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Abstract   

     The availability of different processing levels for satellite images makes it important to measure 

their suitability for classification tasks. This study investigates the impact of the Landsat data 

processing level on the accuracy of land cover classification using a support vector machine 

(SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data 

at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the 

highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the 

Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and 

Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conversely, 

when using the maximum-likelihood classifier, the highest accuracy (83.06%) was achieved with 

FLAASH. The results demonstrate significant variations in accuracies for different land cover 

classes, which emphasizes the importance of per-class accuracy. The results highlight the critical 

role of preprocessing techniques and classifier selection in optimizing the classification processes 

and land cover mapping accuracy for remote sensing geospatial applications. Finally, the actual 

differences in classification accuracy between processing levels are larger than those given by the 

confusion matrix.  So, the consideration of alternative evaluation methods with the absence of 

reference images is critical. 

Keywords: Support vector machine, remote sensing, atmospheric correction, Landsat 9, 

classification. 
 

1. Introduction 

     Land use/ land cover (LU/LC) information plays a crucial role in various geospatial 

applications (1,2) . Satellite sensors are considered the most important source of information about 

the Earth's surface (3). It offers comprehensive insights into Earth’s features with notable 

promptness. With this remote-sensing (RS) system, a digital image is represented by intensity 
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values termed Digital Numbers (DN). These DNs serve as primary pixel values before conversion 

through absolute radiometric calibration into physical units, such as top-of-atmosphere (TOA) 

radiance or reflectance. This represents the initial phase in utilizing remote sensing data for 

quantitative analyses (4,5)  by applying atmospheric correction (AC)  to remove the effects of 

absorption and scattering due to atmospheric influences (6-8). 

Landsat (LS) satellite images are broadly employed for land cover classification (9). With its 

global datasets, it holds significant potential for enhancing land surface classification (10). The 

United States Geological Survey (USGS) worked to ensure consistent processing levels for all the 

LS satellite series by introducing collections-based processing levels for the entire LS series 

archive, starting with Collection 1 (C1) in 2016. After launching Landsat 9 (LS9), Collection 2 

(C2) was introduced in 2020 to reprocess all the LS archives with enhanced geo-referencing and 

offer a global catalog of surface reflectance (SR) and temperature (ST) under Level 2 (L2) 

products. C2 products cover all LS data, including the    Operational Land Imagers (OLI 1 and 2) 

and Thermal Infrared (TIRS 1 and 2) sensors of LS8 and LS9, providing calibrated and geo-located 

Level 1 and 2 products (11). 

The C2L1 and C2L2 data products store spectral band information as DNs with unsigned 16-bit 

integers, which can be transformed into units with physical meaning, such as the top of the 

atmospheric spectral reflectance or radiance, employing offset values and scale factors specific for 

each band stored in the metadata related to the products. The TOA reflectance and TOA radiance 

at Level 1 (L1) were calculated assuming that the solar zenith angle was equal to 0° and could be 

adjusted using the actual solar zenith angle provided in the product metadata. For Landsat 4–9, the 

solar and view angles are provided for each 30 m pixel in the metadata of the C2L1 product (13). 

The Landsat Level-1 TOA reflectance is atmospherically corrected to the Level-2 Collection-2 

Surface Reflectance (L2C2 SR) product by employing the LaSRC algorithm globally to perform 

atmospheric correction to enhance the SR accuracy(12,13). The FLAASH algorithm is widely used 

atmospheric correction software to facilitate the analysis of hyperspectral and multispectral 

imaging sensors operating in the visible and shortwave IR (Vis-SWIR) spectral ranges (14,15). 

The use of robust classification algorithms is fundamental to remote sensing applications and 

essential for satellite image classification because of the spectral similarity among different surface 

types (16-18). The SVM has emerged as a popular nonparametric supervised classification method 

for digital image classification, capable of handling nonlinear classification situations using a 

limited number of samples (19,20). The SVM approach, based on the theory of statistical learning, 

detects decision boundaries that optimize the image classes’ separation (21,22). Compared to many 

existing classifiers, the SVM classifier can achieve competitive results even with small training 

samples (23,24). 

Several studies have investigated the effect of preprocessing levels and atmospheric corrections 

on the classification accuracy of satellite data. Chinsu Lin et al. (2015) (25) discovered that the 

AC at a 2 m spatial resolution does not appear to impact the classification accuracy of (LU/LC) 

using WorldView-2 multispectral imagery. In contrast, Jesús A., et al. (2018) (26) explored the 

impact of different preprocessing techniques, such as radiometric calibration and atmospheric 

correction on land use classification accuracy. Their results highlighted the importance of careful 

preprocessing to improve the classification results. A study by Lhissou, Rachid, et al. (2020) (27), 

subjected Landsat 8 images to image-based and physical atmospheric correction algorithms to 

evaluate their influences on the geological mapping accuracy. Their results evaluations were based 
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on the Spectro radiometric data collected by the ASD (Analytical Spectral Devices) and the overall 

accuracy result from the SVM.  They compared the DOS1 image-based and (FLAASH and 

ATCOR) physical atmospheric correction algorithms, where FLAASH provided the most accurate 

reflectance estimation, slightly outperforming DOS1. The study showed image-based efficiency 

in atmospheric correction in dry and semi-dry areas, proving to be accurate, simple, and 

straightforward.  The study conducted by J. Dohski et al. (2022) (28) evaluated the effects of 

atmospheric correction and image fusion methods on land cover classification accuracy using 

Landsat 8 imagery. They employed SVM and ML algorithms and found that SVM outperformed 

ML, achieving higher overall accuracy (OA) with various fusion techniques. Their results 

indicated that fusion methods enhanced classification accuracy, while atmospheric correction was 

deemed unnecessary for land cover mapping based on DN images. 

Muchsin, Fadila, et al. (2023) (14) investigated the impact of various atmospheric correction 

algorithms, including FLAASH, on the classification accuracy of Landsat 8 C2L1 data. They 

compared these results with those obtained from C2L2 surface reflectance (SR) preprocessed by 

the data provider. Their results revealed that FLAASH consistently outperforms other algorithms, 

including the LaSRC method used by the data provider. 

Understanding the influence of the Landsat preprocessing levels on the SVM classification results 

is crucial for optimizing the land cover mapping accuracy. By leveraging advanced preprocessing 

techniques and robust classification algorithms like SVM, researchers can enhance the reliability 

and utility of remote sensing data for land cover classification applications.  

This paper investigates the impact of different Landsat (OLI) data processing levels (Collection 2, 

Level 1 TOA, and Level 2 SR) and FLAASH atmospheric correction on the land cover 

classification results obtained using the Support Vector Machine (SVM) algorithm. Additionally, 

this research assesses the efficacy and robustness of SVM classification for handling different 

processing levels, including atmospheric corrections and radiometric calibrations, focusing on 

improving classification performance for geospatial applications, such as land use mapping and 

environmental monitoring.  

 

2.  Materials and Methods 

2.1 Used Data 

This study utilized satellite imagery from Landsat 8 OLI1/TIRS C2 L1, C2 L2, and Landsat 9 

OLI2/TIRS with the same processing levels. The Landsat OLI C2 L2 collection provides global 

surface reflectance data, whereas the C2 L2 products provide TOA data (29,30). The satellite 

scenes where the used data were extracted are identified by LANDSAT_PRODUCT_IDs = 

"LC08_L1TP_168037_20240114_20240114_02_T1", 

"LC08_L2SP_168037_20240114_20240123_02_T1","LC09_L1TP_168037_20240106_2024

0106_02_T1", and "LC09_L2TP_168037_20240106_20240107_02_T1". The Landsat 8/9 

satellites have two instruments: OLI 1 and 2 and the TIRS 1 and 2. The OLI consists of 11 

channels (dynamic range 16-bit), with the first seven channels being multispectral (visible, 

near-infrared, and shortwave infrared) registered at a spatial resolution of 30 m. TIRS-2 consists 

of two thermal infrared channels with a spatial resolution of 100 m (31-36). All data were 

collected from the OLI1/2 sensors. Table 1 lists the Landsat satellite data for path 168 and row 
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037, along with the accusation dates and the range of the study area. The remotely sensed 

images were downloaded from the USGS website (https://earthexplorer.usgs.gov/). 

 

Table 1. The satellite scenes used in this study. 

Satellite Scene Processing level Date 
GMT acquisition 

time (a.m.) 
Scene area km2 

Landsat 8 OLI 
C2L1 14 January 

2024 
07:33:50 900 

C2L2 

Landsat 9 OLI2 
C2L1 6 January 

2024 
07:33:45 900 

C2 L2 

   

2.2 Methods  

Four satellite scenes were used for the same region: the first pair consisted of Landsat 9 OLI2 

sensor data at Level 1 (C2L1) (TOA) and Level 2 (C2L2) (SR), while the second pair comprised 

Landsat 8 OLI1 data processed at the same processing levels. Following the clipping of the study 

area from the original scenes. Band stacking was performed for all four study area scenes clipped 

from the original scenes. Radiometric calibration (37) and FLAASH atmospheric correction was 

applied to the two C2L1 scenes. Subsequently, six scenes (two original (C2L1), two C2L2, and 

two level-1 FLAASH-corrected scenes) were subjected to SVM and ML classifiers to evaluate the 

influence of atmospheric correction on the classification accuracy. Figure 1 shows the procedural 

workflow used in this study. 

The eight classes (shaded, crops, non-residential, palm and trees, bare lands, water bodies, natural 

vegetation, and urban) were chosen for the study site indicated in Figure 4. To identify these 

classes and training sets selection, a field survey was conducted, supplemented by a study of 

various satellite scenes beyond those from Landsat 8 and 9. These additional satellite scenes were 

studied to enhance the understanding of the study site characteristics and land cover types, thereby 

aiding in the accurate identification and selection of training sets for the classification process. The 

classification's overall accuracy (OA) was measured using Eq. (1) and the confusion matrix 

(38,39). 

𝑂𝐴 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙  𝑝𝑖𝑥𝑒𝑙𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 
 × 100 %                                                                                      (1) 

SNAP 6.0.0 software was used to read the original scenes and clip the study site. The other work 

steps were conducted using ENVI 5.6.1 software. The Landsat data provider applies the LaSRC 

algorithm to correct C2L1 to C2L2. 

https://earthexplorer.usgs.gov/
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Figure 1. The workflow diagram 

2.3 Study Site 

The chosen study site for this investigation lies between latitudes 36° 69' 87.0" N to 36° 99' 87.0" 

N and longitudes 42° 78' 90.0" E to 45° 78' 90.0" E, covering an area of 900 square kilometers. 

The main part of the study area is Baghdad, Iraq's capital. This urban center is densely populated 

with limited green spaces and open land; some of which are covered with various types of natural 

vegetation. The Tigris River crosses Baghdad city, dividing it into two sections (on the west bank 

of Al-Karkh, while Al-Rusafa represents the east part) (40) and converges with the Diyala River 

in the southern region (41). The study area encompasses additional geographical features such as 

smaller streams, canals, and man-made lakes. The surrounding area consists of agricultural land, 

including greenery with palm groves, wheat and barley fields, fodder crops, and various orchards 

scattered across smaller parcels of land. Urban development in these zones exhibits a low 

population density. In the western sector of the study area lies Baghdad International Airport. The 

elevation of the study site above sea level is approximately 31-39 m (42).  The land use 

composition in the study region varies, including industrial zones, commercial areas, and 

transportation infrastructure. Figure 2 shows the original Landsat 9 scene and the study area. 
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Figure 2. a. Iraqi country map with Landsat 9 satellite scene (path 168, and row 37), b- the natural color scene of 

the clipped study site. 

 

3. Results and Discussion  

         Figure 3 presents six scenes before and after conducting FLAASH atmospheric correction for the 

C2L1 scenes of LS8, LS9, and the C2L2 scenes of both satellites. 

 

Figure 3. a- LS9C2L1, b-LS9C2L2, c-LS9FLAASH, d-LS8C2L1, e- LS8C2L2, and f- LS8FLAASH. 
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Table 2 presents the classification results for different processing levels and classifiers, with 

noteworthy differences in overall accuracies and more significant disparities in detailed 

accuracies shown in Table 3 Overall, the accuracy increased with higher processing levels, 

particularly for LS8C2L2 and LS9C2L2, indicating the crucial role of atmospheric correction 

and preprocessing techniques in enhancing classification performance. 

Table 1. Classification's overall accuracy results for different classification algorithms and processing levels 

CLASSIFIER LS8C2L1 LS8C2L2 LS8FLAASH LS9C2L1 LS9C2L2 LS9FLAASH 

SVM LIN 84 85.07 84.53 84.97 86.29 85.46 

SVM RBF 84.1 85.25 84.62 84.88 86.43 85.19 

SVM PO 84.03 85.14 84.48 84.93 86.55 85.31 

ML 82.56 82.85 82.91 82.71 82.74 83.06 

 

When comparing the classification results in Table 2 for the corrected images (FLAASH and 

C2L2) and the results of C2L1, the FLAASH-corrected images exhibited greater improvement 

with the linear (LIN) kernel across both satellites, with a slight difference compared to the other 

kernels. For the C2L2-corrected images, the RBF kernel provided the highest improvement with 

the LS8 satellite, while the polynomial (PO) kernel yielded the best results with the LS9 satellite. 

Overall, the SVM classifier demonstrated the best performance with C2L2 images. However, the 

Maximum Likelihood (ML) classifier, with the FLAASH-corrected images, demonstrated a 

minimal performance increase over the C2L2 images for both satellites. The LaSRC algorithm is 

superior to the FLAASH algorithm, when coupled with SVM classifiers. Specifically, the SVM 

PO classifier improved from LS8C2L1 (84.03%) to LS8C2L2 (85.14%), LS8FLAASH (84.48%), 

LS9C2L1 (84.93%), LS9C2L2 (86.55%), and LS9FLAASH (85.31%). This demonstrates the 

impact of atmospheric correction on the SVM-based classification algorithms. The ML classifier 

exhibits stable accuracies across different processing levels, with fluctuations of less than 0.35%, 

without significant variations in performance with various datasets. Figure 4 shows the 

classification results for the SVM LIN LS9C2L1, SVM LINLS9C2L2, SVM PO LS9C2L1, SVM 

PO LS9C2L2, ML LS9C21, and LS9FLAASH. 
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Figure 4. Classification result a- LIN-LS9C2L1, b- LIN-LS9C2L2, c- PO-LS9C2L1, d- PO-LS9C2L2 e- ML-

LS9C2L1, and f- ML-LS9FLAASH. 

Despite minor differences in overall accuracy, significant variations exist in the accuracy of 

land cover classes with different classifiers and processing levels. Table 3 presents the producer 

accuracy (Prod. Acc.) and user accuracy (User Acc.) for the SVM linear kernel (LIN) at two 

processing levels (C2L1 and C2L2) of LS9 data, as well as for ML with C2L1 and FLAASH-

corrected scenes. 

Table 2. User and producer accuracy for some classification results and different datasets. 

 

 

In Table 3, there are varying levels of user accuracy (User Acc.) and producer accuracy (Prod. 

 LIN LS9C2L1 LIN LS9C2L2 ML-LS9C2L1 ML-LS9FLAASH 

Class 
Prod. 

Acc. 

User 

Acc. 

Prod. 

Acc. 

User 

Acc. 

Prod. 

Acc. 

User 

Acc. 

Prod. 

Acc. 

User 

Acc. 

Shaded 55.77 90.63 59.62 93.75 58.85 61.28 61.03 63.81 

Crops 92.35 98.07 93.99 96.81 91.8 88.11 94.72 84.42 

Non-Residential 82.94 98.05 82.39 97.72 96.42 85.59 95.46 84.84 

Palms and Trees 76.55 98.23 75.98 97.78 71.38 96.13 70.23 98.07 

Bare Lands 89.85 71.78 92.77 78.01 81.92 72.72 81.5 73.34 

Water Bodies 99.3 88.82 99.07 89.36 99.42 90.72 99.42 91.11 

Natural 

Vegetation 
86.63 86.31 90.29 82.11 77.3 97.92 78.94 97.81 

Urban 93.45 72.8 94.1 75.73 86.01 77.61 85.77 78.3 
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Acc.), results obtained for different land cover classes and classifiers. The main observations are 

summarized: 

- Shaded Areas: The SVM classifier with LS9C2L1 and LS9C2L2 outperforms the ML classifier 

in terms of both producer and user accuracy, with LS9C2L2 showing higher accuracy.  

- Crops class: The SVM classifier with LS9C2L1 exhibits slightly higher producer accuracy 

compared to LS9C2L2, while the ML classifier shows lower accuracy. 

- Non-Residential Areas: The ML classifier consistently outperformed the SVM classifier in 

terms of both producer and user accuracy across both processing levels.  

- Palm and Trees: Both classifiers performed well, with slightly higher accuracy observed for 

LS9C2L1 compared to LS9C2L2. 

- Bare Lands: The SVM classifier with LS9C2L2 showed higher producer accuracy compared 

to LS9C2L1, while user accuracy was slightly higher for LS9C2L1. The ML classifier showed 

a more balanced performance between the two processing levels. 

- Water Bodies: Both classifiers performed exceptionally well, and very high accuracies were 

observed across both processing levels. 

- Natural Vegetation: The SVM classifier LS9C2L2 demonstrated higher producer accuracy 

compared to LS9C2L1, while user accuracy was slightly higher for LS9C2L1. The ML 

classifier exhibits similar trends but with slightly lower accuracy compared to the SVM 

classifier.  

- Urban areas. Both classifiers showed high accuracy, with LS9C2L1 showing slightly higher 

accuracy compared to LS9C2L2 for both producer and user accuracy. 

The SVM classifier performs better in terms of producer accuracy, especially at the LS9C2L2 

processing level, whereas the ML classifier shows more consistent performance with different land 

cover classes and processing levels. There are some variations in accuracy metrics between 

processing levels. Careful consideration is important when selecting classifiers and processing 

levels for remote sensing classification tasks. 

The variations in the results listed in Table 2 and Table 3 do not match the variations observed 

visually and by other means of comparison. For example, the difference in OA between the 

LS9C2L2 and LS9C2L1 images was 1.62% with the polynomial kernel and 1.52% with the RBF 

kernel. In contrast, the real difference between them (for comparison, one of them is used as a 

ground truth image) amounts to 14.2% for both kernels. When using ML to classify the same 

image, the difference in OA was less than 0.3%. In comparison, the real difference between them 

is 11.2%. These differences were caused by the absence of a reference image and the used 

evaluation training set is not large enough.  

In this context, it becomes possible to understand the reason for the contradictions between the 

results of previous studies (14,25-28), between those who confirm the importance of atmospheric 

correction in the classification process and those who deny it. This may often be due to the 

differences in the data used in terms of the characteristics of the satellite used (spatial and spectral 

resolution and number of bands), as well as the different study areas and classes they contain, and 

the diversity of algorithms used in processing. 

 

4. Conclusion 

     The research results underscore the importance of selecting appropriate processing levels and 
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implementing effective atmospheric correction techniques in remote sensing classification tasks. 

Specifically, the superior performance of the C2L2 datasets, achieved through the LaSRC 

algorithm, significantly impacts dataset characteristics and leverages advanced preprocessing 

methods. in addition, the dominance of the SVM in effectively classifying remote sensing data 

highlights the need for careful evaluation of both processing levels and classifier types. This 

approach ensures accurate and reliable classification outcomes, leading to considerable 

improvements in classification accuracy and interpretation of remote sensing data. Furthermore, 

the variance in classification accuracy for different classes between different preprocessing levels 

makes it possible to obtain different results if the same previous steps are applied in other study 

areas with dissimilar classes or contain the same classes in different proportions. Finally, the 

confusion matrix results don’t reflect the real variations in the result with the absence of a reference 

image, and enough training samples. In such cases, alternative evaluation methods are needed. 
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