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Abstract   

Moth-eye nano-structure is essentially used as a light-trapping technique for more efficient 

and cost-effective solar cells. This computational study investigated two dimensions of 

rectangular silicon base anti-reflected nanostructure for ultra-thin film solar silicon cell 

efficiency enhancement. The introduced simulation procedure depends on numerical methods 

and Lumerical software. Impacts of the structure geometry, which was the width and height, 

on optical and electrical properties were investigated. It found that the geometry of the 

structure has a significant effect on the absorption and reflection spectrum, due to structure 

light-trapping effects, and the maximum absorption increases in visible regain reported at a 

width of 300 nm and height of 100 nm. We also determined the fill factor, short circuit 

current, and open circuit voltage. It is found that the short circuit current density is 

significantly influenced by the structure geometry due to a change in absorption, which 

influences electron-hole generation. It’s also found that the performance can be enhanced by 

choosing a suitable dimension for the suggested structure. The optimum efficiency 

enhancement achieved was from 8.71% to 11.89%, and the obtained results are encouraging 

for using the presented procedure to design more complex structures. 

Keywords: Moth-Eye, Nano structures, Solar cells, Finite difference time domain, Efficiency 

enhancement. 

 

1. Introduction 

The world has faced an existential threat due to the continuous population increases and 

finite natural resources. Conversely, the pollution associated with the increased consumption 

of fossil energy sources has led to climate change (1-4). Sustainable energy is required to 

combat these risks, and solar energy is the most promising. Today. silicon solar cells 

represent 90% of photovoltaic cells because of their high operational stability, nontoxicity, 

and abundance (5-8). 

However, getting good absorption throughout a wide range of solar spectrum requires a 

considerable amount of silicon material with a topical cell thickness of roughly 180-300 µm, 
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which raises the production cost, so one possible solution to minimize the cost is ultra-thin 

silicon solar cell with thickness in few micrometers due to needing less material and 

protection cost and it has a lot of interest recently (9-15). 

Ultra-Thin Film Solar Cell UTFSC has lower efficiency because of decreasing silicon 

thickness, and surface, bulk recombination. As a result, both experiential and theoretical work 

established several light trapping techniques to minimize the reflection on the surface and 

maximize the absorption of light to enhance the UTFSC efficiency, such as surface texturing, 

anti-reflected coating, diffraction grating, metallic nanoparticles (16-25). 

In this study, we establish a computational model based on the FDTD combined with a 

Lumerical-Charge solution that has been utilized to investigate alternative designs of silicon-

based like moth eye nanostructure for lowering solar cell production costs and improved 

efficiency.  

  

2. Materials and Methods 

     Solar cells' efficiency depends on the design and optical and electrical material properties. 

For the optical simulation, the absorption of silicon solar cells' active layer per unit volume is 

defined by (26): 

           | |       ( )                                                                                                

(1) 

where| | is the electric field,   is the angular frequency, and      ( ) represents a 

permittivity imaginary part.   

Dividing absorption energy per unit volume by the energy per photon (ħ ), one can calculate 

the photon generation rate (27).  

  
    

        
 

      | |       ( )

 
                                                                                                    

(2) 

Where   is a reduced Planck's constant. The integration of (g) over the whole spectrum, 

which is considered in this study (          ) determines the photon generation rate. If 

we consider an ideal case, the current length unit (  ⁄ ) can be expressed as (28): 

                                                                                                                                            

(3) 

 Where   is the charge on an electron   

Solar cell quantum efficiency can be defined as (29): 

   ( )  
    ( )  

   ( )  
                                                                                                                      

(4) 

Where Pin ( ) and Pabs ( ) are the powers of the incident and absorbed photons at a 

wavelength ( ) respectively. 

The following equations yield the ideal short-circuit current density    (     )   (30): 

   (     )    ∫
 

    
  ( )       ( )                                                                                     (5) 

 Where c denotes the speed of light in free space,        denote considered solar irradiance.  

The solar cell open-circuit voltage can be defined as (31): 

    
   

 
   (

  

  
  )                                                                                                                       (6) 

Where;   is the temperature,    represents the Boltzmann constant,   is the electron charge, 

   is the light saturation current, and      is the dark saturation current, and A is the solar 

ideality factor. 

The current density     can be expressed as (28):  
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      (     )                                                                                                                   (7) 

Where   is the generation rate, and    and    are the electron and hole diffusion lengths, 

respectively 

The fill factor    gauges a solar cell's J-V properties is given by (32):  

   
            

           
                                                                                                                     (8)                                              

 The output power, or maximum power, can be stated as:  

                                                                                                                            (9)  

  Finally, the efficiency of a solar cell can be expressed as (33): 

                        ⁄                                                                                               (10)   

where         It is the incident power. 

Modeling solar cells as a device requires both optical and electrical simulations. Figure (1.a) 

represents a two-dimensional schematic diagram for ultra-thin film silicon solar cells with a 

Moth-Eye nano-structure array, where the front contact (emitter) and rear contact (base) are 

made of Silver (Ag), and Aluminum (Al), respectively. R represents the external loud. Also, 

the optical and electrical simulation regions are shown. Figure (1.b) represents the optical 

simulation diagram established by FDTD simulation. A planer wave light source was 

employed, and both the reflection and transmitting were monitored by an R-monitor and T-

monitor below, and above the solar cell respectively. The left and right are set to be periodic 

boundary conditions (PBC) meanwhile, the upper and bottom sides are set to be perfectly 

matched layers (PML). The geometry of moth-eye array units is set to be rectangular where w 

and h represent the width and height respectively while d represents the distances between 

two structures, and the material of the structure is silicon. 

       

 
Figure 1. (a) Solar cell with rectangular moth-eye structure, electrical and optical simulation regions.  (b) The 

optical simulation region unites cells.  

 

The device simulation was done in three steps as shown in Figure (2), in the first step optical 

properties (Reflection, Absorption, Transmission), heat, and electrical generation profile 

within the active region of the silicon solar cell over the entire incident solar spectrum were 

computed by FDTD-Lumerical software employing Equation (1) and Equation (2), for a 

given incident planer wave in the study frequency range (300-1100nm), after import optical 

martial properties for the active region of solar cell and proposed moth-eye structure(34). 

Further, the ideal circuit current can be calculated using Equation (5). The second step, which 

represents thermal simulation, the heat generation profile was computed from the first step 

then the heat energy was calculated from the absorbed photon which has energy above the 
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bandgap energy of solar active martial. In the third step, the optical and heat generation 

profile is imported from the last two steps, then a voltage sweep is carried out to obtain 

current-voltage characteristics and power-voltage curve of the modulated solar cell. So, the 

open-circuit voltage    , current density    , fill factor   , maximum power     , and the 

solar cell efficiency   calculated by employing Equation (6, 7, 8, 9, 10) respectively.   

 
Figure 2. Three simulation steps: optical, heat, and electrical. 

  

3. Results and Discussion  

     To study the effects of the suggested moth-eye structure on the silicon solar cell 

performance, four subwavelength widths were considered for the rectangular structure 

(                    ), and for each width value of the rectangle, there were nine 

values for the structure height (                                       ), and the 

material of the structure chosen to be silicon, so the added material is in homogenous with 

solar cell active material, and easy to fabricate. Further, the simulation temperature is set to 

be at room temperature 300 K, and the energy gap of the silicon active region is set to be 

(1.114eV) (35).  

3.1. Optical Simulation Results 

The effect of adding a rectangular substrate on reflection, absorption, and transmission 

spectra and prosed structure were noted in Figure (3). It was shown that the transmission in 

all cases through the suggested solar cell is zero due to the Aluminum metal contact as seen 

in Figure (1.b).        
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Figure 3. Reflection, Absorption, and Transmission spectra for different moth-eye structure widths: w= 0, 100, 

200, 300, 400, and 500 nm, while the height of the structure was kept constant at h=50nm.  

  

Furthermore, the ripples that appear in the absorption and reflection spectrum are caused by 

the Fabry-Perot resonant effect, which occurs inside a thin film solar cell with a metal base 

(36-38). It is also revealed from Figure (3) that there is a significant effect of adding 

structure on the reflection and transmission spectra. For example, in the case w=100nm, 

absorption increased relative to its initial values (without adding structure), and this 

absorption enhancement is clearer in the case w=200nm, and w=300nm. However, when the 

structure widths increased from 300nm to 400 nm, the corresponding absorption decreased. 

Further, when the structure width increased to 500nm, which means that the surface was 

covered completely with a silicon structure 50nm thick, the absorption decreased and became 

the same as the initial case (without adding structure). 
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Figure (4) represents the variation of absorption in case w=300nm with different values of 

structure height (h=0, 100, 200, 300, 400 nm). It is seen that the height of the structure has a 

significant effect on absorption, and the most absorption increase in visible region accords at 

height was (h=100nm) this absorption increased due to the maximization of the length of the 

optical path because of multiple reflection processes leading to confinement of the incident 

photons with the solar cell active layers (39, 40).  

 

 
Figure 4. Absorption spectra for different moth-eye structure widths: w= 100nm, and different heights h= 0, 

100, 200, 300, 400 nm.   

 

3.2. Electrical Simulation Results 

The electrical characteristics of the first suggested solar cell structure (w=100nm) for 

different structure heights are listed in Table (1), It can be mentioned that the structure height 

significant effect on the solar cell short circuit current density    , due to absorption 

enhancement, which leads to an increase in generation rate, the short circuit current increases 

from its initial value 17.19      ⁄  to 19.19      ⁄  at h=50nm, and then to a maximum 

value 21.42      ⁄  at h=100nm. Meanwhile,      value decreases for higher structure 

height to 150, 200, 250 nm, and so on, due to the absorption decreases under these 

conditions. The maximum enhancement in current density was reported at a height of 100nm, 

which achieved about 24.4% of its initial value. Additionally, fill factor and open circuit 

voltage were slightly changed due to structure height variations, and the maximum value for 

both was achieved at h=100nm. Further, solar cell efficiency was enhanced from 8.71% to 

10.98% at the case h=100nm due to the open circuit voltage, short circuit current, and fill 

factor.  

 

Table 1. The impact of structure height on solar cell performance               at structure width w=100nm. 

High (nm)    (     ⁄ )    ( ) FF   ( ) 

0 17.1892 0.610627 0.829743 8.70914 

50 19.191 0.614063 0.828713 9.76597 

100 21.4248 0.616381 0.829932 10.9599 

150 20.9735 0.61593 0.829458 10.7151 

200 20.2093 0.61514 0.882879 10.3032 

250 19.3177 0.614246 0.828648 9.83257 

300 19.4848 0.614424 0.828664 9.92069 

350 19.2034 0.614109 0.828695 9.77279 

400 18.7793 0.61332 0.829008 9.54831 

450 17.7391 0.611513 0.829565 8.99888 
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The effect of adding structure width is also investigated, Table (2) lists the short current 

density, and solar cell efficiency at different widths: 200, 300, and 400nm. It can be seen that 

there is similar behavior to the case w=100nm, the short circuit current increased gradually to 

a certain value of height which was h=100nm, and then it decreased after that certain value. 

As a result, the optimum design for the suggested rectangular structure with 300nm width and 

100 nm height achieved an efficiency equal to 11.89 %, which means an efficiency 

enhancement of about 36.48%.        

   

Table 2. The effect of structure height on  
  
   at structure widths: w=200, 300, 400nm. 

structure Width w=200nm Width w=300nm Width w=400nm 

Height 

 h (nm) 

 
  

 

(     ⁄ ) 

  

( ) 
 
  

 

(     ⁄ ) 

  

( ) 
 
  

 

(     ⁄ ) 

  

( ) 

0 17.189 8.709 17.189 8.709 17.189 8.709 

50 19.632 9.998 19.867 10.122 19.366 9.856 

100 22.584 11.588 23.132 11.886 21.886 11.209 

150 21.697 11.108 21.664 11.089 20.075 10.233 

200 19.832 10.104 19.626 9.996 18.376 9.335 

250 18.484 9.392 17.650 8.951 17.342 8.789 

300 17.903 9.086 17.417 8.829 16.738 8.470 

350 17.566 8.907 16.898 8.555 16.076 8.121 

400 17.584 8.917 16.288 8.233 15.782 7.965 

450 17.243 8.737 15.402 7.764 15.450 7.790 

 

Figure (5) represents the power density-voltage curves for the suggested four structures, It is 

clear that the best design (higher output power density) was achieved at (w=100nm) with a 

maximum output power density of about 11.89      ⁄ which represents an enhancement 

in the short circuit current density of about 34.57%.  

 

 
 Figure 5. The power density-voltage curves for suggested structures.   

 

The Current density-voltage characteristics curves for the suggested four structures are 

represented in Figure (6). The maximum output current density achieved at w=300nm, with a 

maximum current density of about 23.13     ⁄  
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Figure 6. The Current density-voltage characteristics curve for the suggested structures.  

 

Figure (7) shows the variation of the efficiency ( ) as a function of the rectangle structure 

heights (0, 50, 100, 150, 200, 250, 300, 350, 400, 450nm) for the four structures design width 

(100, 200, 300, 400nm). It is obvious that, in each case, efficiency increases (from its initial 

value 8.709% ) gradually with increases in structure heights until it reaches its maximum 

values which are 10.960%, 11.589%, 11.886%, 11.209% respectively at a certain structure 

height which was (h=100nm), after that the efficiency decreases gradually. 

 

 
Figure 7. The Current density-voltage characteristics curves for suggested structures.  

 

In fact, in each rectangle structure, there is an optimum design to achieve maximum 

improvements in ultra-thin film silicon solar cells, and the optimum improvement is achieved 

at a width of 300 nm, and 100nm in height. 

 

4. Conclusion 

     This work considered rectangular silicon moth-eye structures with different dimensions to 

enhance silicon solar cell performance. The optical and electrical simulations show that the 

geometry of the introduced structure has a significant effect on suggested solar cell 

performance, with optimum enhancement achieved from 8.709% to 11.886% at a width of 

300nm at a height of 100nm, we recommended introducing a more complex structure for 

additional performance enhancement, and it's helpful in use another optical design programs 

such as Silvaco, or SCAPS to develop the work in the future.  
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