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Abstract

In this paper, the discriminant analysis is used to classify the most wide spread heart diseases
known as coronary heart diseases into two groups (patient, not patient) based on the changes
of discrimination features of ten predictor variables that we believe they cause the disease .
A random sample for each group is employed and the stepwise procedures are performed in
order to delete those variables that are not important for separating the groups. Tests of
significance of discriminant analysis and estimating the misclassification rates are performed.

Keywords: Discriminant analysis, classification, stepwise procedures, misclassification
rates .
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Introduction

Discriminant analysis is a technique for the multivariate study of group differences.
Discriminant analysis is particularly appropriate when one wishes to describe, summarize,
and understand the differences between or among groups.

It is convenient to determine which of a set of variables is best captures or characterizes group
differences. The most frequent applications of discriminant analysis are for predictive
purpose, that is, for situations in which it is necessary or desirable to classify subjects into
groups or categories.[1]

Theoretical Part

1. The Discriminant Function for Two Groups

The derived discriminant functions may be used to classify new cases into groups. Prior
probabilities of belonging to each group may be entered or derived from the observed data.
For the case of two groups, we assume that the two populations to be compared would have
the same covariance matrix ) 1=)»=) , but distinct mean vectors u; and p,. We work with
samples y,, ¥ 5, - - - Yin, and y, , ¥y, - - - Yan, from the two populations. As usual ,each

vector y,, consists of measurements on p variables. The discriminant function is the linear
combination of these p variables that maximizes the distance between the two transformed
!
group mean vectors. A linear combination z=a y transforms each observation vector to scalar
!

Z1i= A yi= a1y T Qe t . tapyp L1712, .,
!

2= A Y= A Yai1 T QYo t .. Fayyap 171, 2,0,
Hence, the n; + n, observation vectors in the two samples. yi1, yi2, .., Yin,
Y215 Y225 ooe s ¥y 5 A€ transformed to scalars zi1, z12, ..., Z1n,, 221, 222, ..., Zn,
nq 7z ny 7z
— i=1 #1i r— — i=1 %21 —
We find the means z, = ==L — = ¢ y.and z, == L= = ay,
nq n;
ni nz
- itV _ 2i21 Yy
where y, = ——— , y, =———
nq n;
= _ 5\2
. . . (Z1— 2Z) .
We wish to find the vector a that maximizes the ratio ————— which can be expressed as [1] :
SZ
— e —\12
Q_(Z1_Zz) _[a(y1_y2)] (2.1)

s2 a's,a
The numerator of this ratio is the square of the difference between the means of z for the two

groups and the denominator is the sum of squares within groups. Putting d&=y, —y, , D= ad
and w= a'S,a, and substituting in equation ( 2.1 ) we get:

D2
Q= - ..(2.2)
By differentiating Q with respect to a and putting the derivative equal to zero [2]

0Q 2wDd — 2D’S,a

we obtain 3 = 2 =0 y
This yields wDd = DZSpa , Dividing by D* we obtain Bd =Spa
w w
and hence a = S; D d, since D is any nonzero constant so let D= 1 and
maximize of ( 2.1 ) occur as when :[1]
a=S, d=S;(¥, - ¥, .(23)
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Or when a is any multiple of S;(yl — ¥,). Thus the maximizing vector a is not unique
however its direction is unique, that is the relative values or ratios
of a1, a», ..., apare unique .

2. Discriminant Analysis For Several Groups

In discriminant analysis for several groups, we are concerned with finding linear
combinations of variables that would best separate the k groups of multivariate observations.
For k groups (samples) with n; observations in the it group, we transform each observation
vector y;j to obtain

!

Zij = A yj i=1,2,...,k; j=1,2,...,n
nj
o o X=1Yj ,
and find the means z; = a 'y, , where y. = . As in the two group case , we seek the
n;
vector a that maximally separates 7;, Z,, . . . , Z. To express separation among Z;, Zy, . . . , Zy

we extend the separation criterion to the k group case
Since a'( Y, — Y, )=, — S/Z)' a we can write :[1]
(z, — 7)? _ [a' (71— 7)) _ a(y1-5)F1— ¥2) a

, ; ..(24

S? aS,a aS,a (2.4)
To extend (2.4) to k groups, we use the H matrix in place of
(1 — 72)(1 — ¥2) and E in place of S, to obtain:

a'Ha
A = ——— where : -.(2.5)

aEa

k ko ni
sz @y, -y)G, -7 ), E=ZZ( Vij = ¥i) &0 — %)’

i=1 i=1 j=
_ ZJ 1y1J zz _ Y,
Vi. = n

i=1 j=
The pXp matrix H has a between sum of squares on the diagonal for each of the p variables
.off diagonal elements are analogous sums of products for each pair of variables. The pXp
error matrix E has a within sum of squares for each variable on the diagonal ,with analogous
sums of products off diagonal. Thus H has the form:

SSH,; SPH;, . . . SPHy,
/SPH12 SSH,, . . . SPHZP\
| |
H=] - o (2.6)
SPHy, SPH,, . . . SSH,,
The matrix E can be expressed in a form similar to ( 2.6 )
SSE;; SPE,, . . . SPEqy,
/SPE12 SSE,, . . . SPEZP\
| |
E=| - - o (2.7)
SPE,, SPE;, . . . SSE,,
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We can write the ratio in ( 2.5 ) as a Ha = Ad Ea

a (Ha - AEa)=0 (28)
We examine values of A and a that are solutions of ( 2.8 ) in a search for the value of a that

. . . ' ! . . . . .
results in maximum A. The solution a = 0 is not permissible because it gives

0
A= 0 in (2.5).Other solutions are found from
Ha — AEa=0 ..(2.9)

Which can be written in the form

(ET'H-A1)a =0 ..(2.10)
The solution of ( 2.10 ) are the eigenvalues 1, , 4, , ..., As and associated eigenvectors
ai,a,...,asof E'H. The eigenvalues are considered to be ranked A4,> A1,>... > A,

The number of nonzero eigenvalues s is the rank of H which can be found as the smaller of
k—1

a Ha
and p. Thus the largest eigenvalue 4, is the maximum value of 1 = T Ea in ( 2.10 ) and the

coefficient vector that produces the maximum is the corresponding eigenvector a;. Eq( 2.10 )

a Ha
can be verified by using calculus as follows: Differentiating A = P with respect

to a then putting the derivative equal to zero, we obtain :[55]

02 2(a'’Ea)Ha — 2(a'Ha)Ea

= n = O

da (a'Ea)?

This yields : (a’'Ea)Ha — (a'Ha)Ea = 0, dividing by a'Ea, we obtain :

Ha —1Ea=0,or(H—A1E)a=0.

Which can be written as (E"'H — AI ) a =0 hence , the discriminant function that maximally

!
separates the means is z;=a, y that is, it represents the dimension that maximally separates the
means. From the s eigenvectorsa; , a,, ..., as of ET'H corresponding to A, , A, , ..., A, we

obtain s discriminant functions.
[ [

!
ZI=a;y,Z%=ay,...,Z= a y. The relative importance of each discriminant function
zi, 1=1,2, . . . ,s. can be assessed by considering its eigenvalue as a proportion of the total [37]
Ai
s .(2.11)
j=17;

By this criterion two or three discriminant functions will often suffice to describe the group
differences. The discriminant function associated with small eigenvalues can be neglected.

3. Test of Significance of Discriminant Analysis

For the case of two groups, we wish to test Ho : py =, Vs Hi:py #uy
the discriminant function coefficient vector a is significantly different form 0 if T?is
significant, where :[5]

nin '
T = G 9 S (- W) - (2.12)
Which is distributed as le,,n L +n,—2 When Ho: pi=ps is true. We reject Ho if T > Ti,p,n L +ny-2-
Also, we can use F approximation test where :[5]
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F
n+n,—p-—1
e B Bt St . (2.13)
(ny +n, — 2)p
Which is distributed as Fy, 5, 1n,— p—1 When Ho: p1=u, is true. We reject Ho if
F> Fp Mni+ny,— p—1
For several groups, to test Hy : yy =, =. . . =1, we use the Wilk's lambda statistic defined
as : [6]
|E|
A= —— ..(2.14
|E+H]| ( )

We reject Ho if A > Ag v,y - The parameters in Wilk's A distribution are p=number of
variables, vy = k—1 degrees of freedom of hypothesis,

=N-—kwithN = z n; degrees of freedom for error.

Wilk's A in ( 2.14 ) can be expressed in terms of the eigenvalues A, , A, , ..., A, of E"*H as
follows :

(2.1
PYEY? (215)

The number of nonzero eigenvalues of E"*H is s= min ( p, vy ) which is the rank of H. The
range of A is 0 < A < 1 and the test based on wilk's A is an inverse test in the sense that we
reject Hy for small value of A. Since A is small if one or more A's are large, Wilk's A tests for
significance of the eigenvalues and thereby for the discriminant functions. The s eigenvalues
represent s dimensions of separation of the mean vectors y,,V,,...,y,. We are interested in
which, if any of these dimensions is significant. In addition to the Wilk's A test.

We can use y* approximation for A; with vy , vg degrees of freedom.

Vi=—|ve =1 (p —virtD)| Ina, (2.16)

__ [N—l—%(prk)]lnf[l_}l_Ai = [N—l—%(p+k)]iln(1+ﬂi)

Which is approximately y* with p(k—1) degrees of freedom. The test statistic A, and its
approximations( 2.16 ) test the significance of all of 4, , 12, ..., A If the test leads to
rejection of Hy, we conclude that at least one of the A's is significantly different from zero, and
therefore there is at least one dimension of separation of mean vectors. Since 4; is the largest,

!
we are only sure of its significance along with that of z;= a, y To test the significance of
Az, , As ;we delete A, from Wilk's A and the associated x* approximation to obtain

A, _1_[1

VZ——[N—l——(p+k)]21n(1+/1)

Which is approximately y* w1th (p—1)(k—2) degree of freedom.
If this test leads to rejection of Hy, we conclude that at least A, is significant along with the

!
associated discriminant function z,= a, y. We can continue in this fashion, testing each A; in
turn until a test fails to reject Ho. The test statistic at the m™ step is :
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S
1
A = 1_[ - Which i distributed a5 Ay e, ko -1 (217
i=m . .
The statistic Vy, = — [N —1-5 0+ k)] D ina, (218)
i=2

= [N—1—% (p+k)]iln(1+/1i)

has an approximate y* distribution with (p—m+1)(k—m) degrees of freedom.
S

1
We can also use F approximation for each A.. ForA, = 1_[ T 7 Veuse
i=1 i
_1-AYfdf, 2 10
= Ai/t i, ..(2.19)
P3(k—1)2 — 4
wheret = |—
P+ (k—-1)2-5

1 1
Putting w=N — 1 — E(p+k) then df; = P(k— 1), df, = wt — 3 [p(k—1) — 2]

S
1
For A, = 1_[ 1T+ 7 ,m=23,...,8

1-AY0af, .
We use F :TE with p — m+1 and k — m in place of pand k — 1
1
m

| (p—m+ 1)*(k—m)*—4
Y o-mr 2+ k—m)2—5

w=N-1- 21(p+k) ,df;=(p — m+1)(k — m), df,=wt — % [((p—m+ 1)(k—m) — 2]

4. Tests of Equality of Covariance Matrices [1]

For k multivariate populations, the hypothesis of equality of covariance matrices is
Ho : 21=20= =)k
24 35—
Calculate C, = [ k11 ] |2 ] (220

vi  Zgvif leprne-n)
Then : U= —2(1—C;)InM is approximately y? E (k—Dp(p+ 1] ..(2.21)
ioove %
Where M is M = D112 15215 - 52 ..(2.22)
ISpl 2
k
1
and, InM = EZ v In|S;|
i=1
k
1
-5 (z v In[s,| . (2.23)
i=1
We reject Hp if U > y2 ..(2.24)
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5. Stepwise Selection Of Variables [6]

The stepwise method for selecting variables in discriminant analysis is rather like doing a
stepwise regressions and is especially useful in similar circumstances, namely when we have
rather a long list of possible classification variables and it is unlikely that all will make a
useful contribution to a set of discriminant functions. We would like to find the best subset, or
else something close to that. The single variable that gives the significant classification into
our groups is chosen first, then we look at the remaining variables and add the one that gives
the biggest improvement. We check the two variables now, and make sure that each makes a
significant contribution in the presence of the other. At each step we see whether another
variables can be added that will make a significant improvement, and whether any previous
ones can be removed. The process stops when no more variables can be added or removed at
the level of significance we are using.

6. Classification Procedures
6.1. Classification use Discriminant Function
A simple procedure for classification can be based on the discriminant function,
’ — — r~-1
z=ay,= (1~ 52) S, v, ..(2.25)
Where y, is the vector of measurements on a new sampling unit that we wish to classify into

one of the two groups (populations).
Denote the two groups by G; and G,. Fisher’s (1936) linear classification procedure

!
assigns y, to Gy if zg=a y, is closer to z; than to 7, and assigns y, to

. . . 1
G,if zyis closer to Zthan to 7, zyis closer to z; if z, > 5 (z, + 7,)

ny

- 71§ = = — N'o—1 —

where 7, = P ay, = 31— ¥2) Sp™ V1
i=1 )

To express the classification rule in terms of y, we first write > (z, + 7,)

in the form:

1 1 ,, _ 1 e _
E (Zl + ZZ) = E a (y1 +y2) = E(yl _yz) Sp:l (yl + yz) ( 226)

Then the classification rule becomes, assign yo to G if [1]
’ — — ’ - 1 — — ’ —_— a— o
ay, =, —,) Spy, > ~G; —5,) Spt (7, +7,) (2.27)
and assign yp to Gy if
’ — — ’ - 1 — — ’ —_— a— o
a'y, =, —,) Spy, < 50, =5,)'Sp" (5, +5,) .(2.28)

6.2. Classification Use Simple Classification Function [6]

Fisher (1936) proposed a simple classification function for each group based on a linear
combination of the discriminating variables. For the case of k groups and p discriminating
variables, the simple classification function has the form

7g=by + by Xy +by Xy +... by X, g= 1.2, k .(229)

The coefficient bgi associated with variable i in group g is given as :
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P
by, = (N =) ) Wy,
=1
Where wy; represents the ijth element from the inverse matrix of within groups sums of

squares and cross products, N represents the whole number of observations.
The constant by is given as :

p
by, = — o.SZbkj n ..(2:30)
=1

The rule of classification is simply to classify the new observation to the group that yields a
maximum value of the classification function h after substituting all discriminating variables
into classification functions.

7. Estimating Misclassification Rates
A simple estimate of the error rate can be obtained by trying out the classification procedure
on the same data set that has been used to compute the classification function.
This method is referred to as resubstitution. Each observation vector y; is substituted to the
classification functions and assigned to a group .[1]
We then count the number of correct classifications and the number of misclassifications.
The proportion of misclassifications resulting from resubtitution is called the apparent error
rate (APER). The results can be conveniently displayed in a classification table as shown
below:

Table ,classification table for two groups

Actual grou Number of Prerc::lclted
group observations lg p2

1 n; n;; | N

2 np Ny | Ny

Let us denote the first and second groups by G; and G, respectively. Among n; observations
in Gy,n;; are correctly classified into G; and n;, are misclassified into G, ,where nj=n;;+n;,.
Similarly of the n, observations in Gj, ny; are misclassified into G, and ny, are correctly

classified into G, where n,=n,;+n,, thus:[6]
njp+ny;

nyTny

Similarly, we can define apparent correct classification rate (APCR) as:

APCR= 122 .(232)
nyTny

The method of resubstitution can be readily extended to the case of several groups.

Particular Application

The real data were collected from records of (51) real patients suffering from coronary
heart disease (CHD) from Ibn-Al-Nafees Hospital, moreover, the same informations were
obtained about (54) healthy persons. The discriminant analysis were then performed with two
groups (patient, not patient) and ten predictor variables that we belive they cause the disease.
the variables for each group are :
A. The dependent variable which represents (0 for Not patient) and (1 for patient)
B. Ten independent variables are ascribed below :
1. Age (X))
2. S.cholestrol (X3)

338 | Mathematics



2014 ple (1 5]y 27 alxh
Ibn Al-Haitham Jour. for Pure & Appl. Sci.

bl goopa) oglxll et el

Yol. 27 (1) 2014

. Triglyceride (X3)

. LDL (high low density cholesterol) (X4)

. HDL(low high density cholesterol) (Xs)

. Diabetes mellitus (Sugar) (Xe)

. Hypertension (systolic Blood pressure) (X7)

. Sex (0 for Male) (1 for Female) (Xs)

9. Smoking (0 for not smoker) (1 for X-smoker) (2 for smoker) (Xo)

10. Family History (Heredity factor) (Xo)

(0 for no heritage factor) (1 for heritage factor)

The mean for each group and the total mean are presented in (Table 1).

Applying the rules of stepwise method for discriminant analysis stated earlier we found that
only four predictor variables, namely X4, X5, X0, X, give the significant classification into
our groups.

03N N KW

1. The Discriminant Function
We find the linear discriminant function coefficients by using equation (2.3) the linear

discriminant function is :
7= (0.1300X4) + (0.3385 X5 ) — (3.6060 X;9) — (0.1958 X3)

2. Test of Significance of Discriminant Analysis

Now to test the significance of discriminant function we calculate the statistic T2, it
found the statistic to be T> = 381.1326171
Since T* > Ti PNy —2 = T§.01’4’103 = 14.511, Then the discriminant function is significant.
Another test of significant can be performed by using eq( 2.16 ) where the value of V was
found to be 156.212 comparing this value with )((20.01’4) = 13.2767, we conclude that the
discriminant function is significant.
Also, we can use F approximation for A = 0.213 to test the significance by using equation
(2.19), where F = 92.4 and compare with Fy o1 4 100= 3.51, we conclude that the discriminant

function is significant.

3. Tests of Equality of Covariance Matrices

We use the y? approximation test, the value of u was calculated by using equation (2.21), it
was found to be 28.01 while the critical value of x§ o110 =29.59

Thus we accept Hy since u < x§.01.10 -

4. Classification Procedures
4.1. Classification Use Discriminant Function
We must find the mean of discriminant function for the two groups

Z=1[0.1300%X,] + [0.3385*X] — [3.6060%X 0] — [0.1958*X,]
The mean discriminant function of group 1 is
ZM =10.1300%111.69] + [0.3385%64.43] — [3.6060*0.13] — [0.1958*%199.37]

=-3.176171
And the mean discriminant function of group 2 is
Z® =[0.1300%184.94] + [0.3385*34.10] — [3.6060*0.63] — [0.1958*260.57] = —17.706336

_3.176171+2—17.706336_ —10.4412535 ,

The cut point is
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we use equation (2.27), (2.28) to classify the new observations, for example, we want
to classify new observation from group 1 (not patients) with the informations LDL=80,
HDL=71, S.cholestrol=171 and has no hereditary factor, we found
ze = [0.1300*80] + [0.3385*71] — [3.6060*0] — [0.1958*171] = 0.9517, By equation ( 2.80
),
0.9517> —10.4412535. Then the observation is correctly classified in Group 1

4.2. Classification use Simple Classification Function

After we find the inverse of within — sum square and cross products marix, we find the
functions of group 1 and group 2 by equation (2.29), (2.30) where :

ZW=(=60.037) + (0.337 *X4) + (0.902 *Xs)+ (—2.598 * X o)+ (0.117 * X»)

ZP=(=70.480) + (0.207 * X4) + (0.564 * X5) +(0.997* X;0) + (0.313 * Xy)

And we use the two functions to classify the new observations. For example, we want to
classify a new observation from group 2 (patients) with the informations LDL=183,
HDL=28, S.cholestrol=251 and has no hereditary factor, we found

2V =(=60.037) + (0.117 * 251) + (0.337 *183) + (0.902 * 28) + (—2.598 * 0) = 56.257

And 2% = ( —70.480) + (0.313 * 251) + (0.207 *183) + (0.564*28) + (0.997 * 0) = 61.756
» 72 < z® | Then the observation is in group 2

5. Estimating Misclassification Rates

We calculate apparent error rate by equation (2.31)
243

APER =— =4.8%
105

And we calculate the apparent correct rate by equation (2.32)

APCR =22*51 _ 95 204,
105

42
the correctly classified into group (1) 5—4=96.3%
2
The misclassified into group (1)is A 3.7%
49
The correctly classified into group (2)is 5—1=96.1%

2
The misclassified into group (2) T 3.9%

The classification is represented in (Table 2).
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Conclusions

From the theoretical and practical study, we believe that the following points are

considerable :

1. By using the stepwise method, we conclude that the first predictor variable that has the
largest significant effect for discriminant between the two groups is high low density
cholesterol X4, followed by the low high density cholesterol Xs then the Heredity factor Xg
and finally by s.cholestrol X5, thus our discriminant function was constructed on the basis of
these variables.

2. According to the test of significance we made, namely, the wilk's A test and the x°
approximation test with level of significance a= 0.01 we found that the discriminant function
constructed significantly separates the groups.

3. By using the resubstitation method, the resulting classification table revealed that about 5%
of the cases are wrongly classified, while about 95% of the cases are correctly classified to the
groups.
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Table (1) : The Mean for Each Group and the Total Mean

X, X2 X3 X4 Xs X X7 Xg Xq X10
NOt 45.85 | 199.37 | 116.80 | 111.69 | 64.43 | 137.61 | 125.74 | 0.43 | 0.63 | 0.13
patients

patients | 63.02 | 260.57 | 202.75 | 184.94 | 34.10 | 201.31 | 155.20 | 0.31 | 1.14 | 0.63

Total | 54.19 | 229.10 | 158.54 | 147.27 | 49.70 | 168.55 | 140.05 | 0.37 | 0.88 | 0.37

Table (2) : Classification Result for Discriminant Function

Actual Number of Predicted group
group observations Healthy(1) Disease(2)
Healthy(1) 54 51 3
Disease(2) 51 2 49
o Healthy(1) 100 94.4 5.6
° Disease(2) 100 3.9 96.1
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