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Abstract  

     In the current work, Calculate cross sections for  252Cf (α,3n)253Fm  reaction Use of interpolation 

and cross-section sampling published in the international literature to select the appropriate 

interaction of ground-level energies in a computer-based program (MATALAB-17.0) , in steps of 

energies (0.2 Million electron volts). Given the importance of the 252Cf isotope and its entry into the 

industrial and medical fields, there was a need to determine the energy of the incident neutron to 

produce this isotope, relying on the masses of the entering and leaving particles and the values of 

angular momentum to obtain an equation and according to the theory of the opposite reaction. The 

reaction cross sections (253Fm (3n,α) 252Cf) were calculated using the opposite reaction theory for 

the energy range (3.9789-14.538)MeV. The results show that the probability values increase with 

the neutron's energy smoothly. The results show that cross-section values are almost constant for 

the energy range limited to (8.5-14)MeV. The results were plotted and tabulated using MATLAB 

17.0. Also, the values obtained for the reaction cross sections 253Fm (3n,α) 252Cf through which the 

CF is produced. Semi-empirical equations were obtained for the relationship between energy and 

cross-section.  
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1. Introduction 

     Californium is a radioactive, trivalent chemical element.)1( A synthetic chemical element in the 

periodic table. Its chemical symbol is Cf and the number of protons is 98. It was discovered by 

bombarding the element curium with alpha particles. It has a few uses. 252Cf has a half-life of 2.6 

years and is highly radioactive. It is considered a source of neutrons (1 microgram radiates about 

170 million neutrons per minute ). Nine radioactive isotopes have been discovered, the most stable 

of which are 251Cf with a half-life of 898 days, 249Cf with a half-life of 351 years, and 250Cf with a 

half-life of 13 years. The rest of the radioactive isotopes have a half-life of less than 2.7 years, most 

of which are about twenty minutes, and the atomic weight of the isotopes ranges between 237.062 

(237Cf) to 256.093 (256Cf). 
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2. Materials and Methods 

2.1. Radioisotope Production 

     Isotopes are substances with nuclei that have an equal number of protons and a varying number 

of neutrons. The physical characteristics of an element's isotopes differ from their chemical 

counterparts but are the same in the number of nucleons. Because of this, each isotope is 

distinguished by its mass number. In addition, some isotopes are unstable and are liable to 

radioactive decay. Radioactive isotopes are the name given to these isotopes  (2)  Figure 1. shows 

two groups of elements, the elements with the same number of neutrons (isotones) and elements 

with the same mass number (isobars). The lines in the figure show how the number of nucleons 

changes in the different types of radioactive decay, where the coordinate represents the number 

of neutrons N and the coordinate represents the atomic number Z. All radioactive elements have 

a half-life, Where the half-life is the time during which half of the nuclei of the current radioactive 

isotope decay and it can vary from 10 -8 seconds for short-lived radioisotopes and up to 1014 years 

for long-lived radioisotopes. The different radioactive isotopes of some elements also have 

multiple types of half-life, decay pathways, and decay types. Naturally or as a result of artificially 

modifying the atom unstable nucleation of radioactive isotopes can occur. In some cases, a 

cyclotron is used. In other instances, a nuclear reactor produces radioactive isotopes used in the 

medical field in diagnosis, treatment, and other industrial fields. A nuclear reactor is the best way 

to produce neutron-rich radioactive isotopes used in technological advances such as 

molybdenum-99., while cyclotrons are the most appropriate way to produce proton-rich radio-

isotopes like fluorine) 3,4). 

practical releasing radiation is called radioactive decades. The process of radioactive decay for 

each radioactive isotope is unique and is measured by a period called the half-life (5-7). 

 

 
Figure 1. Describes groups of elements and the path of decay(7). 

 

2.2. Cross Sections 

The interaction of the neutron with the target nucleus in a reaction does not depend on the 

type of nucleus, but rather on the energy for neutrons. Therefore, the absorption of thermal 

neutrons in some materials is much greater than the absorption of fast neutrons. In addition to the 

type of interactions (7). This probability of an interaction between neutrons is called a 

microscopic cross-section σ. The values of these cross-sections change with changes in neutron 

energies(8,9). Cross sections have several types: 

 Microscopic cross sections. 

 Macroscopic cross sections. 
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Microscopic cross sections (σ) are the target and effective areas presented by a single nucleus of 

the bombardment particle. Microscopic cross-sections can also be defined as follows (10): 

σ= R/I                                                                                                                                         (1) 

σ :  Microscopic cross- section-section (cm2)(11,12). 

 R: Numbers of reactions per unit time per nucleus.  

I: Numbers incident particles per unit times per unit area. 

While the macroscopic cross sections (∑) are the effective target areas represented by the cores 

containing cm2 of material, another meaning is that these are microscopic and macroscopic cross 

sections and expressed in cm2 or pens (1 barn = 10-24 cm2). A neutron will interact with a given 

volume of matter, and this depends on the microscopic cross sections on the number of nuclei 

within that volume. In other words, all macroscopic cross sections are the probability of certain 

interactions occurring / units travel of the neutron. (∑) where this microscopic cross section (σ) is 

related to the following relationship  (11). 

∑ = N * σ                                                                                                                                    (2) 

∑ :  Macroscopic section (cm-1). 

N: Atoms densities of material(atoms/cm 3). 

This neutron interacts with an atom of matter by scattering first and absorbing second. Microscopic 

absorption cross sections, σa, is the probability that a particular atom will absorb a neutron. The 

scattering probability of neutrons from the nucleus is the microscopic scattering cross section, σ s. 

So the total cross section’s σT is given by the following relationship(12,13): 

σT = σa + σs                                                                                                                (3) (14,15) 

σ a = σ c + σ f                                                                                                                     (4) (16) 

The reaction cross sections B(n,α)A can be calculated from reaction cross sections. If reaction cross 

sections A(α,n)B are measured by the opposite reaction method: 

𝜎(α,n)

g α,n α2 
=

σ (n,α)

g n,αn2
                                                                                                                     (5) 

σ(α,n) and σ(n,α) are the cross sections of (α,n) and (n,α) interactions, respectively, g and the 

statistical factor which is the de-Broglie wavelength divided by 2π and (20) are given by: 

  = 
 ħ

MV
                                                                                                                                              (6) 

Where ħ= h /2π   is Dirac- constant, h is plank-constant, M is mass and V is velocity.   

 

3. Results and Discussion 

     In the current study, cross sections were measured by the inverse reaction method 252Cf 

(α,3n)253Fm This is to obtain the production of chloronium from the reaction253Fm  (3n,α) 252Cf   

This is due to the status that CF enjoys and its great importance, as californium is a radioactive, 

trivalent chemical element that contains 98 protons. CF is used as an important neutron source 

that helps in detecting natural ores and minerals such as gold and silver through the neutron 
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activation technique. It is also used in neutron radiography of aircraft and weapon components to 

detect corrosion.  

 

Table 1. Cross section of alpha particle incident by step 0.2MeV for  252Cf (α,3n)253Fm reaction( p.work). 

Alpha Energy 

(MeV) 

X- Sections 

(mb) p.w. 

Alpha Energy 

(MeV) 

X- Sections 

(mb) p.w. 

Alpha Energy 

(MeV) 

X- Sections 

(mb) p.w. 

29.5 0.7462 33.3 1.8279 37.1 3.2571 

29.7 0.7953 33.5 1.9796 37.3 3.2472 

29.9 0.8444 33.7 2.1313 37.5 3.2373 

30.1 0.8935 33.9 2.283 37.7 3.2275 

30.3 0.9426 34.1 2.4346 37.9 3.2176 

30.5 0.9917 34.3 2.5863 38.1 3.2078 

30.7 1.0408 34.5 2.738 38.3 3.1979 

30.9 1.0899 34.7 2.8897 38.5 3.1881 

31.1 1.139 34.9 3.0341 38.7 3.1782 

31.3 1.1882 35.1 3.0547 38.9 3.1683 

31.5 1.2373 35.3 3.0752 39.1 3.1585 

31.7 1.2864 35.5 3.0957 39.3 3.1486 

31.9 1.3355 35.7 3.1162 39.5 3.1388 

32.1 1.3846 35.9 3.1368 39.7 3.4316 

32.3 1.4337 36.1 3.1573 39.9 3.7908 

32.5 1.4828 36.3 3.1778 40.1 4.1501 

32.7 1.5319 36.5 3.1984 ---------- ---------- 

32.9 1.581 36.7 3.2189 ---------- ---------- 

33.1 1.6763 36.9 3.2394 ---------- ---------- 

 

  Table 1. shows the range of alpha energy incident on the target nucleus, 252Cf, between 29.5 and 

40.1 (MeV). It is shown that the behavior of the cross sections begins to increase until it reaches 

a cross-section of 4.1501 mbarn as shown in fig.1 by using MATLAB program The evaluation of 

cross sections recalculated by spline(22,23), fitting and interpolate. The percentage was 

calculated from the appropriate equation for the distribution of cross sections of the alpha energy 

range, as follows: y = 1.1e-5*x α
7 - 0.0028*x α

6 + 0.3*x α
5 - 17*x α

4 + 6.1e+2*x α
3 - 1.3e+4*x α 

2 + 

1.5e+5*x α - 7.5e+5 

where y is the cross sections,  xα is the neutron energy. 

 

Table 2.  Cross sections of neutron Incident of 253Fm  (3n,α) 252Cf reaction( p.work). 

Neutron energy 

(MeV) 

X- Sections      

(mb) p.w. 

Neutron energy 

(MeV) 

X- Sections  

(mb) p.w. 

Neutron energy 

(MeV) 

X- Sections  

(mb )p.w. 

3.9789 0.2838 7.565 0.6375 11.1511 1.2241 

4.1782 0.3024 7.7643 0.6951 11.3504 1.2319 

4.3774 0.3211 7.9635 0.7528 11.5496 1.2386 

4.5766 0.3398 8.1627 0.8105 11.7488 1.2349 

4.7758 0.3585 8.3619 0.8682 11.948 1.2311 

4.9751 0.3771 8.5612 0.9259 12.1473 1.2274 

5.1743 0.3958 8.7604 0.9835 12.3465 1.2236 

5.3735 0.4145 8.9596 1.0412 12.5457 1.2199 

5.5728 0.4332 9.1589 1.0989 12.745 1.2161 

5.772 0.4518 9.3581 1.1538 12.9442 1.2124 

5.9712 0.4705 9.5573 1.1617 13.1434 1.2086 

6.1704 0.4892 9.7565 1.1695 13.3426 1.2049 

6.3697 0.5079 9.9558 1.1773 13.5419 1.2011 

6.5689 0.5265 10.155 1.1851 13.7411 1.1974 

6.7681 0.5452 10.3542 1.1929 13.9403 1.1936 

6.9673 0.5639 10.5534 1.2007 14.1396 1.305 
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7.1666 0.5826 10.7527 1.2085 14.3388 1.4416 

7.3658 0.6012 10.9519 1.2163 14.538 1.5782 

In Table 2., the cross sections for the reaction (3n, a) were calculated using the reverse reaction 

technique and according to the following equation:      

X(n,α)= 0.33068487
Tα

 Tn
 X(α,n) 

Which depends on the atomic masses of each of the products and reactants(24-26), by calculating 

Q-value and Eth, and by relying on the spin and parity values of each of the products, reactants 

(27,28), and the complex nucleus to calculate the g-factor(29,30).                       

Where   gα,n=1    and   gn,α=1/4 

These data are listed in Table 2. and plotted in Figure 2. In addition to the sixth-order semi-

empirical formula, using the program (MATLAB version R (2017). From the data, we noticed 

the increase in cross sections from (0.2838 mbarn) to (1.5782 mbarn) and this increase is smooth. 

We deduced that the greatest potential for production 252Cf by bombarding 253Fm by Resonance 

neutrons (Its power ranges from 1-100 MeV).  

In Table 2; It was found that the values of the cross sections increase with the increase in the 

energy of the neutron incident on the target material  253Fm   as shown in Figure 2. From Figure 

2 a sixth-order semi-empirical equation is obtained for the relationship between neutron energy 

with cross sections and the following 

y = - 7.5e-06*xn
6 + 0.00071*xn

5 - 0.022*xn
4 + 0.31*xn

3 - 2.2*xn
2 + 7.8*xn – 10 

where y is the cross sections,  xn is the neutron energy.   

 
Figure 2. The cross sections as a function of alpha energy for  252Cf (α,3n)253Fm  reaction. 
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Figure 3. The cross sections as a function of neutron energy for  253Fm  (3n,α) 252Cf   reaction. 

 

4. Conclusion 

     It was found from this study that the values of probability increase with the increase of neutron 

until it reaches a constant stage and for the energy range that ranges between 9.3581-14.3388 

MeV. In other words, the probability of obtaining a CF isotope is higher with an increase in the 

energy of neutrons, as CF is used for diagnosis and treatment. 
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