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Abstract

Commercial graphite (CGT) powder was used as an adsorbent surface for cationic dye,
Janus green (JG), from aqueous solutions. This study aims to highlight the practical
significance of using inexpensive CGT as an efficient adsorbent for the removal of JG dye
from industrial wastewater. CGT was characterized by Fourier transform infrared
spectroscopy, scanning electron microscopy, and X-ray diffraction. The adsorption process
was investigated by examining parameters like the weight of the adsorbent, contact time, and
temperature. Pseudo-second-order Kkinetic (PSO), pseudo-first-order, and intraparticle
diffusion were used for analyzing the kinetic data. JG dye's adsorption kinetics fit the PSO
kinetic model well (R?= 0.999). Furthermore, the thermodynamic functions such as entropy
(AS*), enthalpy (AH*), and Gibbs free energy (AG*) were evaluated. The positive value of
(AH*) confirms that the adsorption process is endothermic. Also, the positive value of AS*
suggests an increase in randomness at the solid-liquid interface during dye adsorption, and
non-spontaneous as evidenced by positive AG* values of 76.686, 76.130, 75.574, and 75.018
kJ/mol at different temperatures. Two segment-linear plots have been used to describe the
intraparticle diffusion analysis of JG adsorption onto CGT, and the plot does not meet the
origin point, indicating that the intraparticle diffusion was not the only controlling step. Based
on the calculated value of AH*= 92.701 kJ/mol, which means that the adsorption is a
chemical type. Langmuir, Freundlich, and Temkin isotherms were studied for their isothermal
behavior. Also, the equilibrium state is attained in 45 minutes. At 318.15 K, the maximum
removal percentage of JG achieved is 99.96%, indicating that the graphite surface is suitable
as an adsorbent surface for removing JG dye in the temperature range studied.
Keywords:Fourier transform infrared spectroscopy, Graphite, Temkin isotherm,
Thermodinamics, X-ray diffraction.

1. Introduction

Water is crucial for every living organism, covering 71% of the Earth's surface.
Consequently, water pollution is a significant environmental issue, particularly due to its
impact on aquatic biodiversity by obstructing light penetration (1). Various industries
extensively use synthetic dyes, which are essential contributors to water pollution. These dyes
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manipulate the physical and chemical attributes of water, including its characteristics and
quality (2). In addition to these changes, the complex molecular structures of the dyes can
pose potential risks, including toxicity to human health, wildlife, and ecosystems (3). A
variety of physicochemical and biological techniques (4) have been employed to eliminate
dyes from wastewater. However, many of these techniques are costly, particularly when
applied to large-scale wastewater treatment. Therefore, adsorption technology has been used
as an essential method for treating water pollution due to its low cost and the availability of
various natural materials that can serve as effective adsorbent surfaces, including a range of
organic, inorganic substances, and calcium-cellulose-based materials (5). Graphite (GT) refers
to a pure crystalline substance composed of carbon atoms arranged in trigonal units. These
atoms undergo sp? hybridization, resulting in a structure with minimal impurities (6).
Graphite's unique properties arise from two types of bonds: s-bonds, which form between
adjacent carbon atoms, and n-bonds, which are delocalized above and below the carbon layers
(7). The carbon atoms in GT are arranged in hexagonal or rhombohedral unit cells, forming a
layered crystal structure. Each atomic layer of graphite is called graphene (8). Furthermore,
GT exhibits high electrical and thermal conductivity and is broadly used in many applications
in industries (9). Due to its availability, water-insolubility, and natural non-toxicity, the
graphite GT is considered a promising option for real-world wastewater treatment facilities,
mainly in the textile industry. To the best of our knowledge, GT has not been extensively
investigated as an adsorbent for dyes; however, a few studies have emphasized its potential in
removing various pollutants, such as aromatic compounds and ions like fluoride and
ammonium (10). The Janus Green (JG) is a dark green cationic dye that remains unaffected
by pH changes. It is used in histology applications to stain cellular components and
microorganisms (11). This study aims to highlight the practical significance of using
inexpensive commercial graphite (CGT) as an efficient adsorbent for the removal of JG dye
from industrial wastewater.

2. Materials and Methods

A Labtech shaking water bath and UV-visible spectrophotometer (Shimadzu UV-1800)
were used to study the adsorption process. Sartorius balance (L420 B +0.0001) and Hettich
centrifuge (EBA-20) were also used. JG dye (133) with the empirical formula C3oH3,CINg
(M.W= 511.06 g/mol, pH=7, melting point > 200C°) was used. The CGT was used as the
adsorbent without prior treatment. A German sieve with a 75-micrometer mesh size was used
to sift the CGT. The structural properties of CGT were examined using CuKa radiation in an
X-ray diffractometer (6000/ Shimadzu-Japan) along with energy dispersive X-ray
spectroscopy (EDXS) and scanning electron microscopy (Zeiss). Chemical structure
information was obtained using a Fourier transform infrared (FT-IR) spectrophotometer
(Shimadzu- 8400S, Japan) in the 400 to 4000 cm™ range.
2.1. Determination of maximum absorption of Janus green dye
UV-visible spectrum of JG dye, measured over the range 90-1100 nm, is depicted in Figure
1. The highest absorbance (Amax) for JG dye was found at 611 nm. This value was used in all
guantitative assessments conducted in this study.
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Figure 1. Maximum absorption peak of JG dye.

2.2. Determination of the calibration curve for the commercial graphite adsorbent

A series of solutions with varying concentrations ranging from 3 to 42 mg/L in increments of
3 mg/L was prepared to determine the calibration curve for the JG dye. The absorbance values
of the dye solutions were measured and plotted against the concentration according to Beer-
Lambert's law, as shown in Figure 2.
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Figure 2. JG dye standard calibration plot.

2.3. Adsorption experiments

Adsorption experiments were performed by agitating varying weights of CGT adsorbent with
10 mL of (42 mg/L) neutral aqueous solution of JG dye at pH 7 and a temperature of 25 + 0.5
°C. The solutions were transferred to stoppered bottles placed in a controlled shaking water
bath at 150 rpm for 60 minutes. Upon completion of the period, the samples were centrifuged
for 10 minutes at 4000 rpm. The absorbance of the supernatant was measured using an
ultraviolet-visible spectrophotometer at Amax= 611 nm. The percentage of adsorption removal
(R%) was calculated using the formula below (12, 13).

Rop = &= €0 = € 5 100 (1)
Where C, (mg/L) and C; (mg/L) signify the initial concentration and the concentration of the
solution at the time, respectively, to analyze the influence of varying temperatures (T) on the
kinetic behavior of the removal process, the equilibrium time was determined by mixing the
optimum weight of CGT (0.15 g) with 10 mL of dye solution. The amount of JG adsorbed
onto CGT was calculated using the Equation 2 at different time intervals (5-180 min)
(14,15):
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Where g: (mg/g) represents the amount of adsorbed material at time t. C. (mg/L) and C;
(mg/L) denote the initial concentration of the solution and the concentration at time t,
respectively. m (g) is the weight of the adsorbent, and V (mL) is the volume of the dye
solution. The isothermal behavior of the adsorption process was studied using 10 mL of dye
solutions with concentrations varying from 35 to 80 mg/L under optimum conditions at
different T. The equilibrium quantity of JG adsorbed, q. (mg/g), was determined according to
Equation 2, assuming g; = ge and C; = Ce.

3. Results

3.1. Identification of commercial graphite

3.1.1. The X- ray diffraction analysis

The X-ray diffractogram (XRD) of CGT allows for the evaluation of its structural and
crystallographic properties, as shown in Figure 3. Additionally, the crystallite size of CGT
along the c-direction (t;) or its thickness was computed to be 26.085 nm using the classical
Scherrer equation (Equation 3):

—— GT ﬂ

Intensity (a.u)

- .

20 22 24 26 28
20 (degree)

Figure 3. XRD pattern of CGT.

0.944
te = 5 coso (3)
Where 0 is the angle of incidence in radians, and Bp is the full width at half maximum
(FWHM) (16). The average number of layers (n) is given by the Equation 4.
n=
tC

+1 (4)
dooz
3.1.2. The SEM and EDX
The morphology of the CGT adsorbent before adsorption of JG dye and after adsorption was
examined utilizing SEM, as shown in Figure 4 A and B. Figure 4 C and D illustrate the

atomic content of the CGT adsorbent before and after adsorption of JG dye as determined by
EDXS.
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CGT prior to adsorption W Spectrum 4

(D) CGT after adsorption B Spectrum 3

Figure 4. SEM images of CGT adsorbent: A- prior to and B- after adsorption of JG dye, C- and D- EDX for
CGT prior to and after adsorption JG dye.

3.1.3. The FT-IR

The infrared spectrograms of CGT before and after the adsorption of JG dye are presented in
Figure 5. As shown in Figure 5A, CGT exhibits no discernible signals, likely due to the weak
electric dipole induced by the minimal charge difference between sp? carbon atoms.
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Figure 5. FT-IR spectrum of CGT (A) before adsorption (B) after adsorption.

3.2. Adsorption optimization

Since the amount of adsorbent significantly affects adsorption efficiency, the removal
percentage (R%) of JG dye as a function of adsorbent weight was examined. Figure 6
illustrates the relationship between R% and the adsorbent weight of CGT. The results show
that as the CGT weight rises, the percentage removal of JG also rises. This is credited to the
increased surface area of CGT, which provides additional adsorption sites.
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Figure 6. Percentage removal of CGT adsorbent for JG dye vs w (g) of adsorbent at 25 °C.
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The 0.15 g of CGT resulted in a maximum removal efficiency of 98.49% for JG dye at 25°C.
The relationship between contact time and removal rate is shown in Figure 7. The outcomes
indicate that the greatest dye removal rate of 98% was accomplished after 45 minutes. The
equilibrium reached at this point suggests that the active sites on the CGT were fully
occupied. Additionally, the magnitude of JG uptaken on the CGT at time (q;, mg/g) was

graphed versus time at different T as depicted in Figure 8.
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Figure 7. The R% of CGT adsorbent for JG dye vs time(min) at 25 °C.
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Figure 8. The q; (mg/g) of JG on CGT vs time (min) at different T.
3.2.1. Impact of temperature on the efficiency of adsorption
The impact of T on the efficiency of adsorption is revealed in Figure 9.
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Figure 9. The R% of CGT adsorbent for JG dye versus different T.
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3.2.2 Kinetic study of adsorption

The PFO equation, as proposed by Lagergren (17), can be given as Equation 5.

Ln (ge—qe) =Inqe— (k1) t (5)
By graphing In(ge - qt) against time t (min), the slope and intercept of the plot were exploited
for determining the rate constant k; (min~t) and the adsorption capacity at equilibrium q.
(mg/g). The adsorption capacity at a given time is represented by q:. The linear expression of
the pseudo-second-order model (PSO) model, as presented by Ho and McKay (18), is given
by the Equation 6.

t 1 N t 6
Qe k20 qe ©)
The intercept and slope of the graph of (t/q;) against time t can be utilized to evaluate the
equilibrium adsorption capacity . (mg/g) and the rate constant of adsorption k, (g/mg.min),
respectively. Table 1 presents the correlation coefficient R?, rate constants k; and k,, and
equilibrium adsorption capacity q. of JG at various T as determined from the corresponding
equations. The value of the PFO coefficient determination (R?) at different T is relatively low:
0.8383, 0.8636, 0.8936, and 0.4495. Furthermore, the discrepancy between the theoretical
(cal) and the experimental (exp) qge values at all T suggests that PFO kinetics do not describe
JG dye adsorption. The compatibility between the experimental and theoretical (qc)
magnitudes with R? <1 in the PSO kinetic model makes the PSO model more applicable to

the mechanism of JG dye adsorption on the CGT surface at different T.
Table 1. Adsorption JG on CGT using PFO and PSO kinetic model data.

T/IK PFO PSO
kl qe(exp) qe(cal) R2 k2 qe(exp) qe(cal) R2
min”  (mg/g) (mg/g) (gm/mg.min)  (mg/g) (mg/g)
288.15 0.0334 2.749469 0.669181  0.8383 0.3561 2.749469 2.8082 0.9997
298.15 0.0372 2.78627 0.449868  0.8636 0.201574 2.78627 2.818489  0.9999

308.15 0.0307 2.789101 0.14921 0.8936 0.652739 2.789101  2.797203 1
318.15 0.0181  2.799009  0.015719  0.4495 4.835731 2.799009  2.798769 1

To pinpoint the step that limits the rate of adsorption, the Weber and Morris model can be
applied (19,20) using the Equation 7.

O = ket? +C (7
Where C (mg/g) and kg (g/mg.min?/?) are the thickness of the boundary layer and rate constant
of the intraparticle diffusion, respectively, t is the time (min). C and ky can be determined
from the intercept and slope, respectively, by plotting the relationship between g and t'2
(Figure 10). The intraparticle diffusion analysis of JG adsorption onto CGT reveals two
distinct stages in the entire adsorption phenomenon. The preliminary stage corresponds to the
diffusion of JG motes into the active sites, and the first-stage intraparticle diffusion rate
constant k; is relatively high. In the second stage (equilibrium phase), the intraparticle
diffusion rate begins to slow down as the dye content in the solution becomes very low and
the maximum sorption ability is reached. The values of k; in this plateau region are minimal.
The values of the intraparticle diffusion rate constants k; and k; are listed in Table 2.
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Figure 10. Weber and Morris model plot at different T for removing JG dye by CGT.

Table 2. The variables of Weber& Morris intraparticle diffusion of adsorption JG dye on CGT surface at
different T.

Kinetics Parameters T (K)

Segment 1 288.159 298.15 308.15 318.15
C 0.72816 1.79733 2.72461 2.73085
ki 0.37006 0.16337 0.00519 0.01356
R? 0.81644 0.93906 0.89626 0.99296

Segment 2
C 2.62316 2.72589 2.28631 2.78965
k, 0.0095 0.00455 0.10576 0.00145

3.2.3. Determination of activation energy (E.) and thermodynamic functions
The Ea for the removal of JG dye by the CGT adsorbent and thermodynamic functions was
explained by the Arrhenius equation (21).

Eq
InK, = LnA — RT (8)

Where k (g.mg™*.min™) represents the rate constant, which is computed according to the PSO
model, R (8.314 J/K.mol), E. (J/mol), T (K), and A represent the adsorption rate constant, the
universal gas constant, the activation energy, the temperature, and the Arrhenius coefficient,
respectively. The E, value can be computed from the slope of the plot of Ink against 1/T using
the regression equation (Y= -11452 X + 37.158 with R? = 0.9290) (22).
To include additional understanding of the reaction mechanism, the thermodynamic functions
of activation of enthalpy (AH*), free energy (AG*), and entropy (AS*) were calculated using
the Eyring relation (23):

k k AS* AH*
ln?2=11’173+?— RT (9)
Where Kg, k, and h stand for the Boltzmann constant, the rate constant of PSO, and the
Planck constant, respectively. Plotting produced a straight line. The AS* and AH* were
obtained from using the intercept and the slope of plotting In(k2/T) against 1/T. The values of
AH* and AS* were used to calculate the value of AG* of activation using the relation below
(24). Table 3 contains the values of AG™, AS™ and AH .

AG* = AH* — TAS* (10)
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Table 3. Evaluate the thermodynamic functions of activation for the adsorption of dye JG on the surface of CGT
at different T.

T (K) AG  (KJ.mol™) AH™ (KJ.mol™) AS" (J.mol* K™%
288.15 76.686

298.15 76.130 92.701 55.579
308.15 75.574

318.15 75.018

3.2.4 The adsorption isotherms

The Langmuir model hypothesizes that the adsorbent surface consists of active sites with
equal energy, where each site adsorbs one molecule of the adsorbate without interacting with
molecules on adjacent sites, implying that the adsorption occurs in a monolayer. The straight-
line version of this model was expressed by the Equation 11, as shown below (25):

Ce 1 Ce

e _ + (11)
Qe qmax-kL Omax

Where q. (mg/g) and C. (mg/L) are the amount and the concentration of adsorbate at

equilibrium, respectively, Qm.x (mg/g) is the maximum adsorption ability, and K_ (L/mg) is
the Langmuir constant. The magnitudes of gm. and K. were derived from the slope and
intercept of the Cc/qe vs. The C. plot was shown in Table 4. The dimensionless separation
factor (RL) is a critical Langmuir parameter (26) and can be computed from the highest
concentration of JG dye C° (mg/L) using the Equation 12.
1

R, = TTKC (12)
The isotherm shape can be characterized by the value of the separation factor R.. The
calculated data is presented in Table 4. The Freundlich isotherm was represented by the
following formula (27):

1
Inge =InKp + ;ln Ce (13)

Where C. (mg/L), q. (mg/g), K¢ (L/mg), and n are the concentration of the adsorbed JG dye at
equilibrium, adsorption capacity, Freundlich constant, and intensity, respectively, the
intercept and slope from the In(qe) vs. In(Ce) plot allow for the estimation of K¢ and 1/n,
respectively. Table 4 shows the parameters of the Freundlich model. The n values are greater
than unity, suggesting that the adsorption of JG dye on CGT is favorable at all T examined
(28), according to the Equation 14.

q. = BLnK; + BLnC, (14)
The constant B and binding constant Kt (L/g) might be determined from the intercept and
slope of the plot of ge versus In Ce. The Equation 15 describes how the B constant is related

to the heat of adsorption:

B=" (15)
The Temkin constant b (J/mol) is linked to the heat of adsorption (29). Table 4 presents the
computed parameters for the Langmuir, Temkin, and Freundlich models at different T. The
practical data presented in Table 4 are more consistent with the Langmuir isotherm as

indicated by the high R2 =0.998, compared to the other models.
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Table 4. Isotherm parameters for Langmuir, Temkin, and Freundlich at various temperature conditions.

Isotherm Temperature (K)
Parameters 288.15 298.15 308. 15 318.15
Langmuir
qm(mg.g?h) 3.808073 4116921 4.246285 4.545455
K. (L.mg?) 3.370988 1.224294 2.148723 5.759162
R? 0.9993 0.9913 0.9937 0.9983
R, 0.0036 0.01 0.0057 0.0021
Freundlich
Ke (L. mg™) 2.940854 2.696622 2.961512 3.54203
n 11.13586 7.304602 7.53012 8.920607
R? 0.7782 0.8298 0.7894 0.7626
Temkin
Bt (KJ. mol™) 8.552942 5.732699 5.829258 6.72378
Kr (L. mg™) 41614.39 533.9467 936.0213 10032.42
R’ 0.8166 0.8359 0.8226 0.8253
4. Disussion

4.1. ldentification of commercial graphite

4.1.1. The X- ray diffraction analysis

The diffraction pattern of CGT exhibits a strong peak at 20 = 26.57° corresponding to a
distance between the planes (d) of 0.3351 nm (JCPDS no. 41-1487) and the (002) reflection
planes (30). Based on Equations 3 and 4, the presence of 78.84 layers in CGT confirms that
the graphite is composed of nanoplate structures (31).

4.1.2. The SEM and EDX

The SEM image shows a clear lamellar structure of natural graphite with particles appearing
as overlapping sheets with thin and irregular edges. This morphology is consistent with the
properties of flaky graphite (FG), which has a relatively regular crystal structure that
contributes to its layered appearance (32). After adsorption, the CGT sample showed the
aggregation of JG particles on its surface. Atomic imaging shows peaks that correspond to
nitrogen (N), carbon (C), and chlorine (CI), which are linked to the JG dye, as well as carbon
(C) and oxygen (O) from the CGT. Traces of heteroatoms such as sulfur (S), manganese
(Mn), and iron (Fe) were also detected, likely as contaminants from the manufacturing
process. The presence of these functional groups can provide chemical binding sites for the
JG dye (33).

4.1.3. The FT-IR

The absorption peak at 2308 cm™ is attributed to the asymmetric (asym.) stretching of CO,
(34). After adsorption of JG dye, the spectrum of CGT shows distinctive peaks at 1625 cm™
and 1472 cm™ relating to the C=C group. Furthermore, the stretching vibration of the azo
groups is observed near the double bond stretching region. The region above 3000 cm™
corresponds to the stretching mode of the C-H aromatic group. The absorption band at 1381
cm™ is associated with the stretching mode of C-N (34). These results suggest the
involvement of strong electrostatic interactions and chemical bonding between the functional
points on the CGT surface and the JG dye, which give rise to changes in the infrared spectra
of the CGT surface moieties.

4.2. Adsorption optimization

The rapid adsorption process in the initial minutes can be ascribed to the initially unoccupied
adsorption sites. Over time, the rate of adsorption slowed until it reached equilibrium at 45
minutes as the JG dye molecules transferred to the surface of CGT (35).
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4.2.1. Impact of temperature on the efficiency of adsorption

To examine the influence of temperature on the adsorption of JG dye onto the CGT surface,
the adsorption system was conducted at various T. The findings showed that adsorption
efficiency increased with rising temperature, with the highest removal rate of 99.96%
achieved at 45 °C. This suggests that the adsorption phenomenon is endothermic enclosed by
the specified temperature interval.

4.2.2 Kinetic study of adsorption

The adsorption dynamics is a key factor in determining the effectiveness of adsorption
diffusion. To estimate the adsorption Kkinetics, several kinetic approaches were employed to
the experimental results incorporating intraparticle diffusion, pseudo-first and second order
(PFO and PSO) models at different T according to the linear expression of the PSO model by
Ho and McKay. To pinpoint the step that limits the rate of adsorption, the Weber and Morris
model was used. Additionally, the plot does not intersect the origin, which indicates that
intraparticle diffusion is not the sole determinant of the rate and that alternative kinetic
approaches may also govern the adsorption of JG onto CGT (36).

4.2.3. Determination of activation energy (E.) and thermodynamic functions

The Ea for the removal of JG dye by the CGT adsorbent was computed with the Arrhenius
equation. The AH*, AG*, and AS* were calculated using the Eyring relation. Values of AH*
and AS* were used to calculate the value of AG* of activation. The value of AH* for the
adsorption of JG onto the CGT surface is 92.701. This value falls within the range of 40
KJ.mol™ and 120 KJ.mol™, indicating the adsorption process is chemisorption. The positive
sign of this value further confirms the endothermic nature of JG adsorption. This outcome is
in complete agreement with the kinetics data and the Ea value. The values of AG* are positive
at all T studied, indicating that the adsorption process requires energy to convert reactants
(dye molecules in solution) into products (dye molecules on the surface). Additionally, the
removal of JG dye onto CGT shows a positive value of AS* due to an increase in disorder at
the interface (solid-solution) (37).

4.2.4 The adsorption isotherms

An isotherm of adsorption study delivers valuable insights into the adsorption process,
including its conditions, the concentration of the dye (adsorbate), and the adsorption capacity
of the CGT (adsorbent) at equilibrium. In this study, various isotherm models were
implemented on the experimental data at different T and the straight-line version of this
model was calculated and the R_ was calculated. Multilayer adsorption involving a varied
energy distribution of active sites on the adsorbent is represented by the Freundlich isotherm.
The Temkin isotherm considers the influence of non-direct interactions between adsorbate-
adsorbent entities on adsorption. Due to these interactions, the model predicts that the heat of
adsorption as a function of temperature of all the molecules in the layer will decrease linearly
rather than logarithmically (38). Also, the adsorption heat was calculated. Additionally, the R
value ranging from 0 to 1 indicates that the adsorption process was favorable for JG dye.
Alternatively, the minor R? values for the Temkin and the Freundlich isotherms suggest that
these models did not fit the experimental data as well (39).

5. Conclusion

This study evidences the efficiency of CGT as an adsorbent for the removal of JG dye from
aqueous solutions. The obtained data show that the amount of JG dye (ge in mg/g) increases
with the weight of the CGT adsorbent. Kinetic analysis reveals that the removal mechanism is
more congruent with the PSO model (R < 1). The adsorption data isotherms fit the Langmuir
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model. The adsorption is endothermic and non-spontaneous, with an increase in randomness
as evidenced by the thermodynamic analysis. The adsorption efficiency of the CGT adsorbent
demonstrated the highest removal rate of 99.96% at the highest temperature. This indicates
that the surface is highly effective as an adsorbent for removing JG dye within the
temperature range studied.
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