

ON Weak D_{s*g} -Sets And Associative Separation Axioms

Sabiha I. Mahmood

Department of Mathematics / College of Science / Al-Mustansiriyah University

Received in:3 Septamber 2013, Accepted in: 19 February 2014

Abstract

In this paper, we introduce new classes of sets called D_{s^*g} -sets , $D_{\alpha-s^*g}$ -sets , D_{pre-s^*g} -sets , D_{b-s^*g} -sets and $D_{\beta-s^*g}$ -sets . Also, we study some of their properties and relations among them . Moreover, we use these sets to define and study some associative separation axioms .

Keywords: $s*g-D_i$ -spaces , α - $s*g-D_i$ -spaces, pre- $s*g-D_i$ -space , b- $s*g-D_i$ -spaces, β - $s*g-D_i$ -spaces for i=0,1,2.

Introduction

Tong, J. [1], Calads,M. [2], Calads,M. and et.al. [3], Jafari, S. [4] and Keskin,A. and Noiri, T. [5] introduced the notion of D-sets, D_s -sets , D_{α} -sets , D_{pre} -sets and D_b -sets respectively by using open sets, semi-open sets, α -open sets, pre-open sets and b-open sets respectively and used the notion to define some associative separation axioms . Khan,M. and et.al.[6] introduced and investigated s*g-closed sets by using the concept of semi-open sets . In this paper we introduce and investigate new notions called D_{s^*g} -sets , $D_{\alpha-s^*g}$ -sets , D_{pre-s^*g} -sets , D_{b-s^*g} -sets and $D_{\beta-s^*g}$ -sets . Moreover, we use these notions to define some associative separation axioms . Recall that a subset A of a topological space (X,τ) is called semi-open [7] (resp. α -open [8], pre-open [9], b-open[10] and β -open [11]) set if $A \subseteq cl(int(A))$ (resp. $A \subseteq int(cl(int(A)))$, $A \subseteq int(cl(A))$, $A \subseteq int(cl(A)) \cup cl(int(A))$ and $A \subseteq cl(int(cl(A)))$). Also, a subset A of a topological space (X,τ) is called s*g-closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X [6]. The complement of an s*g-closed set is defined to be s*g-open . The family of all s*g-open subsets of (X,τ) is denoted by $S*GO(X,\tau)$ [6], this family from a topology on X which is finer than τ [6] .

The s*g-closure of A, denoted by $cl_{s*g}(A)$ is the intersection of all s*g-closed subsets of X

which contains A and the s*g-interior of A, denoted by $\operatorname{int}_{s*g}(A)$ is the union of all s*g-open sets

in X which are contained in A [6]. A function $f:(X,\tau)\to (Y,\sigma)$ is called s*g-continuous [12]

(resp. s*g-irresolute [12]) if the inverse image of every open (resp. s*g-open) subset of Y is

an s*g-open set in X . Throughout this paper (X,τ) and (Y,σ) (or simply X and Y) represent non-

empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned.

Preliminaries

First we recall the following definitions.

Definition(1.1)[1]: A subset A of a topological space (X, τ) is called a D-set if there are two open sets U and V in X such that $U \neq X$ and $A = U \setminus V$.

Definition(1.2)[1]: A topological space (X, τ) is called a D_0 -space if for any two distinct points x and y of X, there exists a D-set of X containing one of the points but not the other.

Definition(1.3)[1]: A topological space (X, τ) is called a D_1 -space if for any two distinct points x and y of X, there exists a D-set of X containing x but not y and a D-set of X containing y but not x.

Definition(1.4)[1]: A topological space (X, τ) is called a D_2 -space if for any two distinct points x and y of X, there are two D-sets U and V of X such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Definition(1.5)[13]: A topological space (X, τ) is called a door space if each subset of X is either open or closed.

Theorem(1.6): Let (X, τ) be a topological space and $A, B \subseteq X$. Then:-

- i) $int(A) \subseteq int_{s^{*_{\sigma}}}(A) \subseteq A$ and $A \subseteq cl_{s^{*_{\sigma}}}(A) \subseteq cl(A)$.
- ii) int $_{s*_{\sigma}}(A)$ is an $s*_{g}$ -open set in X and $cl_{s*_{\sigma}}(A)$ is an $s*_{g}$ -closed set in X.
- iii) If $A\subseteq B$, then $int_{s^*g}(A)\subseteq int_{s^*g}(B)$ and $cl_{s^*g}(A)\subseteq cl_{s^*g}(B)$.
 - iv) A is s*g-open iff $int_{s*g}(A) = A$ and A is s*g-closed iff $cl_{s*g}(A) = A$.
- v) $int_{s*g}(A \cap B) = int_{s*g}(A) \cap int_{s*g}(B)$ and $cl_{s*g}(A \cup B) = cl_{s*g}(A) \cup cl_{s*g}(B)$.
- vi) $int_{s*g}(int_{s*g}(A)) = int_{s*g}(A)$ and $cl_{s*g}(cl_{s*g}(A)) = cl_{s*g}(A)$.
- vii) $X cl_{s*g}(A) = int_{s*g}(X A)$ and $X int_{s*g}(A) = cl_{s*g}(X A)$.
- viii) $x \in int_{s^*\sigma}(A)$ iff there is an s^*g -open set U in X s.t $x \in U \subseteq A$.
- ix) $x \in cl_{s^*g}(A)$ iff for every s^*g -open set U containing x, $U \cap A \neq \phi$.

$$x) \ \bigcup_{\alpha \in \wedge} cl_{s^*g}(U_\alpha) \subseteq cl_{s^*g}(\bigcup_{\alpha \in \wedge} U_\alpha) \ \text{ and } \bigcup_{\alpha \in \wedge} int_{s^*g}(U_\alpha) \subseteq int_{s^*g}(\bigcup_{\alpha \in \wedge} U_\alpha) \,.$$

Proof: It is a obvious.

In this paper we introduce and investigate new notions called α -s*g-open sets , pre -s*g-open sets , b-s*g-open sets and β -s*g-open sets which are weaker than s*g-open . Moreover, we use these notions to define some associative separation axioms .

2. Weak Forms Of s*g-Open Sets

In this section we introduce the following notions.

Definitions(2.1): A subset A of a topological space (X, τ) is said to be :

- i) An α -s*g-open set if $A \subseteq int_{s*\sigma}(cl(int_{s*\sigma}(A)))$.
- ii) A pre-s*g-open set if $A \subseteq int_{s*g}(cl(A))$.
- iii) A b-s*g-open set if $A \subseteq int_{s^*g}(cl(A)) \bigcup cl(int_{s^*g}(A))$.
- iv) $A\beta$ -s*g-open set if $A\subseteq cl(int_{_{S^{*g}}}(cl(A)))$.

Lemma(2.2): Let (X, τ) be a topological space, then the following properties hold:

i) Every α -open (resp. pre-open, b-open, β -open) set is α -s*g-open (resp. pre-s*g-open, b-s*g-

open, β -s*g-open) set.

- ii) Every s*g-open set is α -s*g-open.
- iii) Every α -s*g-open set is pre-s*g-open.
- iv) Every pre-s*g-open set is b-s*g-open.
- v) Every b-s*g-open set is β -s*g-open.

Proof: It is obvious .

Since every open set is s*g-open, then we have the following diagram for some types of open sets and s*g-open set .

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Figure No. (1): Relations between some types of open sets and s*g-open sets

The converses need not be true in general as shown by the following examples.

Example(2.3): Let $X = \{a, b, c\}$ with the indiscrete topology $\tau = I = \{X, \phi\}$. Then $\{a, b\}$ is an s*g-open (resp. α -s*g-open) set, but it is not open (resp. not α -open) set.

Example(2.4): Let $X = \{a, b, c, d\} \& \tau = \{X, \phi, \{a\}, \{a, c\}, \{a, b, d\}\}\$. Then $\{a, c, d\}$ is an α -s*gopen set, but it is not s*g-open.

Example(2.5): Let $X = \Re$ with the usual topology τ . Let A = Q be the set of all rational numbers. Then A is an pre-s*g-open set (since A is pre-open set) which is not α -s*g-open.

Example (2.6): Let $X = \Re$ with the usual topology τ . Let A = (0,1]. Then A is an b-s*gopen set (since A is b-open set) which is not pre-s*g-open.

Example(2.7): Let $X = \Re$ with the usual topology τ . Let $A = Q \cap [0,1]$. Then A is a β -s*g open set (since A is β -open set) which is not b-s*g-open.

Theorem(2.8): If A is a pre-s*g-open subset of a topological space (X, τ) such that $U \subseteq A \subseteq cl(U)$ for a subset U of X , then U is an pre-s*g-open set .

Proof: Since $A \subseteq cl(U) \Rightarrow cl(A) \subseteq cl(cl(U)) = cl(U) \Rightarrow int_{s*g}(cl(A)) \subseteq int_{s*g}(cl(U))$. Since $A\subseteq int_{s^*g}(cl(A)) \text{ and } U\subseteq A \Rightarrow U\subseteq int_{s^*g}(cl(U)) \text{ . Thus } U \text{ is an pre-s}^*g\text{-open set .}$

Theorem(2.9): A subset A of a topological space (X, τ) is semi-open if and only if A is β s*g-open and $int_{s*g}(cl(A)) \subseteq cl(int(A))$.

Proof: Let A be semi-open, then $A \subseteq cl(int(A)) \subseteq cl(int_{s*g}(cl(A)))$ and hence A is β -s*gopen. Also, since $A \subseteq cl(int(A)) \Rightarrow cl(A) \subseteq cl(int(A)) \Rightarrow int_{s*_g}(cl(A)) \subseteq cl(int(A))$. Conversely, let A be β -s*g-open and int $_{s*_g}(cl(A))\subseteq cl(int(A))$. Then $A \subseteq cl(int(_{s^*g}(cl(A))) \subseteq cl(cl(int(A))) = cl(int(A)) \ \ and \ hence \ A \ is \ semi-open \ .$

Lemma(2.10)[13]: Let (X, τ) be a topological space. If U is an open set in X, then $U \cap cl(A) \subseteq cl(U \cap A)$ for any subset A of X.

Propositions(2.11): Let (X, τ) be a topological space, then:

- i) The intersection of a pre-s*g-open set and an open set is pre-s*g-open.
- ii) The intersection of a β -s*g-open set and an open set is β -s*g-open .

- iii) The intersection of a b-s*g-open set and an open set is b-s*g-open.
- iv) The intersection of an α -s*g-open set and an open set is α -s*g-open.

Proof: We prove only the first case since the other cases are similarly shown.

i) Let A be a pre-s*g-open set and U be an open set in X. Since every open set is s*g-open, then $A \subseteq int_{s^*g}(cl(A))$ and $U = int_{s^*g}(U)$. By Lemma (2.10), we have

$$U \bigcap A \subseteq int_{s^*g}(U) \bigcap int_{s^*g}(cl(A)) = int_{s^*g}(U \bigcap cl(A)) \subseteq int_{s^*g}(cl(U \bigcap A)) \ .$$

Therefore $A \cap U$ is pre-s*g-open.

Remark(2.12): We note that the intersection of two pre-s*g-open (resp. b-s*g-open, β-s*gopen, α -s*g-open sets need not be pre-s*g-open (resp. b-s*g-open, β -s*g-open, α -s*g-open open) as can be seen from the following examples:

Example(2.13): Let $X = \Re$ with the usual topology τ . Let A = Q and $B = Q^c \cup \{1\}$, then A and B are pre-s*g-open, but $A \cap B = \{1\}$ which is not β -s*g-open since $\operatorname{cl}(\operatorname{int}_{s^*g}(\operatorname{cl}(\{1\})))$

$$= \operatorname{cl}(\operatorname{int}_{s*_{\sigma}}(\{1\})) = \operatorname{cl}(\{\phi\}) = \phi.$$

Example(2.14): Let $X = \{a, b, c\}$ & $\tau = \{X, \phi, \{b, c\}\}$. Then $\{a, b\}$ and $\{a, c\}$ are α -s*g-open sets, but $\{a,b\} \cap \{a,c\} = \{a\}$ is not α -s*g-open.

Theorem(2.15): If $\{A_{\alpha} : \alpha \in A\}$ is a collection of b-s*g-open (resp. pre-s*g-open, β -s*gopen, α

 $-s*g-open) \ sets \ of \ a \ topological \ space \ (X,\tau) \ , \ then \ \bigcup_{\alpha \in \land} A_{\alpha} \ is \ b-s*g-open \ (resp. \ pre-s*g-open, \beta -s*g-open) \ (resp. \ pre-s*g-open) \ (resp. \ pre-s*g-open) \ (resp. \ pre-s*g-open) \ (resp. \ pre-s*g-open) \ (resp. \ pre-s$ s*g-open, α -s*g-open).

Proof: We prove only the first case since the other cases are similarly shown.

Since $A_{\alpha} \subseteq int_{s^*g}(cl(A_{\alpha})) \bigcup cl(int_{s^*g}(A_{\alpha}))$ for every $\alpha \in \land$, we have:

Since
$$A_{\alpha} \subseteq \operatorname{int}_{s*g}(\operatorname{cl}(A_{\alpha})) \cup \operatorname{cl}(\operatorname{int}_{s*g}(A_{\alpha}))$$
 for every $\alpha \in \wedge$, we have:
$$\bigcup_{\alpha \in \wedge} A_{\alpha} \subseteq \bigcup_{\alpha \in \wedge} [\operatorname{int}_{s*g}(\operatorname{cl}(A_{\alpha})) \cup \operatorname{cl}(\operatorname{int}_{s*g}(A_{\alpha}))] = [\bigcup_{\alpha \in \wedge} \operatorname{int}_{s*g}(\operatorname{cl}(A_{\alpha}))] \cup [\bigcup_{\alpha \in \wedge} \operatorname{cl}(\operatorname{int}_{s*g}(A_{\alpha}))] \cup [\operatorname{cl}(\operatorname{int}_{s*g}(A_{\alpha}))] \cup [\operatorname{cl}($$

Proposition(2.16): Let (X, τ) be a topological space and $A \subseteq X$. If A is a b-s*g-open set such that $int_{s*g}(A) = \phi$, then A is pre-s*g-open.

Proof: Since A is b-s*g-open, then $A \subseteq \operatorname{int}_{s*g}(\operatorname{cl}(A)) \cup \operatorname{cl}(\operatorname{int}_{s*g}(A))$. Since $\operatorname{int}_{s*g}(A) = \emptyset$,

 $cl(int_{s^*g}(A))=\varphi$, therefore $\,A\subseteq int_{s^*g}(cl(A))$. Thus A is a pre-s*g-open set .

Propositions(2.17): If (X, τ) is a door space, then:

- i) Every pre-s*g-open set is s*g-open.
- ii) Every β -s*g-open set is b-s*g-open.

Proof: i) Let A be an pre-s*g-open set. If A is open, then A is s*g-open. Otherwise, A is closed and hence $A \subseteq \operatorname{int}_{s*g}(\operatorname{cl}(A)) = \operatorname{int}_{s*g}(A)$. Therefore, $A = \operatorname{int}_{s*g}(A)$ and thus A is an s*g-open set.

ii) Let A be an β -s*g-open set . If A is open , then A is b-s*g-open . Otherwise , A is closed and hence $A \subseteq cl(int_{s*g}(cl(A))) = cl(int_{s*g}(A)) \subseteq int_{s*g}(cl(A)) \bigcup cl(int_{s*g}(A))$. Therefore A is an b-s*g-open set .

Definitions(2.18): A subset A of a topological space (X, τ) is called:

- i) An s*g-t-set if $int(A) = int_{s*g}(cl(A))$.
- ii) An s*g-B-set if $A = U \cap V$, where $U \in \tau$ and V is an s*g-t-set .

Proposition(2.19): Let A and B be subsets of a topological space (X, τ) . If A and B are s*g-t-sets, then $A \cap B$ is an s*g-t-set.

Proof: Let A and B be s*g-t-sets . Then we have: $\inf_{s*g} (cl(A \cap B)) \subseteq \inf_{s*g} (cl(A) \cap cl(B)) = \inf_{s*g} (cl(A)) \cap \inf_{s*g} (cl(B)) = \inf(A) \cap \inf(B)$ $= \inf(A \cap B) \text{ . Since } \inf(A \cap B) \subseteq \inf_{s*g} (cl(A \cap B)) \text{ , then } \inf(A \cap B) = \inf_{s*g} (cl(A \cap B))$ and hence $A \cap B$ is an s*g-t-set .

From the following example one can deduce that a pre-s*g-open set and a s*g-B-set are independent .

Example(2.20): Let X = R with the usual topology τ . Then $R \setminus Q$ is pre-s*g-open, but it is not an s*g-B-set (since $R \setminus Q = R \cap R \setminus Q$, where $R \in \tau$,but $R \setminus Q$ is not an s*g-t-set) and (0,1] is an s*g-B-set (since (0,1] = $R \cap (0,1]$, where $R \in \tau$ and (0,1] is an s*g-t-set) which is not pre-s*g-open (since (0,1] $\not\subset$ int $_{s*g}$ (cl((0,1])) = (0,1)).

Proposition(2.21): Let (X, τ) be a topological space and $A \subseteq X$. Then the following are equivalent:

- i) A is open.
- ii) A is pre-s*g-open and an s*g-B-set.

Proof: (i) \Rightarrow (ii). Let A be open. Then $A = int_{s*g}(A) \subseteq int_{s*g}(cl(A))$ and A is pre-s*g-open. Also , $A = A \cap X$, where $A \in \tau$ and X is an s*g-t-set and hence A is an s*g-B-set . (ii) \Rightarrow (i) . Since A is an s*g-B-set, we have $A = U \cap V$, where $U \in \tau$ and V is an s*g-t-set . By the hypothesis, A is also pre-s*g-open and we have: $A \subseteq int_{s*g}(cl(A)) = int_{s*g}(cl(U) \cap V) \subseteq int_{s*g}(cl(U) \cap cl(V)) = int_{s*g}(cl(U)) \cap int(V)$ $= int_{s*g}(cl(U)) \cap int(V)$

Hence

$$\begin{split} A &= U \bigcap V = (U \bigcap V) \bigcap U \subseteq (int_{s*_g}(cl(U)) \bigcap int(V)) \cap U = (int_{s*_g}(cl(U)) \cap U) \bigcap int(V) \\ &= U \bigcap int(V) = int(U) \bigcap int(V) = int(U \cap V) = int(A) \text{. Therefore } A = int(A) \text{ and } A \text{ is open .} \end{split}$$

Definitions(2.22): A subset A of a topological space (X, τ) is called :

- i) An s*g-t_{\alpha}-set if int(A) = int_{s*g} (cl(int_{s*g}(A))).
- ii) An s*g-B $_{\alpha}$ -set if $A = U \cap V$, where $U \in \tau$ and V is an s*g-t $_{\alpha}$ -set .

Proposition(2.23): Let A and B be subsets of a topological space (X, τ) . If A and B are s*g-t_a-sets, then $A \cap B$ is an s*g-t_a-set.

Proof: Let A and B be $s*g-t_a$ -sets. Then we have:

$$\begin{split} & \operatorname{int}_{s*_g}(cl(\operatorname{int}_{s*_g}(A \cap B)) = \operatorname{int}_{s*_g}(cl(\operatorname{int}_{s*_g}(A) \cap \operatorname{int}_{s*_g}(B))) \subseteq \operatorname{int}_{s*_g}(cl(\operatorname{int}_{s*_g}(A) \cap cl(\operatorname{int}_{s*_g}(B))) \\ & = \operatorname{int}_{s*_g}(cl(\operatorname{int}_{s*_g}(A))) \cap \operatorname{int}_{s*_g}(cl(\operatorname{int}_{s*_g}(B))) = \operatorname{int}(A) \cap \operatorname{int}(B) = \operatorname{int}(A \cap B) \;. \end{split}$$

Since $int(A \cap B) \subseteq int_{s^*g}(cl(int_{s^*g}(A \cap B)))$, then $int(A \cap B) = int_{s^*g}(cl(int_{s^*g}(A \cap B)))$ and hence

 $A \cap B$ is an $s*g-t_a$ -set.

From the following example one can deduce that an α -s*g-open set and an s*g- B_α -set are independent .

Example(2.24): Let X = R with the usual topology τ . Then (0,1] is an $s*g-B_{\alpha}$ -set which is not α -s*g-open . Also, in Example (2.3), $A = \{a,b\}$ is an α -s*g-open set, but is not an $s*g-B_{\alpha}$ -set.

Proposition(2.25): Let (X, τ) be a topological space and $A \subseteq X$. Then the following are equivalent:

- i) A is open.
- ii) A is α -s*g-open and an s*g-B_{\alpha}-set.

Proof: (i) \Rightarrow (ii). Let A be open. Then $A = int_{s^*g}(A) \subseteq cl(int_{s^*g}(A))$ and $A \subseteq int_{s^*g}(cl(int_{s^*g}(A)))$

Therefore A is α -s*g-open. Also, $A=A\cap X$, where $A\in \tau$ and X is an s*g-t $_{\alpha}$ -set and hence A is an s*g-B $_{\alpha}$ -set .

(ii) \Rightarrow (i) . Since A is an s*g- B_{α} -set, we have $\ A=U\bigcap V$, where $\ U\in\tau$ and V is an s*g- t_{α} -set .

By the hypothesis, A is also α -s*g-open, and we have:

$$\begin{split} &A\subseteq int_{s^*g}(cl(int_{s^*g}(A)))=int_{s^*g}(cl(int_{s^*g}(U\cap V)))=int_{s^*g}(cl(int_{s^*g}(U)\cap int_{s^*g}(V)))\\ &\subseteq int_{s^*g}(cl(int_{s^*g}(U)\cap cl(int_{s^*g}(V)))=int_{s^*g}(cl(int_{s^*g}(U)\cap int_{s^*g}(cl(int_{s^*g}(V))))\\ &\subseteq int_{s^*g}(cl(U))\cap int(V) \end{split}$$

Hence

$$\begin{split} A &= U \bigcap V = (U \bigcap V) \bigcap U \subseteq (int_{s^*g}(cl(U)) \bigcap int(V)) \bigcap U = (int_{s^*g}(cl(U)) \bigcap U) \bigcap int(V) \\ &= U \bigcap int(V) = int(U) \bigcap int(V) = int(U \bigcap V) = int(A) \text{. Therefore } A = int(A) \text{ and } A \text{ is open .} \end{split}$$

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

Vol. 27 (1) 2014

Definition(2.26): A subset A of a topological space (X,τ) is called an s*g-set if $A=U\bigcap V$, where $U\in\tau$ and $int(V)=int_{s*g}(V)$.

From the following example one can deduce that an $s\ast g\mbox{-}{\rm open}$ set and an $s\ast g\mbox{-}{\rm set}$ are independent .

Example(2.27): Let X = R with the usual topology τ . Then $A = (0,1) \cap Q$ is an s*g-set which is not s*g-open. Also, in Example (2.3), $A = \{a,b\}$ is an s*g-open set, but is not an s*g-set.

Proposition(2.28): Let (X, τ) be a topological space and $A \subseteq X$. Then the following are equivalent:

- i) A is open.
- ii) A is s*g-open and an s*g-set.

Proof: (i) \Rightarrow (ii). This is obvious.

(ii) \Rightarrow (i) . Since A is an s*g-set, we have $A = U \cap V$, where $U \in \tau$ and $int(V) = int_{s*g}(V)$. By the hypothesis, A is also s*g-open and we have:

$$\begin{aligned} A &= int_{s^*g}(A) = int_{s^*g}(U \cap V) = int_{s^*g}(U) \cap int_{s^*g}(V) = U \cap int(V) = int(U) \cap int(V) \\ &= int(U \cap V) = int(A) \ . \ Therefore \ A \ is \ open \ . \end{aligned}$$

Definitions(2.29): A topological space (X, τ) is said to satisfy:

- i) The s*g-condition if every s*g-open set is s*g-t-set.
- ii) The s*g-B_a -condition if every α -s*g-open set is s*g-B_a-set.
- iii) The s*g-B-condition if every pre-s*g-open set is s*g-B-set.

Definition(2.30): A topological space (X, τ) is called an $s*g-T_0$ -space [14] (resp. $\alpha - s*g-T_0$ -space, pre- $s*g-T_0$ -space, b- $s*g-T_0$ -space, $\beta - s*g-T_0$ -space) if for any two distinct points x and y of X, there exists an s*g-open (resp. $\alpha - s*g$ -open, pre-s*g-open, b-s*g-open, $\beta - s*g$ -open) set of X containing one of the points but not the other .

Definition(2.31): A topological space (X,τ) is called an s*g-T₁-space [14] (resp. α -s*g-T₁-space, pre-s*g-T₁-space, b-s*g-T₁-space, β -s*g-T₁-space) if for any two distinct points x and y of X, there exists an s*g-open (resp. α -s*g-open, pre-s*g-open, b-s*g-open, β -s*g-open set of X containing x but not y and an s*g-open (resp. α -s*g-open, pre-s*g-open, b-s*g-open, β -s*g-open) set of X containing y but not x.

Definition(2.32): A topological space (X, τ) is called an $s*g-T_2$ -space [14] (resp. $\alpha - s*g-T_2$ -space, pre- $s*g-T_2$ -space, b- $s*g-T_2$ -space, $\beta - s*g-T_2$ -space) if for any two distinct points x and y of X, there are two s*g-open (resp. $\alpha - s*g$ -open, pre-s*g-open, b-s*g-open, $\beta - s*g$ -open) sets U and V of X such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

3. Weak D_{s*g} -Sets And Associative Separation Axioms

In this section we introduce and investigate new notions called D_{s^*g} -sets , $D_{\alpha-s^*g}$ -sets , D_{pre-s^*g} -sets , D_{b-s^*g} -sets and $D_{\beta-s^*g}$ -sets and we use these notions to define and study some associative separation axioms .

Definition(3.1): A subset A of a topological space (X, τ) is called an D_{s^*g} -set (resp. $D_{\alpha-s^*g}$ -set,

 $D_{\text{pre-}_s*_g}$ -set, $D_{\text{b-}_s*_g}$ -set, $D_{\beta-_s*_g}$ -set) if there are two s*g-open (resp. α -s*g-open, pre-s*g-open, b-s*g-open, β -s*g-open) sets U and V in X such that $U \neq X$ and $A = U \setminus V$.

Remark(3.2): In definition (3.1), if $U \neq X$ and $V = \varphi$, then every proper s*g-open (resp. α -s*g-open, pre-s*g-open, b-s*g-open, β -s*g-open) subset U of X is an D_{s*g} -set (resp. $D_{\alpha-s*g}$ -set,

$$D_{pre-s*g}$$
 -set, D_{b-s*g} -set, $D_{\beta-s*g}$ -set) .

Proposition(3.3): In any topological space (X, τ) .

- i) Any D-set is D_{s*g} -set.
- ii) Any D_{s^*g} -set is $\,D_{\alpha-s^*g}$ -set .
- iii) Any $D_{\alpha-s^*g}$ -set is D_{pre-s^*g} -set .
- iv) Any $\boldsymbol{D}_{\text{pre-}_{s^*g}}\text{-set}$ is $\boldsymbol{D}_{\text{b-}s^*g}\text{-set}$.
- v) Any D_{b-s*g} -set is $D_{\beta-s*g}$ -set .

Proof: Follows from Lemma (2.2).

Proposition(3.4): In any door space (X, τ) .

- i) Any $D_{pre-s*g}$ -set is D_{s*g} -set .
- ii) Any $\,D_{\beta_{-s^*g}}^{}\,\text{-set}$ is $\,D_{b_{-s^*g}}^{}\,\text{-set}$.

Proof: Follows from Proposition (2.17).

Proposition(3.5): In any topological space satisfies s*g-condition any D_{s*g} -set is D-set .

Proof: Suppose that A is an D_{s*g} -set, then there are two s*g-open sets U and V in X such that $U \neq X$ and $A = U \setminus V$. Hence $U = int_{s*g}(U) \subseteq int_{s*g}(cl(U))$ and

 $V= int_{s^*g}(V) \subseteq int_{s^*g}(cl(V)) \,. \mbox{ Since X is satisfy the s^*g-condition, then U and V are s^*g-t-sets . Therefore $U\subseteq int(U)$ and $V\subseteq int(V)$. Hence U and V are open-sets . Thus A is D-set .}$

Proposition(3.6): In any topological space satisfies $s*g-B_{\alpha}$ -condition any $D_{\alpha-s*g}$ -set is D-set

Proof: Follows from Proposition (2.25).

Proposition(3.7): In any topological space satisfies s*g-B-condition any $D_{pre-_{s*g}}$ -set is D-set . **Proof:** Follows from Proposition (2.21) .

From above propositions we can get the following diagram.

- (1) $s*g-B_{\alpha}$ -Condition
- (2) s*g-Condition
- (3) s*g-B-Condition
- (4) door space

Figure No. (2): Relations among the weak D_{s*g} - sets

Definition(3.8): A function $f:(X,\tau)\to (Y,\sigma)$ is said to be α -s*g-continuous (resp. pre-s*g-continuous, b-s*g-continuous, β -s*g-continuous) if $f^{-1}(V)$ is α -s*g-open (resp. pre-s*g-open, b-s*g-open, β -s*g-open) set in X for each open set V in Y.

Definition(3.9): A function $f:(X,\tau) \to (Y,\sigma)$ is said to be α -s*g-irresolute (resp. pre-s*g-

irresolute ,b-s*g-irresolute, β -s*g-irresolute) if $f^{-1}(V)$ is α -s*g-open (resp. pre-s*g-open, b-s*g-open, β -s*g-open) set in X for each α -s*g-open (resp. pre-s*g-open, b-s*g-open, β -s*g-open) set V in Y.

Theorem(3.10): If $f:(X,\tau)\to (Y,\sigma)$ is an α -s*g-continuous (resp. s*g-continuous, pres*g-continuous, b-s*g-continuous, β -s*g-continuous) surjective function and S is a D-set in Y, then the inverse image of S is an $D_{\alpha-s*g}$ -set (resp. D_{s*g} -set, $D_{pre-s*g}$ -set, D_{b-s*g} -set, $D_{\beta-s*g}$ -set) in X.

Proof: Let S be a D-set in Y , then there are two open sets U_1 and U_2 in Y such that $S = U_1 \setminus U_2$ and $U_1 \neq Y$. Since f is α -s*g-continuous ,then $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are α -s*g-open sets in X. Since $U_1 \neq Y$ and f is surjective , then $f^{-1}(U_1) \neq X$. Hence $f^{-1}(S) = f^{-1}(U_1) \setminus f^{-1}(U_2)$ is a $D_{\alpha-s*g}$ -set in X . By the same way we can prove that other cases .

Theorem(3.11): If $f:(X,\tau)\to (Y,\sigma)$ is an α -s*g-irresolute (resp. s*g-irresolute , pres*g-irresolute , b-s*g-irresolute , β -s*g-irresolute) surjective function and S is an $D_{\alpha-s*g}$ -set (resp.

Proof: Let S be an $D_{\alpha-s*g}$ -set in Y , then there are two α -s*g-open sets U_1 and U_2 in Y such that $S = U_1 \setminus U_2$ and $U_1 \neq Y$. Since f is α -s*g-irresolute , then $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are

 $\alpha\text{-s*g-open}$ sets in X . Since $U_1\neq Y$ and f is surjective , then $f^{-1}(U_1)\neq X$. Hence

 $f^{-1}(S) = f^{-1}(U_1) \setminus f^{-1}(U_2)$ is an $D_{\alpha-s*g}$ -set in X. By the same way we can prove that other cases.

Definitions(3.12): A topological space (X, τ) is called:

- (i) An s*g- D_0 -space (resp. α -s*g- D_0 -space, pre-s*g- D_0 -space, b-s*g- D_0 -space, β -s*g- D_0 -space) if for any two distinct points x and y of X, there exists an D_{s*g} -set (resp. $D_{\alpha-s*g}$ -set, $D_{pre-s*g}$ -set, D_{b-s*g} -set, $D_{\beta-s*g}$ -set, of X containing one of the points but not the other.
- (ii) An s*g-D₁-space (resp. α -s*g-D₁-space, pre-s*g-D₁-space, b-s*g-D₁-space, β -s*g-D₁-space) if for any two distinct points x and y of X, there exists an D_{s*g}-set (resp. D_{α -s*g}-set, D_{pre-s*g}-set, D_{b-s*g}-set, D_{β -s*g}-set) of X containing x but not y and an D_{s*g}-set (resp. D_{α -s*g}-set, D_{pre-s*g}-set, D_{β -s*g}-set, D_{β -s*g}-set) of X containing y but not x.
- (iii) An s*g-D₂-space (resp. α -s*g-D₂- space, pre-s*g-D₂-space, b-s*g-D₂-space, β -s*g-D₂-space) if for any two distinct points x and y of X, there are two D_{s*g}-sets (resp. D_{α -s*g}-sets, D_{pre-s*g}-sets, D_{b-s*g}-sets, D_{b-s*g}-sets) U and V of X such that $x \in U$, $y \in V$ and $U \cap V = \phi$.

Theorem(3.13): (i) Every s*g- T_i -space (resp. α -s*g- T_i -space , pre-s*g- T_i -space , b-s*g- T_i -space, β -s*g- T_i -space) is s*g- T_{i-1} -space (resp. α -s*g- T_{i-1} -space, pre-s*g- T_{i-1} -space, b-s*g- T_{i-1} -space) , i=1,2.

- (ii) Every $s*g-T_i$ -space (resp. α - $s*g-T_i$ -space , pre- $s*g-T_i$ -space , b- $s*g-T_i$ -space , β - $s*g-T_i$ -space) is $s*g-D_i$ -space (resp. α - $s*g-D_i$ -space, pre- $s*g-D_i$ -space, b- $s*g-D_i$ -space, β - $s*g-D_i$ -space) , i=0,1,2 .
- (iii) Every s*g-D_i-space (resp. α -s*g-D_i-space , pre-s*g-D_i-space , b-s*g-D_i-space , β -s*g-D_i-space) is s*g-D_{i-1}-space (resp. α -s*g-D_{i-1}-space, pre-s*g-D_{i-1}-space, b-s*g-D_{i-1}-space, β -s*g-D_{i-1}-space) ,i=1,2 .

Proof: (i) It is obvious . (ii) Follows from Remark (3.2). (iii) It is obvious . Remark(3.14): The converse of theorem (3.13), no. (i) may not be true . Consider the following examples:

Example(3.15): Let X be any infinite set and let $\tau = \{ U \subseteq X : U^c \text{ is finite} \} \cup \{\phi\}$. Then (X, τ) is an s^*g -

 $T_{_1}$ -space (resp. α -s*g- $T_{_1}$ -space , pre-s*g- $T_{_1}$ -space , b-s*g- $T_{_1}$ -space , β -s*g- $T_{_1}$ -space , but is not an

 $s*g-T_2-space \; (resp. \; \alpha-s*g-T_2-space \; , \; pre-s*g-T_2-space \; , \; b-s*g-T_2-space \; , \; \beta-s*g-T_2-space \; , \; \beta-s*g-T_2-space$

Example(3.16): Let $X = \{a,b\}$ and $\tau = \{X,\phi,\{a\}\}$. Then (X,τ) is $s*g-T_0$ -space (resp. α - $s*g-T_0$ -

space, pre-s*g- T_0 -space, b-s*g- T_0 -space, β -s*g- T_0 -space), but is not s*g- T_1 -space (resp. α -s*g- T_1 -space, pre-s*g- T_1 -space, b-s*g- T_1 -space, β -s*g- T_1 -space).

Remark(3.17): The converse of theorem (3.13), no.(ii) may not be true. Consider the following examples:

Example(3.18): Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Then s*g-open sets in X = open sets in X. Hence (X, τ) is s*g- D_i -space, but is not s*g- T_i -space, i = 1, 2.

Example(3.19): Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Then α -s*g-open sets in X = pre-s*g-open sets in X = b-s*g-open sets in $X = \beta$ -s*g-open sets in $X = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. Hence (X, τ) is α -s*g- D_i -space (resp. pre-s*g- D_i -space , b-s*g- D_i -space , β -s*g- D_i -space), but is not α -s*g- T_i -space (resp. pre-s*g- T_i -space , b-s*g- T_i -space , β -s*g- T_i -space) , i = 1, 2.

Remark(3.20): The converse of theorem (3.13), no. (iii) may not be true . In example (3.16) , (X,τ) is $s*g-D_0$ -space (resp. α - $s*g-D_0$ -space, pre- $s*g-D_0$ -space, b- $s*g-D_0$ -space, β - $s*g-D_0$ -space, but is not $s*g-D_1$ -space (resp. α - $s*g-D_1$ -space, pre- $s*g-D_1$ -space, b- $s*g-D_1$ -space, β - $s*g-D_1$ -space) .

Theorem(3.21): A topological space (X, τ) is an α -s*g-D₀-space (resp. s*g-D₀-space, pre-s*g-D₀-space, b-s*g-D₀-space, β -s*g-D₀-space) if and only if it is an α -s*g-T₀-space (resp. s*g-T₀-space, pre-s*g-T₀-space, b-s*g-T₀-space, β -s*g-T₀-space).

Proof: Sufficiency. Follows from Theorem (3.13), no. (ii).

Necessity. Let $x,y\in X$ such that $x\neq y$. Since (X,τ) is α -s*g-D₀-space, then there exists an $D_{\alpha-s*g}$ -set U such that $x\in U$, $y\not\in U$. Let $U=P_1\setminus P_2$, where $P_1\neq X$ and P_1,P_2 are α -s*g-open sets in X. By $y\not\in U$ we have two cases: (i) $y\not\in P_1$ (ii) $y\in P_1$ and $y\in P_2$.

In case (i) $y \notin P_1$ and $x \in U = P_1 \setminus P_2 \implies x \in P_1$ and $y \notin P_1$.

In case (ii) $y \in P_1$ and $y \in P_2$ and $x \in P_1 \setminus P_2 \implies x \notin P_2 \implies y \in P_2$ and $x \notin P_2$.

Thus in both cases, we obtain that (X, τ) is an α -s*g-T₀-space .

By the same way we can prove that other cases.

Theorem(3.22): A topological space (X, τ) is an α -s*g-D₁-space (resp. s*g-D₁-space, pre-s*g-D₁-space, b-s*g-D₁-space, β -s*g-D₁-space) if and only if it is an α -s*g-D₂-space (resp. s*g-D₂-space, pre-s*g-D₂-space, b-s*g-D₂-space, β -s*g-D₂-space).

Proof: Sufficiency . Follows from Theorem (3.13), no. (iii).

Necessity . Let $x,y\in X$ such that $x\neq y$. Since (X,τ) is an α -s*g- D_1 -space, then there exists $D_{\alpha-s*g}$ -sets U and V in X such $x\in U$, $y\notin U$ and $y\in V$, $x\notin V$. Let $U=P_1\setminus P_2$ and $V=P_3\setminus P_4$

,where P_1, P_2, P_3, P_4 are α -s*g-open sets in X and $P_1 \neq X$ and $P_3 \neq X$. By $x \notin V$ we have two cases : (i) $x \notin P_3$ (ii) $x \in P_3$ and $x \in P_4$.

In case (i): $x \notin P_3$. By $y \notin U$ we have two subcases: (a) $y \in P_1$ and $y \in P_2$ (b) $y \notin P_1$.

Subcase (a): $y \in P_1$ and $y \in P_2$. We have $x \in P_1 \setminus P_2$, $y \in P_2$ and $(P_1 \setminus P_2) \cap P_2 = \emptyset$.

Observe that $P_2 \neq X$ since $U \neq \phi$, thus by Remark (3.2) P_2 is an $D_{\alpha-s^*\sigma}$ -set.

Subcase (b): $y \notin P_1$. Since $x \in P_1 \setminus P_2$ and $x \notin P_3$, then $x \in P_1 \setminus (P_2 \cup P_3)$ and since $y \in P_3 \setminus P_4$

and $y \notin P_1$, then $y \in P_3 \setminus (P_4 \cup P_1)$. Observe also from theorem (2.15) that $(P_2 \cup P_3)$ and $(P_4 \cup P_1)$ are α -s*g-open sets. Hence $x \in P_1 \setminus (P_2 \cup P_3)$, $y \in P_3 \setminus (P_4 \cup P_1)$ and $(P_1 \setminus (P_2 \cup P_3)) \cap (P_3 \setminus (P_4 \cup P_1)) = \emptyset$.

In case (ii): $x \in P_3$ and $x \in P_4$. We have $y \in P_3 \setminus P_4$, $x \in P_4$ and $(P_3 \setminus P_4) \cap P_4 = \emptyset$.

Observe that $P_4 \neq X$ since $V \neq \phi$, thus by Remark (3.2) P_4 is an $D_{\alpha-s*_{\sigma}}$ -set.

Hence (X,τ) is an $\,\alpha\text{-}s^*g\text{-}\,D_2\text{-}space$. By the same way we can prove that other cases .

Corollary(3.23): If (X,τ) is an α -s*g-D₁-space (resp. s*g-D₁-space, pre-s*g-D₁-space, b-s*g-D₁-space, β -s*g-D₁-space), then it is an α -s*g-T₀-space (resp. s*g-T₀-space, pre-s*g-T₀-space)

, b-s*g- T_0 -space, β -s*g- T_0 -space).

Proof: Follows from Theorem (3.13), no. (iii) and Theorem (3.21).

Remark(3.24): The converse of Corollary (3.23) may not be true . In example (3.16), (X, τ) is α -s*g- T_0 -space (resp. s*g- T_0 -space, pre-s*g- T_0 -space, b-s*g- T_0 -space, β -s*g- T_0 -space, but is not an α -s*g- D_1 -space (resp. s*g- D_1 -space, pre-s*g- D_1 -space, b-s*g- D_1 -space, β -s*g- D_1 -space).

Propositions(3.25):

- (i) Every s*g-D_i-space is α -s*g-D_i-space , i = 0,1,2.
- (ii) Every α -s*g-D_i-space is pre-s*g-D_i-space , i = 0,1,2.
- (iii) Every pre-s*g- D_i -space is b-s*g- D_i -space ,i = 0,1,2.
- (iv) Every b-s*g-D_i-space is β -s*g-D_i-space , i = 0,1,2.

Remark(3.26): The converse of proposition (3.25), no.(i) may not be true . In example (3.19), (X,τ) is α -s*g-D_i-space, but is not s*g-D_i-space, i=0,1,2.

Remark(3.27): The converse of proposition (3.25), no. (iii) may not be true. Consider the following example:

From above we can get the following diagram.

Vol. 27 (1) 2014

Example(3.28): Let $X = \{a, b, c\}$ & $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\$. Then pre-s*g-open sets in $X = \{a, b, c\}$ open sets in X and b-s*g-open sets in $X=\{X,\phi,\{a\},\{b\},\{a,b\}\}\{a,c\},\{b,c\}\}$. Hence (X,τ) is b $s*g-D_i$ -space, but is not pre- $s*g-D_i$ -space, i = 1,2.

Figure No. (3): Relations among the types of separation axioms

Definition(3.29): A subset A of a topological space (X, τ) is called an α -s*g-neighborhood

s*g-neighborhood, pre-s*g-neighborhood, b-s*g-neighborhood, β-s*g-neighborhood) of a point x in X if there exists an α -s*g-open (resp. s*g-open, pre-s*g-open, b-s*g-open, β -s*gopen) set U in X such that $x \in U \subset A$.

Definition(3.30): Let (X, τ) be a topological space. A point $x \in X$ which has X as the only α s*g-neighborhood (resp. s*g-neighborhood, pre-s*g-neighborhood, b-s*g-neighborhood, βs*g-neighborhood) is called an α -s*g-neat (resp. s*g-neat, pre-s*g-neat, b-s*g-neat, β -s*gneat) point.

Theorem(3.31): For an α -s*g-T₀ -space (resp. s*g-T₀ -space, pre-s*g-T₀ -space, b-s*g- T_0 -space, β -s*g- T_0 -space) (X, τ) the following are equivalent.

(i) (X, τ) is an α -s*g-D₁-space (resp. s*g-D₁-space, pre-s*g-D₁-space, b-s*g-D₁-space, β s*g-

 D_1 -space).

(ii) (X, τ) has no α -s*g-neat (resp. s*g-neat, pre-s*g-neat, b-s*g-neat, β -s*g-neat) point.

Proof: (i) \Rightarrow (ii) . Since (X, τ) is an α -s*g-D₁-space, then each point x of X is contained in a $D_{\alpha-s^*\sigma}$ -set $G=U\setminus V$, where U and V are α -s*g-open sets and thus in U . By definition $U \neq X$. This implies that x is not an α -s*g-neat point.

(ii) \Rightarrow (i) . If (X, τ) is an α -s*g-T₀-space, then for each distinct points $x, y \in X$, at least one of them, say x has an α -s*g-neighborhood U containing x, but not y. Thus U is different

from X and therefore by Remark (3.2), U is an $D_{\alpha-s^*g}$ -set . Since X has no α -s*g-neat point, then y is not

an α -s*g-neat point. Thus there exists an α -s*g-neighborhood V of y such that $V \neq X$. Therefore, $y \in V \setminus U$, $x \notin V \setminus U$ and $V \setminus U$ is an $D_{\alpha-s^*g}$ -set. Hence (X, τ) is an α -s*g- D_1 space.

Theorem(3.32): Let $f:(X,\tau) \to (Y,\sigma)$ be an α -s*g-continuous (resp. s*g-continuous, pre-s*g-continuous, b-s*g-continuous, β -s*g-continuous) bijective function. If (Y, σ) is a D_i space, then

 (X, τ) is an α -s*g-D_i-space (resp. s*g-D_i-space, pre-s*g-D_i-space, b-s*g-D_i-space, β -s*g- D_i -space), i = 0,1,2.

Proof: Suppose that (Y, σ) is a D_{γ} -space. Let $x, y \in X$ such that $x \neq y$. Since f is injective and

Y is a D_2 -space, then there exists disjoint D-sets G_1 and G_2 of Y such that $f(x) \in G_1$ and $f(y) \in G_2$. By Theorem (3.10), $f^{-1}(G_1)$ and $f^{-1}(G_2)$ are $D_{\alpha-s^*\sigma}$ -sets in X such that $x \in f^{-1}(G_1)$,

 $y \in f^{-1}(G_2)$ and $f^{-1}(G_1) \cap f^{-1}(G_2) = \phi$. Hence (X, τ) is an α -s*g-D₂-space.

Theorem(3.33): Let $f:(X,\tau)\to (Y,\sigma)$ be an α -s*g-irresolute (resp. s*g-irresolute, pres*g-

irresolute, b-s*g-irresolute, β -s*g-irresolute) bijective function . If (Y, σ) is an α -s*g- D_i space (resp. $s*g-D_i$ -space, pre- $s*g-D_i$ -space, $b-s*g-D_i$ -space, $\beta-s*g-D_i$ -space), then (X,τ) is an α -s*g-D_i-space (resp. s*g-D_i-space, pre-s*g-D_i-space, b-s*g-D_i-space, β -s*g-D_ispace), i = 0,1,2.

Proof: Suppose that (Y, σ) is an α -s*g-D₂-space. Let $x, y \in X$ such that $x \neq y$. Since f is injective and Y is an α -s*g-D₂-space , then there exists disjoint D_{α -s*g}-sets G₁ and G₂ of Y such that $f(x) \in G_1$ and $f(y) \in G_2$. By Theorem (3.11), $f^{-1}(G_1)$ and $f^{-1}(G_2)$ are $D_{\alpha-\epsilon^*\sigma}$ sets in X such that $x \in f^{-1}(G_1)$, $y \in f^{-1}(G_2)$ and $f^{-1}(G_1) \cap f^{-1}(G_2) = \emptyset$. Hence (X, τ) is an α -s*g-D₂-space.

Ibn Al-Haitham Jour. for Pure & Appl. Sci.

References

- **1.** Tong, J. (1982) A separation axioms between T_0 and T_1 , Ann. Soc. Sci. Bruxelles 96 II,85-90.
- **2.** Calads,M. (1997) A Separation axioms between semi-T₀ and semi-T₁, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 181,37-42.
- **3.** Calads,M.; Georgiou, D.N. and Jafari, S. (2003) Characterization of low separation axioms via α -open sets and α -closure operator, Bol. Soc. Paran. Mat.(3s), 21(1/2), 1-14.
- **4.** Jafari, S. On a weak separation axioms ,Far East J. Math. Sci. (to appear) .
- **5.** Keskin, A. and Noiri, T. (2009) On bD-sets and associated separation axioms, Bulletin of the Iranian Math. Soc. 35,1,179-198.
- **6.** Khan,M. ; Noiri, T . and Hussain, M .(2008) On s*g-closed sets and s*-normal spaces , 48 , 31-41 .
- **7.** Levine, N. (1963) Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36-41.
- 8. Njastad, O. (1965) On some classes of nearly open sets, Pacific J. Math. 15, 961-970.
- **9.** Mashhour, A.S.; Abd El-Monsef, M.E. and El-Deeb, S.N. (1982) On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt 51, 47-53.
- **10.** Andrijevic, D. (1996) On b-open sets, Mat. Vesnik, 48 (1-2), 59-64.
- **11.** Abd El-Monsef,M.E. ; El-Deeb , S.N. and Mahmoud,R.A. (1983) β -open sets and β -continuous Mappings , Bull. Fac. Sci. Assuit Univ. 12, 77-90 .
- **12.** Veerakumar,M.K.R.S. (2001) \hat{g} -closed sets and $G\hat{L}$ C-functions , Indian J.Math., 43,2 , 231-247.
- 13. Kelly, J.L. (1955) General Topology, VAN NOSTRAND, New York.
- **14.** S.I. and Afrah, M . (2010) S*-separation axioms , Iraqi Journal of Science, University of Baghdad, 51, 1,145-153 .

حول المجموعات - D_{s*_e} الضعيفة وبديهيات الفصل المشتقة منها

صبيحة إبراهيم محمود قسم الرياضيات - كلية العلوم- الجامعة المستنصرية

أستلم البحث في: 3 ايلول 2013 ، قبل البحث في: 19 شباط 2014

الخلاصة

في هذا البحث قمنا بتقديم اصناف جديدة من المجموعات اسميناها بالمجموعات - المجموعات - المجموعات من المجموعات D_{s*g} - المجموعات D_{b-s*g} - المجموعات D_{b-s*g} - المجموعات في تعريف ودراسه بعض بديهيات الفصل المجموعات والعلاقات بينهم فضلا عن ذلك استخدمنا هذه المجموعات في تعريف ودراسه بعض بديهيات الفصل المشتقة منها .

 D_{i} b-- الفضاءات , D_{i} pre-s*g- الفضاءات , D_{i} -s*g- α , الفضاءات , D_{i} s*g- α . (i=0,1,2) D_{i} -s*g- β , الفضاءات , s*g-