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 Abstract  

In this paper, orthogonal polynomials and their operational matrices will be utilized to 

address the initial and boundary value problems of the one-dimensional wave problem, where 

the domain of the space variable is bounded, which covers a variety of scientific and 

engineering operations. Six types of orthogonal polynomials, Include instead of such as the 

Genocchi, Bernoulli, Legendre, Boubaker, Chebyshev and Standard polynomials. The linear 

problem with its initial and boundary conditions are transformed to a linear algebraic 

equations, which can then be solved by utilizing                to get an approximate 

solution for this problem. Some test problems related to the one-dimensional wave equation 

with different conditions are discussed and solved to show how reliable and efficient the 

proposed methods. The error norm    and the mean square error     , were computed; these 

are presented through analytical tables and graphics showing the rapid convergence for these 

methods. 

Keywords: Wave problem; Operational matrices,Orthogonal Polynomials,Approximate 

solutions. 

 

1. Introduction 

     The mathematical foundation for many problems in mathematics, physics, engineering, 

and chemistry can be explained mathematically using partial differential equations (PDEs). In 

physics, for example, partial differential equations clear describe wave propagation and heat 

transfer. Furthermore, partial differential equations were utilized to describe the majority of 

physical processes in domains such as electricity, quantum mechanics, wave propagation in 

shallow water, fluid dynamics, plasma physics, and others (1).  

There is a need to find effective and reliable approximate or analytical techniques that can 

handle PDEs because of these massive applications, there is a need to develop effective and 

trustworthy approximate or analytical procedures for dealing with PDEs. Many 

mathematicians and engineers have solved a wide range of functional equations using the 

VIM by He (2–4). 

Many tapes of scientific, physical, and engineering problems can be classified  as initial 

boundary value problems (IBVP). With a few exceptions, we are unable to find accurate 

analytical answers to the majority of these difficulties. There have been several attempts to 
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develop approximate and analytical methods for solving the non-linear diffusion and wave 

problems, see (5–8). 

Wave equations can only be solved analytically in highly particular situations, hence many 

realistic cases cannot be solved using commonly used analytical methods. In addition to 

discretization methods such as finite difference, finite volume, and finite element approaches, 

various more ways have been proposed to solve the wave problem. For example, the 

analytical approach to solving the wave equation (9), the numerical solution of the wave issue 

(10,11), and the optimal homotopy strategy for solving the nonlinear wave equation (12). 

Furthermore, there are numerous techniques that offer an approximate resolve for the 

differing kinds of the differential equations, see, (13–15).  

 Corrington suggested in 1973 that a system of algebraic linear equations could be created 

from linear differential and integral equations by using a least squares approximation and 

repeatedly integrating Walsh functions (16). In addition, Sparis and Mouroutsos in 1986 

using the orthogonal polynomial series operational matrices to solve differential equations 

(17), many researchers have used orthogonal polynomials to find approximate solutions for 

many applications. See; (18–28). The authors were highly interested in since they were 

practical methods for resolving an extensive number of approximation theory and numerical 

analysis problems. On the other hand, the orthogonal polynomials and operational matrices 

stand out above other types due to their effective reduction of the required solution, which is 

achieved by applying the operational matrices technique to transform the linear differential 

equations into linear algebraic systems of equations, where any computer program can be 

used to solve them. 

Farther more, Turkyilmazoglu in 2013 proposed an approximate analytical technique for 

resolving differential equations based on standard polynomials, which is used on various 

types of problems (29–33).  

In 2023, Othman, et al. introduced several orthogonal polynomials, for instance, Hermite, 

Laguerre, Chebyshev, and others polynomials with inner product, to develop the 

computational method (CM) (34). Myasar, et al. (35,36), further introduced the Genocchi, 

Bernoulli, and Boubaker polynomials, which contribute to the effective computational 

method (ECM). 

The outline for this paper is as follows: Section two shows the second-order linear wave 

equation's mathematical formulation. Section three: Preliminary of the orthogonal 

polynomials. Section four: Main results and applications of orthogonal polynomials to 

resolve some examples for the wave problem. Section five: gives the conclusions. 

2. The Mathematical Model of the Wave Equation 

Let us consider the one-dimensional wave problem (7): 

   

   
   

   

   
  (   )                                                                                                (1) 

with initial conditions: 

 (   )   ( )             
  

  
(   )   ( )                                                                        (2)  

and boundary conditions:     

 (   )     ̂(   )                                                                                                    (3) 

  (   )    ̂(   )                 .                                                                                (4) 

where  (   ) is a particular function, Ω is the bounded domain,   is a constant,  ̂(   ) and 

 ̂(   ) are known functions, ,  -(   )  
  

  
(   ), and  (   ) the external normal vector to 

the boundary   , when      Equation 1 will be homogeneous wave equation, and if  

     Equation 1 will be non-homogeneous wave problem. 
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3. Preliminary of the orthogonal polynomials and their operational matrices 

The orthogonal polynomials and their operational matrices play an important part applied 

and pure mathematics as well as numerical calculation. Six types of these orthogonal 

polynomials will be used: standard polynomials (  ), Legendre, Chebyshev, Boubaker, 

Genocchi, and Bernoulli polynomials to resolve the wave problem with initial and boundary 

conditions. 

3.1. The operational matrices for standard polynomials 

Assume that the wave problem (1), with the initial and boundary conditions (2-4), has a 

unique solution, this can be implemented using a suitable linear transformation. Taking the 

basic functions 

  *  ( )   ( )     ( )  +, and     *  ( )   ( )     ( )  +, 

Let the solution of Equation 1, may be presented by using the double series extension in 

terms of a base functions 

 (   )  ∑ ∑       ( )   ( )
 
   

 
   ,                                                                                    (5) 

The Equation 5 may be written using the dot product, as follows: 

 (   )  ∑ ∑       ( )   ( )
 
   

 
     ( )      ( ) ,                                                      (6) 

where     the coefficients will be evaluated later, by use the definition: 

 ( )  ,            -,    ( )  ,            - ,  and    [

          
          
    
          

]

 

, 

Furthermore, the    -order partial derivatives for   and   with respect   and   are obtained 

by:  
   ( )

   
  ( )    ,   

   ( )

   
 (  )

    ( ), 

where    is the derivative matrix that is dimensional (   )  (   ) is given by: 

   

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

, 

Thus, the derivatives of  (   ) will be obtained using Equation 6 have the following forms: 
   (   )

   
  ( )       ( )              

   (   )

   
  ( )   (  )

   ( )                                 (7) 

3.2. The operational matrices for Boubaker polynomials 

The    -degree of Boubaker polynomials   ( ) are defined as follows (28,37): 

  ( )  ∑ (  ) (   
 
)
    

   
      

(  ⁄ )
     

also Boubaker polynomials can be computed by used the iterative procedure as follows: 

    ( )      ( )       ( ),         . 

Furthermore, suppose that the unknown function  (   ), may be approximated by applying 

the double series based on the Boubaker polynomial:  

 (   )  ∑ ∑       ( )   ( )   ( )         ( )
 
   

 
   ,                                                    (8) 

where  ( )  ,  ( )     ( )-,  ( )  ,  ( )     ( )-
 , and 

   [

          
          
    
          

]

 

, 

where     are the Boubaker polynomials coefficients will be evaluated latter. 
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The derivatives of  (   ) may be transformed into matrices by utilizing the following 

formulation: 
   (   )

   
  ( )        ( )              

   (   )

   
  ( )   (   )

   ( )                             (9) 

The derivatives matrix of Boubaker polynomials denoted by    , and if   is even or  is 

odd, Defined    as follows, respectively: 

         

[
 
 
 
 
 
 
 
 
          

          

             

          

       
 
    

   

 

  
    

   

 

         

  
  
   

 

           ]
 
 
 
 
 
 
 
 

,   

         

[
 
 
 
 
 
 
 
 
          

          

             

          

       
  

    
   

 

          

 
  
 

 

  
  
   

 

          ]
 
 
 
 
 
 
 
 

. 

The following relations can be used to calculate the components {    }       
   0

 

 
1

: 

                       (   )                   (  )
  
    

  
 ∏ (   )             

     

      0
 

 
1. 

3.3. The operational matrices for Bernoulli polynomials 

Bernoulli polynomials   ( ) of      degree is given by (27,38,39): 

  ( )  ∑ . 
 
/     

    
   , 

where    is the Bernoulli number, such that     ∑
(  ) 

 
.   
 
/∑   

 
   

   
   , for    , 

   ,  

The first Bernoulli numbers define as follows: 

          
 

 
     

 

 
 . 

Additionally, the unknown function  (   ) can be approximated by using the following dot 

product based on the Bernoulli polynomials: 

  (   )   ∑ ∑      ( )  ( )   ( )    ( )
 
   

 
   ,                                                      (10) 

where  ( )  ,  ( )     ( )-,  ( )  ,  ( )     ( )-
 , and 

   [

          
          
    
          

]

 

, 

where     is the unknown coefficients of Bernoulli polynomials determined latter.  

Moreover, the derivatives of  (   ) can be written in matrices form by the following 

formula:  
   (   )

   
  ( )       ( )              

   (   )

   
  ( )   (  )

   ( )                               (11) 

where     is the derivative matrix of Bernoulli polynomials, is given as below: 
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[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

, 

3.4. The operational matrices for Legendre polynomials 

Legendre polynomials   ( ) of     degree is given as follows (24,40): 

  ( )   ,      ( )   ,  …. ,         ( )  
  (    )    ( )      ( )

   
,            . 

Furthermore, the Legendre polynomials will be get by using the formula as follows: 

  ( )  ∑ (  )   
(   )  

   (   )  (  ) 
(   )   

     

By using, the linear combination as follow can be approximated the unknown function 

 (   ). 

 (   )   ∑ ∑      ( )  ( )   ( )    ( )
 
   

 
   ,                                                       (12) 

where  ( )  ,  ( )      ( )-,  ( )   ,  ( )     ( )-
 , and 

   [

          
          
    
          

]

 

, 

Moreover,     is the coefficients of Legendre polynomials evaluated latter.  

The derivative of  (   ) with a respect to   and   may be written in matrices as follows: 
   (   )

   
  ( )       ( )              

   (   )

   
  ( )   (  )

   ( )                             (13) 

The derivatives matrix of the Legendre polynomials denoted by   , and we obtained by (34): 

   2
(    )              
                               

  

If   is even then            , and if   is odd then          . 

3.5. The operational matrices for Genocchi polynomials 

The Genocchi polynomials   ( ) of     degree is given by (20): 

 ( )  ∑ . 
 
/     

    
   , 

By using, the linear combination as follow can be approximated the function  (   ). 

 (   )   ∑ ∑      ( )  ( )   ( )    ( )
 
   

 
   ,                                                       (14) 

where  ( )   ,  ( )     ( )-
 ,  ( )  (  ( )     ( )) and 

   [

          
          
    
          

]

 

 

Moreover,     is the unknown coefficient of Genocchi polynomials evaluated latter. 

The derivatives of  (   ) can be written in matrices form as follows: 
   (   )

   
  ( )      ( )              

   (   )

   
  ( )   ( )   ( )                                 (15) 

The derivative matrix of Genocchi polynomials is denoted by   and given by: 

  

[
 
 
 
 
 
      
      
      
      
        
      ]

 
 
 
 
 

, 
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3.6. The operational matrices for Chebyshev polynomials 

Chebyshev polynomials   ( ) of      degree are defined as follows (25,41): 

  ( )  ∑ (  )     
(     ) 

(   ) (  ) 
(   )  

   , 

In addition, the function  (   ) may be approximated by using the linear combination as 

following: 

 (   )   ∑ ∑      ( )  ( )   ( )    ( )
 
   

 
   ,                                                      (16) 

where  ( )  ,  ( )     ( )-
 ,  ( )  ,  ( )     ( )-, and 

   [

          
          
    
          

]

 

, 

Furthermore,     represents the unknown coefficients of Chebyshev polynomials calculated 

latter.  

The derivatives of  (   ) may be rewritten in matrices using the following formula: 
   (   )

   
  ( )        ( )              

   (   )

   
  ( )   (   )

   ( )                          (17) 

The derivative matrix of the Chebyshev polynomials is denoted by   , and obtained by: 

    {
  

  
             

                   
  

If   is odd then           and if   is even then            , and     , and 

     for     . 

3.7. Algorithm  

1. Input (integer) n. 

Input (double series) tools. 

Input (array)     =   , (initial approximation,     with     dimension, are chosen so that 

the boundary conditions are satisfied). 

2.  ̂  (    )       ̂ is a system of linear algebraic equations that has been solved and 

     is obtained. 

Go to (2). 

2.1 If |         |  tol then       , break (the program is finished). 

2.2 Else then          . 

3. Go to (2). 

4. Main Results and Applications of Orthogonal Polynomials in Applied Science 

In this section, will be applied the proposed methods to resolve some test problems of the 

non-homogeneous wave equation to get the approximate solution. We use two distinct error 

criteria to assess the accuracy of suggested methods, which were calculated by using 

              . The norm      is defined by: 

     (
∑ .       (     )        (      )/

 
 
   

∑ .      (      )/
 

 
   

)

  ⁄

, 

and the norm    which is defined by:    

                  |       (     )         (      )|.  

where          and        represent the numerical and analytical solutions, respectively. 

Example 1. Consider the following inhomogeneous wave problem: 

   

   
  

   

   
                                                                                                      (18) 

with initial conditions: 
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 (   )                  
  

  
(   )                                                                                           (19) 

and Dirichlet boundary conditions: 

   (   )  
  

 
                (   )      

  

 
.                                                                          (20) 

and the analytical solution is:  (   )       
  

 
. 

By applying the proposed method to resolve this problem with initial and boundary condition 

gives in Equations 19, and 20, respectively. More specifically, by converting the unknown 

function  (   ) with partial derivatives in to linear equations system. Furthermore, assume 

that    . 

First: Applying the standard polynomials. 

By inserting the Equations 6, and 7 into Equations 18, 19 and 20 the    -order partial 

derivatives and conditions are converted into matrices, such that: 

 ( )   (  
 )
 
  ( )    ( )   

     ( )     

,    - [

         
         
         

] [
   
   
   

] ,    -  

,    - [
   
   
   

] [

         
         
         

] ,    -   , 

                           
       

   ,                                                     (21) 

For     the Equation 6, becomes as following: 

 (   )  ,    - [

         
         
         

] ,     - , 

 (   )               
                  

      
      

       
        (22) 

From Equation 7, the first derivatives of  (   ) with a respective   its: 

   (   )

   
  ( )   (  )

   ( )   ,    - [

         
         
         

] [
   
   
   

] ,    - , 

                           
        

  ,                                                        (23) 

By substituting the IC from Equation 19, when     in to Equations 22, and 23, will be 

obtained: 

 (   )   ( )    ( )               
   ,                                                          (24)   

   (   )

   
  ( )   (  )

   ( )      
            ,                                                (25) 

Also, by inserting the BC from Equation 20 when       in to Equation 22, will be get: 

 (   )   ( )    ( )               
  

  

 
,                                                           (26) 

 (   )   ( )    ( ), 

 (   )  (           ) 
  (           )  (           )      

  

 
,  (27) 

By resolve the linear algebraic system consisting of the Equations 21, 24, 25, 26, and 27, to 

find the values of    ,    ,    ,    ,    ,    ,    ,     and    , using the               , 

we get: 

  [

         
         
         

]  [
                         

             
                         

]. 

By replacing these values in Equations 6 or 22, therefore, the approximate solution using 
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standard polynomials (  ) as follows:  

 (   )                                

   (                       )   (                        )  

Finally, by using the other proposed methods such as: Boubaker, Bernoulli, Chebyshev, 

Genocchi, and Legendre, the approximate solution for test example 1 as follows: 

 (   )     (                         )    (                        )  

 (   )                     (                        )

  (                       )  

 (   )                               

   (                        )

  (                        )  

 (   )                                

  (                        )

   (                        )  

 (   )                                  (                        )

  (                        )  
Table 1. The values of    and      for example 1, when           . 
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Norm              . Norm                . 

Figure 1. The plots logarithmic of      and    , for example 1, when           . 

 

In Table 1 and Figure 1, it can be seen the values of the norm      and   . They depend on 

the value of  , which represents the degree of the polynomial. The higher the value of   

gives the lower error. The best results were achieved using the standard polynomials when, 

    , the values of    and      equals,              ,            , respectively, 

followed by Bernoulli polynomials. 

 

   

                                                               

   

                                                                

Figure 2. Plots the norm    for example 1,          . 

 

  
Exact solution Approximate solution 

Figure 3. Comparison between analytical and numerical solution for example 1 by the standard poly. 
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Example 2. Consider the inhomogeneous wave problem as follows: 

   

   
  

   

   
 (    )     ( )                                                                            (28) 

with initial conditions: 

 (   )                            
  

  
(   )                                                                                 (29) 

and Dirichlet boundary conditions: 

   (   )                     (   )      ( ).                                                                              (30) 

and the analytical solution is:   (   )        ( ). 

 ( )   (  
  )

 
  ( )    ( )   

      ( )  (    )     ( )    

 (   )   ( )    ( )                     
  

  
(   )   ( )   (  

 )   ( )        

 (   )   ( )    ( )                   (   )   ( )    ( )      ( )  

such that    
  represented the operational matrices of all proposed methods. 

Let us use the                 to solve the given test problem and determine the    and 

    : 
Table 2. The values of    and      for example 2,                . 

       
         

      

         

      

          

      

          

      

         

      

         

      

  
                                                               

                                                                 

  

   
      

      

      

      

      

      
          

      

      
          

                         
      

      
                              

  

   
      

      

      

      

      

      
          

      

      

      

      

     
      

      

      

      

      

      
                              

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      
          

      

      
          

  

   
      

      

      

      

      

      

     

      

      

      

      

      

     
      

      

      

      

      

      
          

      

      
          

  

   
      

       

      

       

      

       

      

       

      

      

      

       

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

       

      

       

      

       

      

       

      

      

      

       

     
      

      

      

      

      

       

      

      

      

      

      

       

   

   
      

       

      

       

      

       

      

       

      

       

      

       

     
      

       

      

      

      

       

      

      

      

      

      

      

 

The error norm and mean square error values are readily seen in Table 2, and Figure 4, 

which can be obtained by solving example 2 using Mathematica. Some methods gave close 
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results, but the Bernoulli polynomials gave better results when    , such that         

equals                          , respectively, but when       the Bernoulli and 

standard polynomials give the same results. 

  
Norm              . Norm                . 

Figure 4. The plots logarithmic of      and    , for example 2, when           . 

 

   

                                                                

   
                                                                

Figure 5. Plots the norm    for example 2,          . 

 

  
Exact solution Approximate solution 

Figure 6. Comparison between analytical and numerical solution for example 2 by the Bernoulli poly.  

 

Example 3. Consider the homogeneous wave problem as follows (7): 

   

   
  

   

   
                                                                                                           (31) 
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with initial conditions: 

 (   )                
  

  
(   )     ( )                                                                                (32) 

and Neumann boundary conditions: 

  
  

  
(   )                

  

  
(   )       ( )    ( ).                                                           (33) 

and the analytical solution is:  (   )       ( )    ( ).                                           

By implementing the proposed methods will be get the following linear equations system: 

 ( )   (  
  )

 
  ( )    ( )   

      ( )       

 (   )   ( )    ( )                           
  

  
(   )   ( )   (  

 )   ( )     ( )     

 (   )   ( )   
     ( )                      

  

  
(   )   ( )   

     ( )    

   ( )    ( ). 
 Table 3. The values of    and      for example 3, when           . 

       
         

      

         

      

          

      

          

      

         

      

         

      

  

                     
      

      
                           

                       
      

      
                           

  

   
      

      

      

      

      

      
                           

     
      

      

      

      

      

      
                           

  

   
      

      

      

      

      

      

      

      

      

      
         

     
      

      

      

      

      

      

      

      

      

      
         

  

   
      

      

      

      

      

      
         

      

      

      

      

     
      

      

      

      

      

      
         

      

      
         

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

       

      

      

      

      

      

      

  

   
      

      

      

      

      

       

      

      

      

      

      

       

     
      

      

      

      

      

       

      

      

      

      

      

       

   

   
      

       

      

       

      

       

      

      

      

      

      

       

     
      

      

      

      

      

       

      

      

      

      

      

       

 

From Table 3. and Figure 7., the error norm and mean square error values are visible, as 

these values decrease as the value of   increases, which represents the degree of the 

polynomial. The best methods for approximation are the Bernoulli polynomials, such that 

when     , the values of    and      equals            ,            , 
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respectively, but when      , it can be seen the values of    and      gives        

     ,             .  

  
Norm              . Norm                . 

Figure 7. The plots logarithmic of      and    , for example 3, when           . 

 

   
                                                                

   
                                                                

Figure 8. Plots the norm    for example 3,          . 

 

  
Exact solution Approximate solution 

Figure 9. Comparison between analytical and numerical solution for example 3 by the Bernoulli poly. 

 

Example 4: Consider the following inhomogeneous wave problem (7): 

   

   
  

   

   
                                                                                               (34) 

with initial conditions: 
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 (   )                      
  

  
(   )      ( )                                                                          (35) 

and Neumann boundary conditions: 
  

  
(   )                 

  

  
(   )        ( )    ( ).                                                          (36) 

and the analytical solution is:   (   )            ( )    ( ). 

 ( )   (  
  )

 
  ( )   ( )   

      ( )           

 (   )   ( )    ( )                             
  

  
(   )   ( )   (  

 )   ( )     ( )    

  

  
(   )   ( )   

     ( )                        
  

  
(   )   ( )   

     ( )     

   ( )    ( ). 
Table 4. The values error norm    and      for example 4, when           . 

                

      

         

      

          

      

          

      

         

      

         

      

  
                                                          

                                                            

  

   
      

      

      

      

      

      
         

      

      

      

      

     
      

      

      

      

      

      
         

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

       

      

      

      

      

      

      

     
      

      

      

      

      

       

      

      

      

      

      

      

   

   
      

       

      

      

      

       

      

       

      

      

      

       

     
      

      

      

      

      

       

      

      

      

      

      

      

 

From Table 4, and Figure 10, it can be seen the values of the      and   . The best 

approximation method was the Bernoulli polynomial, where the value of the error norm was 

equal to           and the value of the mean square error was equal to           when 

   , also when     , the values of   , and      are             ,             , 

respectively.  
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Norm              . Norm                . 

  Figure 10. The plots logarithmic of      and    , for example 4, when           . 

 

   

                                                                

   
                                                                

 Figure 11. Plots the norm    for example 4,          . 

 

  

Exact solution Approximate solution 

Figure 12. Comparison between analytical and numerical solution for example 4 by the Bernoulli poly. 

 

Example 5. Consider the following homogeneous wave problem: 

   

   
  

   

   
                   ,                                                                                       (37) 

with initial conditions: 

 (   )                       
  

  
(   )                                                                                   (38) 
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and mixed boundary conditions: 

 (   )                   
  

  
(   )   .                                                                                  (39) 

and the analytical solution is:   (   )       . 

 ( )   (  
  )
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(   )   ( )   (  

 )   ( )        

 (   )   ( )    ( )                               
  

  
(   )   ( )   

     ( )   .  

Table 5. The values    and      for example 5, when           . 

       
         

      

         

      

          

      

          

      

         

      

         

      

  

                    
      

      
                         

                       
      

      
                         

  

   
      

      

      

      

      

      
        

      

      

      

      

     
      

      

      

      

      

      
                

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      
        

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

       

      

      

      

      

      

      

     
      

      

      

      

      

       

      

      

      

      

      

      

  

   
      

      

      

      

      

       

      

      

      

      

      

      

     
      

      

      

      

      

       

      

      

      

      

      

      

  

   
      

      

      

      

      

       

      

      

      

      

      

      

     
      

      

      

      

      

       

      

      

      

      

      

      

   

   
      

       

      

      

      

       

      

      

      

      

      

      

     
      

      

      

      

      

       

      

      

      

      

      

      

 

The mean square error and the error norm values can be easily observed in Table 5, and 

Figure 13, which we obtained by solving example 5 using Mathematica. Some methods gave 

close results; except for the Bernoulli polynomial, which gave better results in general. The 

values of   , and      when     can be observed to be equals to            , 

            and equals             ,            , respectively, when     . 
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Norm              . Norm                . 

  Figure 13. The plots logarithmic of      and    , for example 5, when           . 

 

   
                                                                

   
                                                                

   Figure 14. Plots the norm    for example 5, when     . 

  
Exact solution Approximate solution 

Figure 15. Comparison between analytical and numerical solution for example 5 by the Bernoulli poly. 

Example 6. Consider the following homogeneous wave problem: 

   

   
  

   

   
                                                                                                          (40) 

with initial conditions: 

 (   )                                   
  

  
(   )      ( )                                                          (41) 

and mixed boundary conditions: 

 (   )      ( )                       
  

  
(   )      ( )     ( )                                           (42) 
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and the analytical solution is:  (   )      ( )     ( ). 

 ( )   (  
  )
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 (   )   ( )    ( )                                
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 )   ( )      ( )     

 (   )   ( )    ( )      ( )                     
  

  
(   )   ( )   

     ( )      ( )     ( ). 

Table 6. The values of    and      for example 6, when           . 

       
         

      

         

      

          

      

          

      

         

      

         

      

  

                                                   

     
      

      

      

      

      

      
                        

  

   
      

      

      

      

      

      
        

      

      

      

      

     
      

      

      

      

      

      
                

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      
        

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

      

      

      

      

      

      

      

     
      

      

      

      

      

      

      

      

      

      

      

      

  

   
      

      

      

      

      

       

      

      

      

      

      

      

     
      

      

      

      

      

       

      

      

      

      

      

      

   

   
      

       

      

       

      

       

      

      

      

      

      

      

     
      

      

      

      

      

       

      

       

      

      

      

      

 

From Table 6, and Figure 16, the error norm and mean square error values are presented. 

The best approximation method was the Bernoulli polynomial, where the value of the error 

norm was equal to              and the value of the mean square error was equal to 

             when     . 
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Norm              . Norm                . 

    Figure 16. The plots logarithmic of      and    , for example 6, when           . 

 

   
                                                                

   

                                                                

   Figure 17. Plots the norm    for example 6, when     . 

  
Exact solution Approximate solution 

Figure 18. Comparison between analytical and numerical solution for example 6 by the Bernoulli poly. 

 

5. Conclusion 

In this work, the orthogonal polynomials and operational matrices based on standard 

polynomials were proposed and applied to resolve non-homogeneous wave problems. The 

approximate solutions were achieved and showed to be reliable and effective, even for low-

order polynomials. Additionally, the mean square error      and the norm    were 

calculated to assess the accuracy, dependability, and validity of the approaches. The results 
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show that the recommended solutions have high accuracy and lower error rates. In all 

situations, the mean square error and error norm values drop as   grows. Furthermore, it is 

showed that the results of the   , and       by the recommended methods Bernoulli and 

standard polynomials fell greatly in comparison to the other orthogonal polynomials. The 

standard polynomial was the best in the first example when      to   , and the values of 

the   , and      were equal to              ,            , respectively, when 

    , while the Bernoulli Polynomial was the best in the remaining examples as it gave the 

lowest error when      to   . 
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