	58	72	86	100	103	117	131
10	(8,1,0)	6	13	28	43	47	62	77	81	96	111	115	130
11	(9,1,0)	8	13	30	36	53	59	76	82	99	105	122	128
12	(10,1,0)	3	13	25	37	49	61	73	85	97	109	121	133
13	(0,0,1)	1	2	3	4	5	6	7	8	9	10	11	12
14	(1,0,1)	2	23	34	45	56	67	78	89	100	111	122	133
15	(2,0,1)	2	18	29	40	51	62	73	84	95	106	117	128
16	(3,0,1)	2	20	31	42	53	64	75	86	97	108	119	130
17	(4,0,1)	2	21	32	43	54	65	76	87	98	109	120	131
18	(5,0,1)	2	15	26	37	48	59	70	81	92	103	114	125
19	(6,0,1)	2	22	33	44	55	66	77	88	99	110	121	132
20	(7,0,1)	2	16	27	38	49	60	71	82	93	104	115	126
21	(8,0,1)	2	17	28	39	50	61	72	83	94	105	116	127
22	(9,0,1)	2	19	30	41	52	63	74	85	96	107	118	129
23	(10,0,1)	2	14	25	36	47	58	69	80	91	102	113	124
24	(0,1,1)	1	123	124	125	126	127	128	129	130	131	132	133
25	(1,1,1)	12	23	33	43	53	63	73	83	93	103	113	123
26	(2,1,1)	7	18	34	39	55	60	76	81	97	102	118	123
27	(3,1,1)	9	20	27	45	52	59	77	84	91	109	116	123
28	(4,1,1)	10	21	29	37	56	64	72	80	99	107	115	123
29	5,1,1)	4	15	28	41	54	67	69	82	95	108	121	123
30	(6,1,1)	11	22	31	40	49	58	78	87	96	105	114	123
31	(7,1,1)	5	16	30	44	47	61	75	89	92	106	120	123
32	(8,1,1)	6	17	32	36	51	66	70	85	100	104	119	123
33	(9,1,1)	8	19	25	42	48	65	71	88	94	111	117	123
34	(10,1,1)	3	14	26	38	50	62	74	86	98	110	122	123
35	(0,2,1)	1	68	69	70	71	72	73	74	75	76	77	78
36	(1,2,1)	11	23	32	41	50	59	68	88	97	106	115	124
37	(2,2,1)	12	18	28	38	48	58	68	89	99	109	119	129
38	(3,2,1)	5	20	34	37	51	65	68	82	96	110	113	127
39	(4,2,1)	7	21	26	42	47	63	68	84	100	105	121	126
40	(5,2,1)	6	15	30	45	49	64	68	83	98	102	117	132
41	(6,2,1)	9	22	29	36	54	61	68	86	93	111	118	125
42	(7,2,1)	8	16	33	39	56	62	68	85	91	108	114	131
43	(8,2,1)	10	17	25	44	52	60	68	87	95	103	122	130
44	(9,2,1)	3	19	31	43	55	67	68	80	92	104	116	128
45	(10,2,1)	4	14	27	40	53	66	68	81	94	107	120	133
			90	91	92	93	94	95	96	97	98	99	
4n	[((),3.1)		711	フリ	9/.	, ,	<i>,</i> –					77	1 () ()
46	(0,3,1) $(1,3,1)$	10	23	31	39	47	66	74	82	90	109	117	100 125

48	i	Pi							Li					
50 (4,3,1) 4 21 34 36 49 62 75 88 90 103 116 129 51 (5,3,1) 8 15 32 38 55 61 78 84 90 107 113 130 52 (6,3,1) 7 22 27 43 48 64 69 85 90 106 122 22 53 (7,3,1) 11 16 25 45 54 63 72 81 90 102 114 126 55 (9,3,1) 9 9 26 44 51 58 76 83 90 102 114 126 55 (9,3,1) 9 101 102 103 104 105 106 107 108 109 101 112 57 (0,4,1) 1 101 102 103 104 105 104	48	(2,3,1)	6	18	33	37	52	67	71	86	90	105	120	124
51 (5,3,1) 8 1,5 32 38 5,5 61 7,8 84 90 107 113 130 52 (6,3,1) 7 722 27 43 48 64 69 85 90 106 122 127 53 (7,3,1) 31 17 29 41 53 65 77 89 90 102 114 126 54 (8,3,1) 3 17 29 41 53 65 77 89 90 102 114 126 55 (9,3,1) 9 19 26 44 51 58 76 83 90 108 118 132 57 (0,4,1) 1 101 102 103 104 105 106 107 108 100 118 132 60 (3,4,1) 1 101 12 13 41 51 61	49	(3,3,1)	12	20	30	40	50	60	70	80	90	111	121	131
52 (6,3,1) 7 22 27 43 48 64 69 85 90 106 122 127 53 (7,3,1) 11 16 25 45 54 63 72 81 90 110 119 128 54 (8,3,1) 3 17 29 41 53 65 77 89 90 102 114 126 55 (9,3,1) 9 19 26 44 51 58 76 83 90 104 118 133 56 (10,3,1) 5 14 28 42 56 59 73 87 90 104 118 132 57 (0,4,1) 1 101 102 103 104 105 106 107 108 109 110 11 12 13 14 11 11 18 21 101 11 12	50	(4,3,1)	4	21	34	36	49	62	75	88	90	103	116	129
53 (7,3,1) 11 16 25 45 54 63 72 81 90 110 119 128 54 (8,3,1) 3 17 29 41 53 65 77 89 90 102 114 126 55 (9,3,1) 9 19 26 44 51 58 76 83 90 104 115 133 56 (10,3,1) 5 14 28 42 56 59 73 87 90 104 118 132 57 (0,4,1) 1 101 102 103 104 105 106 107 108 109 110 111 111 111 122 13 13 141 51 66 69 87 94 101 119 126 118 129 101 118 124 141 141 141 141 141 141 </td <td>51</td> <td>(5,3,1)</td> <td>8</td> <td>15</td> <td>32</td> <td>38</td> <td>55</td> <td>61</td> <td>78</td> <td>84</td> <td>90</td> <td>107</td> <td>113</td> <td>130</td>	51	(5,3,1)	8	15	32	38	55	61	78	84	90	107	113	130
54 (8,3,1) 3 17 29 41 53 65 77 89 90 102 114 126 55 (9,3,1) 9 19 26 44 51 58 76 83 90 108 115 133 56 (10,3,1) 5 14 28 42 56 59 73 87 90 104 118 132 57 (0,4,1) 1 101 102 103 104 105 106 107 108 109 110 111 18 27 36 56 65 74 83 92 101 118 124 60 (3,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 61 (4,4,1) 12 21 31 41 51 63 77 89 93 101 122	52	(6,3,1)	7	22	27	43	48	64	69	85	90	106	122	127
55 (9,3,1) 9 19 26 44 51 58 76 83 90 108 115 133 56 (10,3,1) 5 14 28 42 56 59 73 87 90 104 118 132 57 (0,4,1) 1 101 102 103 104 105 106 107 108 109 11 58 (1,4,1) 9 23 30 37 55 62 69 87 94 101 119 126 59 (2,4,1) 11 18 27 36 56 65 74 83 92 101 121 130 60 (3,4,1) 8 20 26 43 49 66 72 89 95 101 118 121 130 61 (4,4,1) 12 21 31 41 51 61 71	53	(7,3,1)	11	16	25	45	54	63	72	81	90	110	119	128
56 (10,3,1) 5 14 28 42 56 59 73 87 90 104 118 132 57 (0,4,1) 1 101 102 103 104 105 106 107 108 109 110 111 58 (1,4,1) 9 23 30 37 55 62 69 87 94 101 112 126 60 (3,4,1) 8 20 26 43 49 66 72 89 95 101 118 124 61 (4,4,1) 12 21 31 41 50 58 77 85 93 101 122 123 62 (5,4,1) 10 15 34 42 50 58 77 85 93 101 120 128 63 (6,4,1) 3 16 28 40 52 64 76	54	(8,3,1)	3	17	29	41	53	65	77	89	90	102	114	126
S7 (0,4,1) 1 101 102 103 104 105 106 107 108 109 110 111 58 (1,4,1) 9 23 30 37 55 62 69 87 94 101 119 126 59 (2,4,1) 11 18 27 36 56 65 74 83 92 101 121 130 60 (3,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 61 (4,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 62 (5,4,1) 10 15 34 42 50 58 77 84 98 101 115 129 64 (7,4,1) 3 36 40 52 64 76 88	55	(9,3,1)	9	19	26	44	51	58	76	83	90	108	115	133
58 (1,4,1) 9 23 30 37 55 62 69 87 94 101 119 126 59 (2,4,1) 11 18 27 36 56 65 74 83 92 101 121 130 60 (3,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 61 (4,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 62 (5,4,1) 10 15 34 42 50 58 77 85 93 101 112 128 63 (6,4,1) 7 17 33 38 54 59 75 80 96 101 113 133 66 (9,4,1) 4 19 32 45 47 60 73 <t></t>	56	(10,3,1)	5	14	28	42	56	59	73	87	90	104	118	132
59 (2,4,1) 11 18 27 36 56 65 74 83 92 101 121 130 60 (3,4,1) 8 20 26 43 49 66 72 89 95 101 118 124 61 (4,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 62 (5,4,1) 10 15 34 42 50 58 77 85 93 101 110 122 132 63 (6,4,1) 5 22 25 39 53 67 70 84 98 101 11 115 129 64 (7,4,1) 3 16 28 40 52 64 76 88 100 101 113 135 65 (8,4,1) 7 17 33 88 99 <t< td=""><td></td><td></td><td></td><td>101</td><td>102</td><td>103</td><td></td><td>105</td><td>106</td><td>107</td><td>108</td><td>109</td><td>110</td><td>111</td></t<>				101	102	103		105	106	107	108	109	110	111
60 (3,4,1) 8 20 26 43 49 66 72 89 95 101 118 124 61 (4,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 62 (5,4,1) 10 15 34 42 50 58 77 85 93 101 120 128 63 (6,4,1) 5 22 25 39 53 67 70 84 98 101 115 129 64 (7,4,1) 3 16 28 40 52 64 76 88 100 101 113 125 65 (8,4,1) 7 17 33 38 54 59 75 80 96 101 114 127 66 (9,4,1) 4 19 32 45 47 60 73	58	(1,4,1)	9	23		37		62		87	94	101	119	126
61 (4,4,1) 12 21 31 41 51 61 71 81 91 101 122 132 62 (5,4,1) 10 15 34 42 50 58 77 85 93 101 120 128 63 (6,4,1) 5 22 25 39 53 67 70 84 98 101 115 129 64 (7,4,1) 3 16 28 40 52 64 76 88 100 101 113 125 65 (8,4,1) 7 17 33 38 54 59 75 80 96 101 114 127 66 (9,4,1) 4 19 32 45 47 60 73 86 99 101 114 127 67 (10,4,1) 6 14 29 44 48 63 78 <t></t>	59	(2,4,1)	11	18	27	36		65		83	92	101		130
62 (5,4,1) 10 15 34 42 50 58 77 85 93 101 120 128 63 (6,4,1) 5 22 25 39 53 67 70 84 98 101 115 129 64 (7,4,1) 3 16 28 40 52 64 76 88 100 101 113 125 65 (8,4,1) 7 17 33 38 54 59 75 80 96 101 117 133 66 (9,4,1) 4 19 32 45 47 60 73 86 99 101 114 127 67 (10,4,1) 6 14 29 44 48 63 78 82 97 101 116 131 68 (0,5,1) 1 35 36 37 38 39 40						43		66						
63 (6,4,1) 5 22 25 39 53 67 70 84 98 101 115 129 64 (7,4,1) 3 16 28 40 52 64 76 88 100 101 113 125 65 (8,4,1) 7 17 33 38 54 59 75 80 96 101 117 133 66 (9,4,1) 4 19 32 45 47 60 73 86 99 101 114 127 67 (10,4,1) 6 14 29 44 48 63 78 82 97 101 116 131 68 (0,5,1) 1 35 36 37 38 39 40 41 42 43 44 45 69 (1,5,1) 8 23 29 35 52 58 75 81 </td <td>61</td> <td>(4,4,1)</td> <td>12</td> <td></td> <td></td> <td>41</td> <td></td> <td>61</td> <td></td> <td>81</td> <td>91</td> <td>101</td> <td>122</td> <td>132</td>	61	(4,4,1)	12			41		61		81	91	101	122	132
64 (7,4,1) 3 16 28 40 52 64 76 88 100 101 113 125 65 (8,4,1) 7 17 33 38 54 59 75 80 96 101 117 133 66 (9,4,1) 4 19 32 45 47 60 73 86 99 101 114 127 67 (10,4,1) 6 14 29 44 48 63 78 82 97 101 116 131 68 (0,5,1) 1 35 36 37 38 39 40 41 42 43 44 45 69 (1,5,1) 8 23 29 35 52 58 75 81 98 104 121 127 70 (2,5,1) 5 18 32 35 56 60 78 85 </td <td></td>														
65 (8,4,1) 7 17 33 38 54 59 75 80 96 101 117 133 66 (9,4,1) 4 19 32 45 47 60 73 86 99 101 114 127 67 (10,4,1) 6 14 29 44 48 63 78 82 97 101 116 131 68 (0,5,1) 1 35 36 37 38 39 40 41 42 43 44 45 69 (1,5,1) 8 23 29 35 52 58 75 81 98 104 121 122 70 (2,5,1) 5 18 32 35 49 63 77 80 94 108 122 125 71 (3,5,1) 12 15 25 35 56 66 76 86 </td <td></td> <td>-</td> <td></td>													-	
66 (9,4,1) 4 19 32 45 47 60 73 86 99 101 114 127 67 (10,4,1) 6 14 29 44 48 63 78 82 97 101 116 131 68 (0,5,1) 1 35 36 37 38 39 40 41 42 43 44 45 69 (1,5,1) 8 23 29 35 52 58 75 81 98 104 121 127 70 (2,5,1) 5 18 32 35 49 63 77 80 94 108 122 122 71 (3,5,1) 4 20 33 35 48 61 74 87 100 102 115 128 72 (4,5,1) 9 21 28 35 53 60 78 85 </td <td></td>														
67 (10,4,1) 6 14 29 44 48 63 78 82 97 101 116 131 68 (0,5,1) 1 35 36 37 38 39 40 41 42 43 44 45 69 (1,5,1) 8 23 29 35 52 58 75 81 98 104 121 127 70 (2,5,1) 5 18 32 35 49 63 77 80 94 108 122 125 71 (3,5,1) 4 20 33 35 48 61 74 87 100 102 115 128 72 (4,5,1) 9 21 28 35 53 60 78 85 92 110 117 124 73 (5,5,1) 12 15 25 35 <t>56 66 76 86<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t>														
68 (0,5,1) 1 35 36 37 38 39 40 41 42 43 44 45 69 (1,5,1) 8 23 29 35 52 58 75 81 98 104 121 127 70 (2,5,1) 5 18 32 35 49 63 77 80 94 108 122 125 71 (3,5,1) 4 20 33 35 48 61 74 87 100 102 115 128 72 (4,5,1) 9 21 28 35 53 60 78 85 92 110 117 124 73 (5,5,1) 12 15 25 35 56 66 76 86 96 106 116 126 74 (6,5,1) 3 22 34 35 47 59 71 83 </td <td></td>														
69 (1,5,1) 8 23 29 35 52 58 75 81 98 104 121 127 70 (2,5,1) 5 18 32 35 49 63 77 80 94 108 122 125 71 (3,5,1) 4 20 33 35 48 61 74 87 100 102 115 128 72 (4,5,1) 9 21 28 35 53 60 78 85 92 110 117 124 73 (5,5,1) 12 15 25 35 56 66 76 86 96 106 116 126 74 (6,5,1) 3 22 34 35 50 65 69 84 99 103 118 133 75 (7,5,1) 6 16 31 35 54 62 70 8														
70 (2,5,1) 5 18 32 35 49 63 77 80 94 108 122 125 71 (3,5,1) 4 20 33 35 48 61 74 87 100 102 115 128 72 (4,5,1) 9 21 28 35 53 60 78 85 92 110 117 124 73 (5,5,1) 12 15 25 35 56 66 76 86 96 106 116 126 74 (6,5,1) 3 22 34 35 47 59 71 83 95 107 119 131 75 (7,5,1) 6 16 31 35 50 65 69 84 99 103 118 133 76 (8,5,1) 11 17 26 35 55 64 73														
71 (3,5,1) 4 20 33 35 48 61 74 87 100 102 115 128 72 (4,5,1) 9 21 28 35 53 60 78 85 92 110 117 124 73 (5,5,1) 12 15 25 35 56 66 76 86 96 106 116 126 74 (6,5,1) 3 22 34 35 47 59 71 83 95 107 119 131 75 (7,5,1) 6 16 31 35 50 65 69 84 99 103 118 133 76 (8,5,1) 11 17 26 35 55 64 73 82 91 111 120 129 77 (9,5,1) 10 19 27 35 54 62 70 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
72 (4,5,1) 9 21 28 35 53 60 78 85 92 110 117 124 73 (5,5,1) 12 15 25 35 56 66 76 86 96 106 116 126 74 (6,5,1) 3 22 34 35 47 59 71 83 95 107 119 131 75 (7,5,1) 6 16 31 35 50 65 69 84 99 103 118 133 76 (8,5,1) 11 17 26 35 55 64 73 82 91 111 120 129 77 (9,5,1) 10 19 27 35 54 62 70 89 97 105 113 132 78 (10,5,1) 7 14 30 35 51 67 72 <t></t>														
73 (5,5,1) 12 15 25 35 56 66 76 86 96 106 116 126 74 (6,5,1) 3 22 34 35 47 59 71 83 95 107 119 131 75 (7,5,1) 6 16 31 35 50 65 69 84 99 103 118 133 76 (8,5,1) 11 17 26 35 55 64 73 82 91 111 120 129 77 (9,5,1) 10 19 27 35 54 62 70 89 97 105 113 132 78 (10,5,1) 7 14 30 35 51 67 72 88 93 109 114 130 79 (0,6,1) 1 112 113 114 115 116 117														
74 (6,5,1) 3 22 34 35 47 59 71 83 95 107 119 131 75 (7,5,1) 6 16 31 35 50 65 69 84 99 103 118 133 76 (8,5,1) 11 17 26 35 55 64 73 82 91 111 120 129 77 (9,5,1) 10 19 27 35 54 62 70 89 97 105 113 132 78 (10,5,1) 7 14 30 35 51 67 72 88 93 109 114 130 79 (0,6,1) 1 112 113 114 115 116 117 118 119 120 121 122 80 (1,6,1) 7 23 28 44 49 65 70														
75 (7,5,1) 6 16 31 35 50 65 69 84 99 103 118 133 76 (8,5,1) 11 17 26 35 55 64 73 82 91 111 120 129 77 (9,5,1) 10 19 27 35 54 62 70 89 97 105 113 132 78 (10,5,1) 7 14 30 35 51 67 72 88 93 109 114 130 79 (0,6,1) 1 112 113 114 115 116 117 118 119 120 121 122 80 (1,6,1) 7 23 28 44 49 65 70 86 91 107 112 128 81 (2,6,1) 10 18 26 45 53 61 69														
76 (8,5,1) 11 17 26 35 55 64 73 82 91 111 120 129 77 (9,5,1) 10 19 27 35 54 62 70 89 97 105 113 132 78 (10,5,1) 7 14 30 35 51 67 72 88 93 109 114 130 79 (0,6,1) 1 112 113 114 115 116 117 118 119 120 121 122 80 (1,6,1) 7 23 28 44 49 65 70 86 91 107 112 128 81 (2,6,1) 10 18 26 45 53 61 69 88 96 104 112 131 82 (3,6,1) 11 20 29 38 47 67 76														
77 (9,5,1) 10 19 27 35 54 62 70 89 97 105 113 132 78 (10,5,1) 7 14 30 35 51 67 72 88 93 109 114 130 79 (0,6,1) 1 112 113 114 115 116 117 118 119 120 121 122 80 (1,6,1) 7 23 28 44 49 65 70 86 91 107 112 128 81 (2,6,1) 10 18 26 45 53 61 69 88 96 104 112 131 82 (3,6,1) 11 20 29 38 47 67 76 85 94 103 112 122 84 (5,6,1) 3 15 27 39 51 63 75														
78 (10,5,1) 7 14 30 35 51 67 72 88 93 109 114 130 79 (0,6,1) 1 112 113 114 115 116 117 118 119 120 121 122 80 (1,6,1) 7 23 28 44 49 65 70 86 91 107 112 128 81 (2,6,1) 10 18 26 45 53 61 69 88 96 104 112 131 82 (3,6,1) 11 20 29 38 47 67 76 85 94 103 112 132 83 (4,6,1) 6 21 25 40 55 59 74 89 93 108 112 127 84 (5,6,1) 3 15 27 39 51 63 75														
79 (0,6,1) 1 112 113 114 115 116 117 118 119 120 121 122 80 (1,6,1) 7 23 28 44 49 65 70 86 91 107 112 128 81 (2,6,1) 10 18 26 45 53 61 69 88 96 104 112 131 82 (3,6,1) 11 20 29 38 47 67 76 85 94 103 112 132 83 (4,6,1) 6 21 25 40 55 59 74 89 93 108 112 127 84 (5,6,1) 3 15 27 39 51 63 75 87 99 111 112 124 85 (6,6,1) 12 22 32 42 52 62 72													-	
80 (1,6,1) 7 23 28 44 49 65 70 86 91 107 112 128 81 (2,6,1) 10 18 26 45 53 61 69 88 96 104 112 131 82 (3,6,1) 11 20 29 38 47 67 76 85 94 103 112 132 83 (4,6,1) 6 21 25 40 55 59 74 89 93 108 112 127 84 (5,6,1) 3 15 27 39 51 63 75 87 99 111 112 124 85 (6,6,1) 12 22 32 42 52 62 72 82 92 102 112 133 86 (7,6,1) 9 16 34 41 48 66 73														
81 (2,6,1) 10 18 26 45 53 61 69 88 96 104 112 131 82 (3,6,1) 11 20 29 38 47 67 76 85 94 103 112 132 83 (4,6,1) 6 21 25 40 55 59 74 89 93 108 112 127 84 (5,6,1) 3 15 27 39 51 63 75 87 99 111 112 124 85 (6,6,1) 12 22 32 42 52 62 72 82 92 102 112 133 86 (7,6,1) 9 16 34 41 48 66 73 80 98 105 112 130 87 (8,6,1) 4 17 30 43 56 58 71 84 97 110 112 125 88 (9,6,1) 5 19													1	
82 (3,6,1) 11 20 29 38 47 67 76 85 94 103 112 132 83 (4,6,1) 6 21 25 40 55 59 74 89 93 108 112 127 84 (5,6,1) 3 15 27 39 51 63 75 87 99 111 112 124 85 (6,6,1) 12 22 32 42 52 62 72 82 92 102 112 133 86 (7,6,1) 9 16 34 41 48 66 73 80 98 105 112 130 87 (8,6,1) 4 17 30 43 56 58 71 84 97 110 112 125 88 (9,6,1) 5 19 33 36 50 64 78 8														
83 (4,6,1) 6 21 25 40 55 59 74 89 93 108 112 127 84 (5,6,1) 3 15 27 39 51 63 75 87 99 111 112 124 85 (6,6,1) 12 22 32 42 52 62 72 82 92 102 112 133 86 (7,6,1) 9 16 34 41 48 66 73 80 98 105 112 130 87 (8,6,1) 4 17 30 43 56 58 71 84 97 110 112 125 88 (9,6,1) 5 19 33 36 50 64 78 81 95 109 112 126 89 (10,6,1) 8 14 31 37 54 60 77 8		, ,											-	
84 (5,6,1) 3 15 27 39 51 63 75 87 99 111 112 124 85 (6,6,1) 12 22 32 42 52 62 72 82 92 102 112 133 86 (7,6,1) 9 16 34 41 48 66 73 80 98 105 112 130 87 (8,6,1) 4 17 30 43 56 58 71 84 97 110 112 125 88 (9,6,1) 5 19 33 36 50 64 78 81 95 109 112 126 89 (10,6,1) 8 14 31 37 54 60 77 83 100 106 112 129 90 (0,7,1) 1 46 47 48 49 50 51													-	
85 (6,6,1) 12 22 32 42 52 62 72 82 92 102 112 133 86 (7,6,1) 9 16 34 41 48 66 73 80 98 105 112 130 87 (8,6,1) 4 17 30 43 56 58 71 84 97 110 112 125 88 (9,6,1) 5 19 33 36 50 64 78 81 95 109 112 126 89 (10,6,1) 8 14 31 37 54 60 77 83 100 106 112 129 90 (0,7,1) 1 46 47 48 49 50 51 52 53 54 55 56 91 (1,7,1) 6 23 27 42 46 61 76 80<		,												
86 (7,6,1) 9 16 34 41 48 66 73 80 98 105 112 130 87 (8,6,1) 4 17 30 43 56 58 71 84 97 110 112 125 88 (9,6,1) 5 19 33 36 50 64 78 81 95 109 112 126 89 (10,6,1) 8 14 31 37 54 60 77 83 100 106 112 129 90 (0,7,1) 1 46 47 48 49 50 51 52 53 54 55 56 91 (1,7,1) 6 23 27 42 46 61 76 80 95 110 114 129 92 (2,7,1) 4 18 31 44 46 59 72 85 </td <td></td>														
87 (8,6,1) 4 17 30 43 56 58 71 84 97 110 112 125 88 (9,6,1) 5 19 33 36 50 64 78 81 95 109 112 126 89 (10,6,1) 8 14 31 37 54 60 77 83 100 106 112 129 90 (0,7,1) 1 46 47 48 49 50 51 52 53 54 55 56 91 (1,7,1) 6 23 27 42 46 61 76 80 95 110 114 129 92 (2,7,1) 4 18 31 44 46 59 72 85 98 111 113 126 93 (3,7,1) 7 20 25 41 46 62 78 83 </td <td></td>														
88 (9,6,1) 5 19 33 36 50 64 78 81 95 109 112 126 89 (10,6,1) 8 14 31 37 54 60 77 83 100 106 112 129 90 (0,7,1) 1 46 47 48 49 50 51 52 53 54 55 56 91 (1,7,1) 6 23 27 42 46 61 76 80 95 110 114 129 92 (2,7,1) 4 18 31 44 46 59 72 85 98 111 113 126 93 (3,7,1) 7 20 25 41 46 62 78 83 99 104 120 125 94 (4,7,1) 3 21 33 45 46 58 70 82 </td <td></td>														
89 (10,6,1) 8 14 31 37 54 60 77 83 100 106 112 129 90 (0,7,1) 1 46 47 48 49 50 51 52 53 54 55 56 91 (1,7,1) 6 23 27 42 46 61 76 80 95 110 114 129 92 (2,7,1) 4 18 31 44 46 59 72 85 98 111 113 126 93 (3,7,1) 7 20 25 41 46 62 78 83 99 104 120 125 94 (4,7,1) 3 21 33 45 46 58 70 82 94 106 118 130														
90 (0,7,1) 1 46 47 48 49 50 51 52 53 54 55 56 91 (1,7,1) 6 23 27 42 46 61 76 80 95 110 114 129 92 (2,7,1) 4 18 31 44 46 59 72 85 98 111 113 126 93 (3,7,1) 7 20 25 41 46 62 78 83 99 104 120 125 94 (4,7,1) 3 21 33 45 46 58 70 82 94 106 118 130														
91 (1,7,1) 6 23 27 42 46 61 76 80 95 110 114 129 92 (2,7,1) 4 18 31 44 46 59 72 85 98 111 113 126 93 (3,7,1) 7 20 25 41 46 62 78 83 99 104 120 125 94 (4,7,1) 3 21 33 45 46 58 70 82 94 106 118 130		_ `												
92 (2,7,1) 4 18 31 44 46 59 72 85 98 111 113 126 93 (3,7,1) 7 20 25 41 46 62 78 83 99 104 120 125 94 (4,7,1) 3 21 33 45 46 58 70 82 94 106 118 130		,												
93 (3,7,1) 7 20 25 41 46 62 78 83 99 104 120 125 94 (4,7,1) 3 21 33 45 46 58 70 82 94 106 118 130														
94 (4,7,1) 3 21 33 45 46 58 70 82 94 106 118 130													-	
													1	
	95	(5,7,1)	5	15	29	43	46	60	74	88	91	105	119	133

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

i	Pi							L_{i}					
96	(6,7,1)	10	22	30	38	46	65	73	81	100	108	116	124
97	(7,7,1)	12	16	26	36	46	67	77	87	97	107	117	127
98	(8,7,1)	8	17	34	40	46	63	69	86	92	109	115	132
99	(9,7,1)	11	19	28	37	46	66	75	84	93	102	122	131
100	(10,7,1)	9	14	32	39	46	64	71	89	96	103	121	128
101	(0,8,1)	1	57	58	59	60	61	62	63	64	65	66	67
102	(1,8,1)	5	23	26	40	54	57	71	85	99	102	116	130
103	(2,8,1)	9	18	25	43	50	57	75	82	100	107	114	132
104	(3,8,1)	3	20	32	44	56	57	69	81	93	105	117	129
105	(4,8,1)	11	21	30	39	48	57	77	86	95	104	113	133
106	(5,8,1)	7	15	31	36	52	57	73	89	94	110	115	131
107	(6,8,1)	8	22	28	45	51	57	74	80	97	103	120	126
108	(7,8,1)	4	16	29	42	55	57	70	83	96	109	122	124
109	(8,8,1)	12	17	27	37	47	57	78	88	98	108	118	128
110	(9,8,1)	6	19	34	38	53	57	72	87	91	106	121	125
111	(10,8,1)	10	14	33	41	49	57	76	84	92	111	119	127
112	(0,9,1)	1	79	80	81	82	83	84	85	86	87	88	89
113	(1,9,1)	4	23	25	38	51	64	77	79	92	105	118	131
114	(2,9,1)	3	18	30	42	54	66	78	79	91	103	115	127
115	(3,9,1)	10	20	28	36	55	63	71	79	98	106	114	133
116	(4,9,1)	8	21	27	44	50	67	73	79	96	102	119	125
117	(5,9,1)	9	15	33	40	47	65	72	79	97	104	122	129
118	(6,9,1)	6	22	26	41	56	60	75	79	94	109	113	128
119	(7,9,1)	7	16	32	37	53	58	74	79	95	111	116	132
120	(8,9,1)	5	17	31	45	48	62	76	79	93	107	121	124
121	(9,9,1)	12	19	29	39	49	59	69	79	100	110	120	130
122	(10,9,1)	11	14	34	43	52	61	70	79	99	108	117	126
123	(0,10,1)	1	24	25	26	27	28	29	30	31	32	33	34
124	(1,10,1)	3	23	24	36	48	60	72	84	96	108	120	132
125	(2,10,1)	8	18	24	41	47	64	70	87	93	110	116	133
126	(3,10,1)	6	20	24	39	54	58	73	88	92	107	122	126
127	(4,10,1)	5	21	24	38	52	66	69	83	97	111	114	128
128	(5,10,1)	11	15	24	44	53	62	71	80	100	109	118	127
129	(6,10,1)	4	22	24	37	50	63	76	89	91	104	117	130
130	(7,10,1)	10	16	24	43	51	59	78	86	94	102	121	129
131	(8,10,1)	9	17	24	42	49	67	74	81	99	106	113	131
132	(9,10,1)	7	19	24	40	56	61	77	82	98	103	119	124
133	(10,10,1)	12	14	24	45	55	65	75	85	95	105	115	125

Figure (1)

References

- **1.** Kadhum, S.J., (2001), Construction of (k,n)-arcs from (k,m)-arcs in PG(2,p) for $2 \le m < n$, M.Sc. Thesis, University of Baghdad, Iraq.
- **2.** Hirschfeld, J. W. P., (2001), Complete arcs Discrete Math., North Holland Mathematics Studies 123, North-Holland, Amesterdam, 243-250.
- **3.** Hirschfeld, J. W. P., (1979), Projective Geometries Over Finite Fields, Second Edition, Oxford University Press, Oxford.
- **4.** Hirschfeld, J. W. P. and Storme, L.,(1998), The Packing Problem in Statistics, Coding Theory and Finite Projective Spaces, J.Statistical Planning and Inference, 72, pp.355-380.
- **5.** R.Hill, (1992), Optimal Linear Codes in: C.Mitichell (Ed.) Crytography and Coding, Oxford University ,Discrete Mathematics, Press: Oxford, pp.75-104.
- **6.** Rumen Daskalov, (2008), A GeometricConstruction of (38,2)-Blocking Set in PG(2,13) and the Related [14,5,3,133]₁₃ Code, Discrete Mathematics, Technical University of Gabrovo, Bulgaria, 308 (1341-1345).
- **7.** Hassan, H. K., (2002), "Reverse Construction of (k,n)-arcs in PG(2,q) over some GF(q)", M.Sc.Thesis, College of Education Ibn-Al Haitham, University of Baghdad.

بناء الاقواس (k_n,n) في المستوي إلاسقاطي PG(2,11) بطريقة هندسية مع المجموعات القالبية والشفرات الاستقاطية المرتبطة بها

آمال شهاب المختار امنيات عدنان حسن قسم الرياضيات / كلية التربية للعلوم الصرفة (ابن الهيثم) / جامعة بغداد

أستلم البحث في: 17 حزيران 2013 ، قبل للنشر في: 10 تشرين الأول 2013

الخلاصة

القوس (k,n)هو مجموعة من k من النقاط في PG(2,q)أذ توجد n+1 ولا توجد n+1 منها على استقامة واحدة، فيكون القوس – (k,n) كاملاً اذا لم يكن محتوى في قوس-(k+1,n).

PG(2,11) في هذا البحث نقوم ببناء اقواس (k_n,n) كاملة (k_n,n) كاملة (k_n,n) كاملة والمستوي الاسقاطي بطريقة هندسية، مع المجموعات القالبية والشفرات الاسقاطية المرتبطة بها.

كلمات مفتاحية : أقواس كاملة ، مجموعة قالبية، شفرة أسقاطية