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Abstract 

In this research, we will introduce a new distribution, which is called the new 

exponentiated exponential-Rayleigh distribution, which is built by adding the shape 

parameter to the cumulative function of the exponential-Rayleigh distribution resulting from 

merging the cdf function of three parameters continuous distribution. Two of these 

parameters are scale parameters, and another is the shape parameter and this is to make this 

new continuous statistical distribution more flexible than other continuous statistical 

distributions. Besides, discuss the mathematical and statistical properties of this new 

distribution, including (the mode, the median, the moments about the origin, the coefficients 

of skewness and kurtosis, the characteristic function, the moment-generating function, the 

factorial moments-generating function, and the mean time to failure). The shape property of 

each of the pdf, cdf, and hazard functions was also studied. Multiple shapes were drawn with 

different parameter values for each of the PDF, CDF, survival, and hazard functions. An 

organisational table was also created for some of these properties. 

Keywords:Exponential distribution, Rayleigh distribution, Exponential Rayleigh 

distribution, Moments about the origin, Quantile function. 

  

1. Introduction 

In order for statistical distributions to be important tools in various disciplines, these 

distributions had to be flexible distributions that help in understanding the data (1-3). Because 

the current distributions are restricted distributions and these restrictions make them 

insufficient in modelling diverse data, many scientists have resorted to integrating or adding a 

new parameter to these distributions in order to be more flexible (4-6). There are several 

methods to add a new parameter to statistical distributions, among these methods is adding a 

new parameter to the cumulative distribution function (CDF) (7, 8). There have been many 

scientists who have followed this method to add a new parameter to the distribution (9,10). In 

2008, it was presented the exponentiated exponential distribution, a novel distribution that 

serves as a failure time distribution or the generalised exponential distribution (11). In 2010, 

it was presented a study on a mixture of the Pareto distribution and the Exponentiated 
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exponential distribution (12). Also in 2012, it was introduced the extended Exponentiated 

Weibull distribution with Gamma. (13), Also in 2012, it was presented the inverted 

Exponentiated exponential Weibull distribution (14). In 2013, it was introduced the class of 

generalised exponentiated exponential distributions, which is a new class of distributions that 

extends the exponentiated exponential type distributions. (15), Also in 2013, it was presented 

the extension of the family of Exponentiated exponential T-X distributions with some 

applications where it was noted Hence, the T-X distribution can be generated with an upper 

limit of -log (1-F(x)), and it is obvious that alternative T-X distribution types can be 

generated with different higher limits. (16). Also in this year, it was presented the 

complementary exponentiated exponential geometric distribution of life span, where they 

proposed expanding the exponential distribution by fusing it with a geometric distribution to 

create a new distribution family (17), It was presented the modified exponential gamma 

distribution in 2014: Generalisation and extension of the Gamma distribution probabilities 

(18). In 2015, it was presented the exponentiated power Lindley distribution, which is a new 

distribution with three parameters called the exponential Lindley distribution [EPLD] (19). In 

2017, it was presented the Exponentiated-Exponential Weibull distribution with applications, 

where they presented a novel four-parameter model that uses the (EW-G) distribution as a 

competitive extension of the Weibull distribution, which offers some new distributions and 

can be used to access several contemporary distributions (20). In 2018, it was was able to 

present the Exponentiated BURR X exponential distribution, which is the Burr X exponential 

distribution (BrxEE) and is a novel version of the (EE) model from which some of its 

statistical properties, including moments, incomplete moments, moment generating function, 

average deviations, and probability-weighted moments, were derived, and others (21). In the 

same year, it was introduced the Exponentiated Exponential Gamma distribution, where he 

defined the exponential distribution of Gamma and also introduced the Shannon entropy of 

(EGED) (22). In 2019, it was presented about the Exponentiated Weibull Rayleigh 

distribution (EWRD) (23). In 2020, it was presented the Exponentiated Exponential Weibull 

Distribution with mathematical properties and application and came up with the proposal of 

the Exponential Weibull Distribution (EEWD) based on the idea of (24). Also in the same 

year, it was presented estimation techniques and applications to engineering data for the Odd 

Exponentiated half-logistic exponential distribution (25). In 2021, it was presented a new 

exponentiated generalised linear exponential distribution with properties and applications 

(26). In 2022, Dhungana G. and Kumar V. reported the Exponentiated Odd Lomax 

exponential distribution with application to COVID-19 death cases of Nepal (27). In 2023, it 

was presented an extension of the Exponentiated Rayleigh distribution with properties and 

applications, adding the shape parameter to improve and enhance the flexibility of this 

distribution (28). Finally, Lamyaa Khalid Hussein and Iden Hassan Hussein in 2023 represent 

a new distribution that is mixed between exponential and Rayleigh distributions (29). In this 

research, we will present a new mixture of continuous distributions, which we call the New 

Exponentiated Exponential-Rayleigh distribution properties and Applications by adding the 

shape parameter to the (CDF) function (30). The results of the document include the 

following: In Section 2, we introduced the fundamental statistical functions, including the 

probability density function, reciprocal density function, survival function, and hazard rate 

function, and explained how we extended the probability density function to obtain the 

Exponentiated Exponential-Rayleigh Distribution. The statistical and mathematical 

characteristics of the new distribution, including the mode, moments around the origin, 
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variance, skewness coefficient, characteristic function, moment generating function, and 

factorial moment generating function, are finally represented in Section 3. 

 

2.The Exponenatied Exponential- Rayleigh Distribution:  

    ( )  (    (   
 

 
  ))                            (1) 

    (         )    (    )  (   
 

 
  )(    (   

 

 
  ))     (2) 

and survival (reliability) function defined as: 

    ( )      ( )    (    (   
 

 
  ))   (3) 

So the hazard rate function is: 

 ( )  
 ( )

 ( )
 

  (    ) 
 (   

 
 
  )

(   
 (   

 
 
  )

)   

  (   
 (   

 
 
  )

) 
                                                                   (4) 

 ( )                               

To proof  ∫  ( )    
 

 
 

∫   (    )  (   
 

 
  )(    (   

 

 
  ))     

 

 

 *(    (   
 

 
  )) +

 

 

 [(    ( ))  (    ) ]  [(   )  (   ) ]         

 

2.1. Expand the Probability Density function: 
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2.1.1 The shapes of the New Exponentiated Exponential- Rayleigh Distribution 

Knowing the shape of the (SHWD) helps us understand the behavior and approach of 

distribution functions in dealing with data, to understand this mathematically, especially 

through the limit values of the probability density and hazard functions when(       
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The shape of hazard function can be defined as follows :-  
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Figure 1.The shape of pdf for new Exponentiated Exponential- Rayleigh Distribution with different values of 

       

 

This figure illustrates the graph of this function when     the PDF value is zero, and when 

    the PDF value is also zero. 

  
Figure 2. The shape of cdf for new Exponentiated Exponential- Rayleigh Distribution with different values 

of        

 

This graph shows that the CDF function equals zero when     and equals one when    , which 

indicates that the CDF function is an increasing function. 

  

Figure 3. The shape of S(x) for new Exponentiated Exponential- Rayleigh Distribution with different values of 
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This graph shows that the function S(x) is a decreasing function. 

 

  
Figure 4. The shape of h(x) for new Exponentiated Exponential- Rayleigh Distribution with different values of 

            

 

In the special case, if             , then the distribution becomes the exponential Rayleigh 

distribution, also if            , then the distribution becomes the Rayleigh distribution. 

Finally, if               , then the distribution becomes exponential distribution.  

2.3. Quantile Function 
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3. Mathematical and statistical properties of new (EERD)  

3.1. The Mode 

The mode is defined as the point at which the probability density function achieves its 

maximum value, the mode of (EER) is obtained as follows: 

From Equation 2 the mode of (EER) is defined by:   
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This equation is difficult to solve; it is solved using MATLAB programs. 

3.2. Moments about the origin (31)  

The 𝑟𝑡  moment about the origin can be obtained by: 
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3.3. Mean Time to failure 

We can find this property by find the expected :  ( )      
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3.4. Coefficients of Skewness and Kurtosis (32) 

Depending on the moment, the coefficients skewness (   ) and kurtosis(   )  can be found 

through the following formulas (30).: 
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Table 1. The first - fourth moments, variance, skewness, and kurtosis for the distribution 

    λ   
    

    
    

          

2.5 2 1.5 0.4106 0.2538 0.2026 0.1946 0.0213 1.5849 0.0852 

1.5 1 0.3388 0.2039 0.1679 0.1708 1.1071 1.8228 0.0891 

2 0.1 0.5 0.3005 0.2543 0.3407 0.6124 6.4725 2.6571 0.1640 

0.6 0.9 0.4168 0.3327 0.3747 0.5312 1.7988 1.9524 0.1590 

1.5 2 0.7 0.3606 0.2448   0.2236 0.2474 1.1273 1.8457 0.1148 

2.8 0.5 0.2658 0.1536 0.1217 0.1173 1.9733   2.0217 0.0830 
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The distribution is skewed to the right based on the provided data values because the 

skewness values are positive. The values of the specified features determine the flatness. For 

numbers more than three, it is flattened; for values less than three, it is pointed. 

3.5. Characteristic function (33) 
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3.6. Moment Generating Function (34)  
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3.7. Factorial Moments Generating Function (35)  
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4. Conclusion 

A new statistical lifetime distribution is represented by adding the shape parameter to the (cdf) 

function of the Exponenatied -Rayleigh Distribution called "Exponentied Exponential-

Rayleigh Distribution.". In addition, the shape of the probability density function, the 

cumulative function, and the hazard function are discussed. Also, the basic statistical and 

mathematical properties of the new distribution, such as mode, median, r-moments around 

the origin, and the moment-generating function, are varied. Finally, introduce the table of 

applications with different values of parameters. 
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