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 Abstract  

In the context of increasing the use of nanometals in electrical and electronic applications 

and improving their unique electrical properties, this research explains the effect of the 

mechanisms of scattering of phonons at room-temperature (293K) in addition to the 

scattering and reflection of electrons at the surface and at grain boundary on the electrical 

resistivity of Tungsten metal at different thicknesses. The electrical resistivity of Tungsten 

was obtained by solving the Boltzmann transport equation which the electron scattering 

coefficient at the surface (p) is calculated by the Fuch-Sondheimer model, and the grain 

boundary reflection coefficient (R) by the Mayadas-Shatzkes model were calculated as 

(p=0.89) and (R=0.18) for Tungsten metal based on the mean of the free path of the 

electrons. The results showed that there is a linear relationship between the mechanisms of 

scattering and resistivity, and an inverse relation between electrical resistivity (ρ) and the 

thickness of the nanometal (d) and extending to a large range of thicknesses. Moreover, the 

defects of the crystal lattice and the roughness of the surface have an evident impact on the 

electrical properties of Tungsten metal. In addition, we obtained an excellent consistency 

between experimental data and theoretical results of electrical resistivity. These results 

provide important predictions for the use of nano-Tungsten as an interconnection between 

micro integrated electronic circuits and in various electrical devices. 
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1. Introduction 

The effects of limited size on the resistivity of nanometals have been the subject of 

research for several years from an applied and basic point of view. Understanding the 

resistivity of nanometals is of great importance because nanometals form the interconnection 

structures used in micro-integrated electronic circuits. At present, the thickness of nanometals 

used for interconnection is in the range of (25-30 nm), and expected that their dimensions to 

reach about (10 nm) in the coming years. At these dimensions, the grain boundary and 

surface scattering in tungsten dominate the phonon scattering, leading to a much bigger 

resistivity than that in the bulk (1-5). While the scattering of the phonon and possibly 

impurities dominate the bulk resistivity of the metals at room temperature, surface scattering 
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of electrons can become dominant when the thickness of nanostructured metals is reduced (6-

8).  

Furthermore, it has been found that the grain sizes of polycrystalline nanostructured metals 

typically decrease with decreasing metal thickness, which leads to an increased contribution 

of grain boundary scattering in nanostructured metals (9-11). Eventually, when the metal 

thickness becomes within a few nanometers, the effects of electron trapping will also change 

the resistivity of nanostructured metals (8,12-19). Recently, Tungsten has become a good 

candidate to replace copper for semiconductor metallurgy for two reasons (20-24). The first 

reason is that tungsten has a very high melting point (3695K), much higher than that of 

copper (1358K), which is expected to improve interconnection problems such as voltage 

discharge and electromigration due to the large activation energy of tungsten diffusion (25-

28). The second reason is the expected decrease in the size effect of resistivity due to the 

much shorter mean free path of electrons of Tungsten than that of copper (19.1nm) at 293K 

(9). 

 

2. Materials and Methods  

      Mayadas and Shatzkes developed an extension of Boltzmann’s transport equation to 

include the transport and reflection of electrons at the surface and grain boundary of a 

polycrystalline metal (30). In addition to presenting their model for grain boundaries and 

phonon scattering, Shatzkes and Mayadas derived a more complex model that combines the 

scattering effect of phonons, surfaces, and grain boundaries in nanometals and includes the 

interactions between these effects (11). The electrical resistivity of nanometals is calculated 

based on the Fuchs-Sondheimer model by (6,31): 

        [   
 

  
(   )  ]                                                                                                                  ( ) 

Where ρ0 = resistivity of nanometal, ρf = the final resistivity, K = ratio of thickness (d), to the 

electron mean free path (ℓ), p = the surface scattering coefficient. The probability of 

scattering of the electron scattered on the surface (1-p) and thus the value of the surface 

scattering coefficient (p) can also be calculated from equation (1) and within the range (0 ≤ p 

< 1) (32,33). 

In 1970, Mayadas-Shatzkes developed the above equation, introducing an additional term 

that includes the grain boundary scattering coefficient (R) that has values in the range (0 ≤ R 

< 1), as follows (11): 

       [   
 

  
(   )  

 

 
  ]                                                                                      ( ) 

Where 𝞭 = ℓ˳ R / d (1- R ) is the grain boundary scattering power dependent on thickness(d) , 

electron mean free path and grain boundaries reflection coefficient (R).  

 

3. Results and Discussion 

Experimental results of electrical resistivity as a function of the thickness of Tungsten 

metal, which were measured at a temperature of 293 K, show that nano-tungsten shows a 

decrease in electrical resistivity with increasing thickness, as the thickness of the nano-metal, 

the more evident this effect is. That is, the relationship between resistivity and thickness is 

inverse )34(, as in the following in Figure 1. 
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Figure 1. Experimental resistivity at room temperature as a function of thickness for Tungsten metal. 

 

This effect is due to the surface scattering of the electron according to the Fuchs-Sondheimer 

theory and the effect of electrons' reflection at grain boundaries according to Mayadas-

Shatzkes theory and the scattering of phonons, as well as the effect of size (35). 

To calculate the values of slope and point of intersection, which represent the value of the 

bulk tungsten resistance and the point of intersection of the two axes, respectively, the values 

of (d) were plotted on the x-axis, and the values of (ρd) on the y-axis, so the relationship was 

represented by a straight line that does not cross the origin, and from the relation of the 

straight line (y=ax+b), the slope and the point of intersection were calculated as they are 

equal to (ρ˳) and (ρd) respectively. As in the following in Figure 2. 

 
Figure 2. Resistivity multiplied by thickness ρd ⱱs thickness d.  

 

Through the Fuch-Sondheimer theorem, Equation 1, the value of surface scattering 

coefficient of an electron (p) of the Tungsten nanometal was calculated, where it was equal to 

(p=0.89), which represents the sum of the values of the scatterings (36). Then, based on it, we 

calculate new values of resistivity (ρf), and draw them as a function of thickness, also 

comparing them with the experimental results, where the green curve indicates the theoretical 

results and the blue is the experimental data. As in the following in Figure 3. 
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Figure 3. Fit of Tungsten Experimental Results with Fuch-Sondheimer Model at 293K. 

 

The scattering of electrons at this Tungsten surface is due to crystalline metal defects, such as 

point defects (Schottky and Frenkel), vacancies and impurities, as well as surface roughness 

[37,38]. An increase in this type of scattering means an increase in the electrical resistivity of 

the metal according to the Fuch-Sondheimer theory )39(. 

From the Mayadas–Shatzkes theorem, equation 2, the value of the grain boundary (R) of 

Tungsten was calculated )40( so that it was equal to (R=0.18). The bulk resistivity of 

Tungsten is (ρ˳=5.28 μΩ.cm ), and the mean free path of the electron is (ℓ˳=19.1 nm ), so that 

(ρ˳ℓ˳=101×10
-17

 Ω.m
2
). After that, through equation 2 and using the values of (p, R), new 

values of resistivity were found, which were drawn and compared with the experimental 

results, as shown in the following in Figure 4, where the red curve represents the theoretical 

values obtained. 

 
Figure 4. Fit of Tungsten Experimental Results with Mayadas-Shatzkes Model at 293K. 

 

The above figure shows a good fit and consistency between the experimental values and the 

theoretical results of the Mayadas-Shatzkes model of grain boundaries scattering, that this 

model is based on the mean free path of electron-phonon scattering, as well as point defects 

in crystal structure and surface defects (e.g., roughness))41(. 

Finally, in general, the scattering and reflection mechanisms of the surface electrons lead to a 

decrease in resistivity, because they slow down the speed of electron transition along the 

direction of conduction )33, 40(. 
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4. Conclusion 

     In this research contribution, the mechanisms of scattering and reflection of grain 

boundaries and surface boundaries of conduction electrons and scattering of phonons at room 

temperature and their effect on the electrical properties of Tungsten nanometal were studied. 

The findings indicate that reducing the severity of these scatterings contributes to improved 

electrical conductivity and reduced resistivity by reducing the concentration of Tungsten 

metal crystal lattice defects as well as surface defects. Furthermore, it was found that the 

thickness of the nanometal has a noticeable impact on the electrical properties of Tungsten, as 

increasing the thickness decreases electrical resistance and vice versa. Finally, experimental 

data of resistivity (p) as a function of thickness (d) of Tungsten nanometal showed a good 

and appropriate match with the theoretical results calculated for electrical resistivity by the 

Mayadas-Shatzkes and Fuchs-Sondheimer models. The properties of this metal can be used 

in integrated electronic circuits as an interconnection structure. 
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