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 Abstract   

     This study focuses on the synthesis and characterization of a ternary nanocomposite 

comprising reduced graphene oxide (rGO), magnetite (Fe3O4), and manganese dioxide 

(MnO2) nanoparticles (NPs). The aim of using it is to remove Terasil Black dye from water, 

particularly in textile industries. The nanocomposite was created using a co-precipitation 

method, followed by physical bonding with MnO2 NPs. The structural properties, surface 

morphology, and elemental composition were evaluated through X-ray diffraction (XRD), 

Field Emission Scanning Electron Microscopy (FESEM), and energy-dispersive X-ray 

(EDX) analysis. The XRD results confirmed the presence of an amorphous phase along with 

distinct diffraction peaks that correspond to specific lattice planes. FESEM images showed 

irregular particle shapes and significant agglomeration. EDX analysis confirmed the presence 

of the expected elements. The adsorption isotherms displayed (S) patterns as classified by 

Giles, suggesting that the dye ions align vertically relative to the nanocomposite's surface. 

The adsorption process is endothermic and primarily driven by physical interactions, which 

become more significant at higher temperatures. Analyzing the adsorption data indicates that 

the Freundlich isotherm model better describes this process, suggesting a non-uniform 

surface. This model demonstrates that chemical and physical adsorption processes were 

involved, with their contributions varying across different temperature ranges. The findings 

provide valuable insights into the thermodynamics and kinetics of dye adsorption on 

rGO/Fe3O4/MnO2 nanocomposites, which are essential for optimizing their application in 

waste water treatment. 

Keywords: Adsorption, Manganese oxide nanoparticles, Reduced graphene oxide, Terasil 

black dye, Waste water. 

 

1. Introduction 

     The adsorbents of waste water obtained through the nanomaterials carbon graphene were 

applied in the water treatment to solve the water clean-up problem (1). Applying the Hummer 

method, which involves the preparation of graphene oxide moiety and then inserting the 

metal nanoparticles (NPs), achieves the desired product (2). Such a novel method, through 

adsorption phenomena, identifies the centers of the material that increase their number 
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compared to the conventional adsorbents. The centers of the material approach the 

contaminants, such as lead or dyes, from water, owing to the advantage of this phenomenon 

(3). Graphene, considered the thinnest form of the carbon family, is heated weirdly. 

Furthermore, graphene has unique chemical, mechanical, and electrical properties that it will 

use to absorb electromagnetic waves faster and thus increase efficiency (4,5).This property 

makes the graphene array matrices highly viable for many fields and applications involving, 

among others, strong structures, the environment, energy production, storage, and renewal, 

because of its exceptional electrical, chemical, and thermal stability, and vast adsorption 

power along with good transmittance and exceptional specific surface area. These properties 

make it an outstanding medium for eliminating diverse contaminants (6–8). Also, various 

methods, namely temperature, microemulsion, and co-precipitation, have been utilized to 

prepare magnetic NPs (MNPs) (9,10). Regarding molecular recognition and specificity, 

aptamer-based sensing has clear advantages over established detection methods. However, 

the ability to synthesize MNPs with a narrow size distribution, specific shape, and surface 

architecture remains a key limitation of the current technology (11, 12). 

The exciting field of nanotechnology involves the deliberate fabrication of NPs and the 

precise control and improvement of their characteristics to enable their numerous applications 

for scientific development (13–16). The most considerable characteristic is their ability to 

demonstrate amplified biological bioavailability because of transformations of the most 

essential parameters, namely size, morphology, and surface area (17). In general, 

nanoparticle manufacturing heavily utilizes both physical and chemical processes. While the 

physical approach may reach its boundaries regarding cost-effectiveness, the chemical 

synthesis requires the direct use of hazardous chemicals that could pose a risk to human 

health and the environment (18–22).The MnO2 NPs garner considerable attention in research 

endeavors owing to their broad applicability across multiple domains, facilitated by the 

capability to manipulate their chemical properties through tailored modifications (23). The 

advantages of MnO2 NPs stem from their unique properties and versatile applications across 

various fields. Some key benefits include gas sensing applications (24), biomedical 

applications, antibacterial properties, catalysis (25), optoelectronic devices, energy storage, 

photocatalysis, high surface area, and tunable properties (26,27). This study aims to remove 

Terasil black dye from water, particularly in textile industries. The nanocomposite was 

created using a co-precipitation method, followed by physical bonding with MnO2 NPs. 

 

2. Materials and Methods 

2.1. Materials 

Reduced graphene oxide (rGO), HCl with a concentration of 37%, FeCl3, FeSO4.7H2O, 

NaOH, MnO2 NPs, and deionized water were the sources of the chemicals. Merck and 

Sigma-Aldrich Co. (USA) were the source of all substances. 

2.2. Synthesis of rGO/Fe3O4/MnO2 

Reduced graphene oxide was synthesized using the modified Hummers’ method (2). In this 

experimental design, rGO was added as an ingredient of a 200 mL solution containing 0.6 M 

HCl with a concentration of 37%. This, in addition, was left to agitate for 45 minutes. 

Afterward, the remaining solution was treated with 28.4 g of FeCl3, and the mixture was 

vigorously stirred for one hour. The admixture was then grown in the dark for the following 

hours. At the start of the overnight period, 18.8 g of FeSO4.7H2O were put in the earlier 

solution, and the mixture was continuously stirred for 60 minutes. After that, 300 mL of 1M 

sodium hydroxide (NaOH) solution was dropped into the mixture with vigorous stirring at a 
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temperature of 90°C until the pH reached 11, and it formed black precipitates of the 

rGO/Fe3O4 sheets. Filtration followed an intensive washing process of the precipitate 

obtained with deionized water and ethanol. The precipitates were then kept in a drying oven 

at 90°C with a drying period of five hours (28). The next step was the preparation of 1.25 g 

of the rGO/Fe3O4 material by dissolving this amount in 125 mL of DI water using sonication 

to enable diffusion. Afterwards, 1.75 g of MnO2 was precisely weighed and added to the 

solution that contained the rGO/Fe3O4 composite. The liquid was rigorously shaken for 1 

hour to ensure complete uniformization of the chemicals. The filtration procedure was done 

on the solution after the stirring process to separate the solid parts of the solution. The filtrate 

supplied was then dried at 80°C for a maximum of 5 hours to remove any remaining moisture 

in the obtained filtrate. 

 

3. Results and Discussion  

3.1. Characterization of rGO/Fe3O4/MnO2 nanocomposite  

The synthesized samples underwent characterization via X-ray diffraction (XRD), field 

emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX) XRD, 

FESEM, and EDX techniques. The XRD analysis was employed to investigate the structural 

properties of rGO/Fe3O4/MnO2 nano powder, while FESEM was utilized to examine surface 

morphology and nanoparticle size. Additionally, EDX was employed to assess the 

composition of the samples' elements. The XRD analysis of rGO/Fe3O4/MnO2 nano powder 

indicates the formation of an amorphous phase. Notably, distinct diffraction peaks were 

observed at specific 2θ angles, as shown in Table (1) and Figure (1). 

 

Table 1. The XRD analysis values of rGO/Fe3O4/MnO2 nanocomposite 

Pos. 

(°2Th.) 

Height 

(cts) 

FWHM Left 

(°2Th.) 

d-spacing 

(Å) 

Rel. Int. 

(%) 
Tip Width 

23.3110 192.09 0.4920 3.81602 13.13 0.5904 

26.6568 710.56 0.2952 3.34416 48.57 0.3542 

28.7959 128.01 0.7872 3.10043 8.75 0.9446 

33.2046 1462.83 0.3444 2.69816 100.00 0.4133 

38.4489 290.16 0.3936 2.34135 19.84 0.4723 

42.9526 76.83 0.7872 2.10572 5.25 0.9446 

45.3653 164.76 0.5904 1.99918 11.26 0.7085 

49.5927 329.86 0.4920 1.83822 22.55 0.5904 

55.4561 591.72 0.3444 1.65695 40.45 0.4133 

64.3472 119.38 0.3936 1.44781 8.16 0.4723 

66.0618 310.29 0.3936 1.41433 21.21 0.4723 

 

 
Figure 1. The XRD spectra of rGO/Fe3O4/MnO2 nanocomposite 
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During morphological analysis conducted via FESEM, the average value of the dimension of 

particles equal to 83 nm, it was observed that the surface morphology of the sample revealed 

particles exhibiting predominantly irregular shapes and significant agglomeration, as depicted 

in Figure (2). 

 

Figure 2. The FESEM images of rGO/Fe3O4/MnO2 nanocomposite 

 

The EDX characterization was conducted to determine the elemental composition of the 

rGO/Fe3O4/MnO2 nanocomposite. The obtained spectra exhibited prominent peaks 

corresponding to elements, as illustrated in Table (2) and Figure (3). 

 

Table 2. The EDX elemental composition of rGO/Fe3O4/MnO2 nanocomposite 

Element 
Line 

Type 

Apparent 

Concentration 
k Ratio Wt% 

Wt% 

Sigma 
Atomic % 

Standard 

Label 

Factory 

Standard 

C 
K 

series 
2.24 0.02245 53.53 0.31 72.43 C Vit Yes 

O 
K 

series 
1.67 0.00560 19.30 0.24 19.61 SiO2 Yes 

Mn 
K 

series 
1.15 0.01150 12.14 0.21 3.59 Mn Yes 

Fe 
K 

series 
1.45 0.01446 15.02 0.25 4.37 Fe Yes 

Total:    100.00  100.00   

 

 
Figure 3. The EDX elemental composition of rGO/Fe3O4/MnO2 nanocomposite 
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3.2. Calibration curve 

This study prepared a series of standard solutions with known concentrations of Terasil Black 

dye solutions (10, 20, 40, 60, 80, 100, 120 ppm). By plotting absorbance (A) against 

concentration (C), a calibration curve is shown in Figure (4), and it has been used to 

calculate concentration (Ct) at time (t) from the values of the absorbances of Terasil Black 

dye solution at a wavelength of λ max.= 594 nm, the concentrations of the dye solution were 

obtained using the Beer-Lambert law:  

A= ε c l                                                                                                                                    (1) 

A = Absorbance (unitless). 

ε = Molar absorptivity (L mol
−1

 cm
−1)

, a constant specific to the substance. 

c = Concentration of the solute (mol/L). 

l = Path length of the cuvette (cm). 

 

 
Figure 4. Calibration curve of Terasil Black at different concentrations 

 

3.3. Contact time 

The study investigated the time required for the adsorption process to attain equilibrium. That 

was done by utilizing a 100 ppm of Terasil Black dye, a temperature of 293K, a pH of 7, and 

an adsorbent dose of 0.025 g. Various contact periods were examined. Figure (5) illustrates 

the graph of (qt) plotted against time (t), and by using the equation: 

qt = (Co-Ct)                                                                                                                               (2) 

Where the values of qt, Co, Ct, V, and m represent the amount of the adsorbate (mg/g) at time 

(t), the initial aqueous concentration (ppm), the concentration (ppm) at time (t), the solution 

volume (L), and the adsorbent weight (m), respectively. The contact periods indicate that the 

adsorption capacity of the dye increases as the contact time increases. Initially, the adsorption 

process occurred rapidly due to the abundance of binding sites present on the surfaces of the 

adsorbents. However, most of these sites would become occupied over time, reducing 

adsorption effectiveness. Depending on the scarcity of available active sites on the surface of 

the adsorbent, only a minimal quantity of dye may adhere. Once all the binding sites for the 

dye ions have been exhausted, the adsorbents reach a state of saturation and maintain a 

constant adsorption capacity. The equilibrium time of Terasil Black dye solution on 

rGO/Fe3O4/MnO2 nanocomposite surface is 60 minutes, as shown in Figure (5). 
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Figure 5. The contact time of Terasil Black on rGO/Fe3O4/MnO2 nanocomposite surface at 293 K 

 

3.4. Effect of change in temperature 

The adsorption of Terasil Black dye from an aqueous solution was studied on the surfaces of 

rGO/Fe3O4/MnO2 nanocomposites. A 250 mL of dye solution with varying concentrations 

was used, keeping other parameters such as pH= 7 and adsorbent dose (0.025 g) constant. 

The flask containing the solutions was placed in a shaker controlled by a thermostat, set at a 

speed of 100 cycles per minute. This was done for an equilibrium period of around 60 

minutes, at temperatures of 288, 298, 308, and 318 Kelvin, specifically for the surface of the 

rGO/Fe3O4/MnO2 nanocomposite. 

The adsorption quantities (qe, Ce) were recorded in Table (3) and Figure (6). These values 

were determined using the equation: 

qe = (Co-Ce) V/m                                                                                                                     (3) 

The values of qe, Co, Ce, V, and m represent the amount of the adsorbate, the initial aqueous 

concentration, the equilibrium concentration, the solution volume, and the adsorbent weight, 

respectively. 

Adsorption isotherms provide essential knowledge about the adsorption process, including its 

circumstances, the adsorbed material's adsorption capability, and the concentration at which 

it occurs. It has been observed that the adsorption isotherm of Terasil Black dye on the 

surface of rGO/Fe3O4/MnO2 nanocomposite follows the (S1) type according to the (Giles) 

classification, as in Figure (6). The S-type isotherm is derived from Freundlich's fundamental 

adsorption principles. Heterogeneous surfaces result in this form of isotherm, where 

adsorption occurs with varying forces over various surface regions. The adsorption energy 

decreases as the surface coverage increases, as may be deduced during class (S), it was 

discussed that the orientation of adsorbed molecules on a surface might be perpendicular, 

meaning they were connected from one end. This vertical orientation allows the molecules to 

occupy less surface area, resulting in a higher adsorption rate. 

Giles showed that the S class of isotherms represents non-chemical adsorption, indicating the 

existence of dispersion forces or hydrogen bonding. The activation energy provides insight 

into the likelihood of interactions. If the interaction forces between the adsorbent and the 

adsorbate were significant, the activation energy will be elevated, resulting in adsorption 

following the class (S) or the Freundlich isotherm. This implies that the adsorbent molecules 

arrange themselves in rows or clusters on the surface. This is supported by the isotherm 

shape, in which adsorption rises proportionally with the increase in equilibrium 

concentration. 
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Table 3. The quantity of the adsorbate and the equilibrium concentration of Terasil Black on rGO/Fe3O4/MnO2 

nanocomposite surface at four different temperatures 

 288 Kelvin 298 Kelvin 308 Kelvin 318 Kelvin 

Co Ce(mg/L) qe(mg/g) Ce(mg/L) qe(mg/g) Ce(mg/L) qe(mg/g) Ce(mg/L) qe(mg/g) 

50 32.08333 17.91667 31.25 18.75 30.41667 19.58333 19.58333 30.41667 

100 55.41667 44.58333 49.58333 50.41667 42.08333 57.91667 37.91667 62.08333 

150 62.08333 87.91667 57.08333 92.91667 54.58333 95.41667 44.58333 105.4167 

200 67.08333 132.9167 56.25 143.75 52.08333 147.9167 42.91667 157.0833 

250 81.25 168.75 65.41667 184.5833 62.91667 187.0833 57.08333 192.9167 

300 95.41667 204.5833 82.08333 217.9167 77.08333 222.9167 71.25 228.75 

 

 
Figure 6. The adsorption isotherms of Terasil Black on rGO/Fe3O4/MnO2 nanocomposite surface at four 

different temperatures 

 

It has been observed that the amount of adsorbed material from the Terasil Black dye on the 

surface of the rGO/Fe3O4/MnO2 nanocomposite increased when the dye concentration was 

increased. As the concentration increased, more dye molecules with positive charges showed 

up. This increased the electrostatic attraction between the dye molecules and the active sites 

on the surface, improving adsorption. On the other hand, as the temperature rises, we observe 

an increase in the quantity of material adsorbed. Higher temperatures provide the required 

activation energy for the dye ions to surpass the energy barrier needed for adsorption. This 

signifies the endothermic characteristic of the adsorption process and the presence of an 

absorption process alongside the adsorption process. As the temperature rises, the rate at 

which the dye molecules spread on both the surface and within increases. The adsorbent 

surface's holes facilitate the adsorption of Terasil Black dye on all surfaces, particularly at 

elevated temperatures. 

3.5. Adsorption isotherms 

The study focused on examining the adsorption isotherms of Terasil Black dye on the 

surfaces of rGO/Fe3O4/MnO2 nanocomposites, which were used as adsorbents. Several 

models, such as the Freundlich, Langmuir, and Temkin models, may be used to explain the 

experimental data. 

3.5.1. Freundlich model 

The Freundlich isotherm is used to investigate the process of multilayer adsorption. This 

isotherm is derived from the process of adsorption in heterogeneous systems, and it is 

represented in the following manner (29): 

qe = KF Ce
1/n 

                                                                                                                           (4) 

Where qe is the adsorption capacity (mg/g) and KF is the Freundlich constant (L/g). Figure 

(7) depicts the linear Freundlich equation graphically, where lnqe is plotted against lnCe, 
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resulting in a straight line. The intercept of the line is lnKF, while the slope represents (1/n). 

KF (L/g) denotes the adsorbed capacity, whereas n represents the adsorption intensity. 

 

 
Figure 7.  Linear Freundlich adsorption isotherm of Terasil Black on rGO/Fe3O4/MnO2 nanocomposite surface 

at four different temperatures 

 

Considering the data shown in Table (4), it is evident that the variable (n) consistently 

increases. This parameter quantifies the adhesive strength between the surface of the 

rGO/Fe3O4/MnO2 nanocomposite and other substances at various temperatures. 

 
Table 4. Freundlich constants and correlation coefficient for the adsorption of Terasil Black on 

rGO/Fe3O4/MnO2 nanocomposite surface at four different temperatures 

 
288 Kelvin 298 Kelvin 308 Kelvin 318 Kelvin 

KF 0.004374 0.001483 0.002268 0.213227 

n 0.419252 0.363557 0.370041 0.603828 

R
2
 0.9464 0.9666 0.9885 0.9767 

 

The observed rise indicates that the Terasil black dye is being physically adsorbed onto the 

surface of the nanocomposite. The KF value of Terasil Black dye adhering to the surface of 

the rGO/Fe3O4/MnO2 nanocomposite increases as the temperature increases, indicating that 

the adhesion mechanism is endothermic. Based on the correlation coefficient values (R
2
) for 

the Freundlich model, it has been concluded that the Freundlich equation applies to the 

surface being studied. Nevertheless, its efficacy diminishes with rising temperatures. This 

indicates that adsorption processes occur on surfaces with diverse properties, resulting in 

many sites with variable levels of adsorption energy. 

3.5.2. Langmuir isotherm model 

The isotherm described specifically applies to adsorbent molecules that selectively bind to 

unoccupied sites on the surfaces of the adsorbent substances. Each site can accommodate just 

one atomic or molecular adsorbent species (30). The equation can be written as follows:  
  

  
 

 

    
    

 

       
                                                                                                          (5) 

The qmax value represents the highest adsorption capacity in (mg/g). In contrast, KL refers to 

the Langmuir constant, which is associated with the affinity binding sites and energy of 

adsorption, (L/mg). The graphical representation of linear Langmuir equation in Figure (8) 

shows a plot of Ce/qe vs Ce obtains in a straight line has an intercept equal to (1/KL qmax) and 

a value of a slope is (1/qmax). 
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Figure 8. Linear Langmuir adsorption isotherm of Terasil Black on rGO/Fe3O4/MnO2 nanocomposite surface at 

four different temperatures 

 

The data in Table (5) shows the value of adsorbed Terasil Black on rGO/Fe3O4/MnO2 

nanocomposite surface at different temperatures. The above values show that the adsorption 

process obeys the Langmuir isotherm less than the Freundlich isotherm. The adsorption at 

maximum capacity (qmax) increased when the temperature increased, indicating that the 

adsorption density is enhanced at high temperatures. Moreover, the result shows that 

adsorption energy (KL) increased when the temperature increased, which reveals a higher 

affinity between the above surface and Terasil Black dye. 

 
Table 5. Langmuir constants and correlation coefficient for the adsorption of Terasil Black on 

rGO/Fe3O4/MnO2 nanocomposite surface at four different temperatures 

 
288 Kelvin 298 Kelvin 308 Kelvin 318 Kelvin 

qmax -45.045 -37.594 -41.6667 -138.889 

KL -0.00957 -0.01183 -0.01246 -0.00952 

R
2
 0.8065 0.7757 0.6845 0.5956 

 

3.5.3 Temkin isotherm model 

This model assumes a linear decrease in the synchronous temperature of the adsorption 

process for the molecules in the layer when the surface is covered due to interactions between 

the surface molecules and the adsorbent (31). The isotherm of Temkin is represented by the 

equation (6):  

qe= B ln (AT .Ce)                                                                                                                      (6) 

Where B is the isotherm of Temkin constant, which is determined as follows: B = RT/b, R is 

the constant of the gas (8.314 J/K.mol), T is the temperature at the absolute state and b is the 

heat of adsorption (J/mol), AT is the equilibrium binding constant representing the maximum 

binding energy (L/g).  

The graphical representation of the linear Temkin equation in Figure (9) shows a plot of qe 

vs ln Ce obtained in a straight line, with an intercept equal to (AT) and a slope equal to (BT).  

From the results in Figure (9), it was concluded that there was a good fit and reasonable 

accuracy; however, the calibration curve deviated slightly from the experimental data. The 

most suitable temperature was 308 Kelvin, as indicated by a coefficient of determination (R²) 

of 0.8945. 
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Figure 9. linear Temkin adsorption isotherm of Terasil Black on rGO/Fe3O4/MnO2 nanocomposite surface at 

four different temperatures 

 

Considering the data in Table (6), it can be concluded that the low values of the heat of 

adsorption (BT) and the increase of Temkin isotherm constants (AT) with rising temperature 

indicate a preference for adsorption at high temperatures. This suggests that the system is 

suitable for physical adsorption and endothermic processes. 

 
Table 6. Temkin constants and correlation coefficient for the adsorption Terasil Black on rGO/Fe3O4/MnO2 

nanocomposite surface at four different temperatures 

 
288 Kelvin 298 Kelvin 308 Kelvin 318 Kelvin 

BT 177.65 218.83 227.83 158.37 

AT 0.02981 0.031371 0.033453 0.053456 

R
2
 0.8585 0.8777 0.8945 0.8887 

 

4. Conclusion 

The adsorption isotherms of Terasil Black on the surface of rGO/Fe3O4/MnO2 

nanocomposite adsorbent exhibit an S-shaped pattern at various temperatures, as classified by 

Giles. This suggests that the dye ions were packed within clusters or rows on the adsorbent 

surface, aligned vertically, for the rGO/Fe3O4/MnO2 nanocomposite. The adsorption of 

Terasil Black dye on the surfaces of rGO/Fe3O4/MnO2 nanocomposites is primarily 

controlled by an endothermic and physical adsorption mechanism, which is intensified at 

elevated temperatures. The process exhibits a stronger adherence to the Freundlich isotherm, 

indicating that the adsorption process occurred on non-homogeneous surfaces. Both chemical 

and physical adsorption processes were involved at various temperature ranges. 
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